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Abstract Purity as a quantifier of an impact of environment on an open quantum system
is studied for a qubit dephasingly interacting with its environment. We analyze how time
evolution of the purity depends on initial states of the composite system both in the case of
infinite and finite environments. It is shown that for a certain class of initial preparations, the
purity of an evolving qubit state initially correlated with infinite environment can be greater
than in the case of uncorrelated qubit-environment initial preparations. We identify a class
of initial states leading to such desired outcome.

Keywords Purity · Open system · Initial correlations

1 Introduction

An unavoidable presence of environment is one of the best known obstructions for effective
implementation of quantum information processing [1]. According to the common wisdom
the state ρ of an open quantum system becomes mixed due to decoherence-induced infor-
mation loss. The simplest quantifier of this effect is the purity P[ρ] of a quantum state ρ

defined as [2]

P[ρ] = Tr
(
ρ2

)
(1)

which takes its maximal value P = 1 for pure states ρ2 = ρ. When the system interacts
with the infinite environment (environment in the thermodynamic sense), purity is a non-
increasing function of time: open quantum systems cannot become spontaneously purified,

J. Dajka (�) · B. Gardas · J. Łuczka
Institute of Physics, University of Silesia, 40-007 Katowice, Poland
e-mail: Jerzy.Dajka@us.edu.pl

B. Gardas
e-mail: bgardas@us.edu.pl

J. Łuczka
e-mail: Jerzy.Luczka@us.edu.pl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81850571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Jerzy.Dajka@us.edu.pl
mailto:bgardas@us.edu.pl
mailto:Jerzy.Luczka@us.edu.pl


Int J Theor Phys (2013) 52:1148–1159 1149

i.e. open systems cannot become less mixed than initially. If the system of interest and its
environment are initially in an uncorrelated state (i.e. when it is a product state) then the
reduced dynamics of an open quantum system is described in terms of completely posi-
tive maps which are also contractive with respect to some distance measures. In the case
of finite-dimensional Hilbert spaces, when the completely positive map is a quantum dy-
namical semigroup, the purity is a monotonically decreasing function of time if and only
if it is unital (preserves the identity operator) [3]. In the infinite dimensional case, unitality
is only sufficient [3]. If the initial state of the system and environment is correlated, the
reduced dynamics need not be completely positive and the contractivity may fail [4]. How-
ever, results of the work [3] do not concern such systems and therefore studies are needed to
include the case of open systems initially correlated with its environment. Effects induced
by initial system-environment correlations have been studied in various context [5–16]. First
experiments on initial system-environment correlations were reported in Refs. [17, 18].

The initial mixedness (i.e. how much the initial state is far from being pure) can originate
both from imprecise state preparation and from system-environment correlations (entangle-
ment). However, there is a quantitative difference: in the case of system-environment initial
entanglement the information is stored not only in the state of the system but also is shared
with its environment. Contrary to the case of imprecise preparation, the information is only
partially lost and affects the reduced dynamics of an open system [1, 19]. Our aim is to
provide an evidence that the origin of initial mixedness affects the loss of purity. We focus
our attention on pure decoherence models for which reduced dynamics is exactly known
for all values of model parameters [20]. Therefore we can consider the regime of weak
and strong system-environment interaction in the presence of large initial correlations of the
composite system. It is know that in such regimes, in general, the reduced dynamics exhibits
non-Markovian evolution in which there is a flow of information from the environment back
to the open system, indicating the occurrence of memory effects and strong dependence of
evolution on initial conditions [21, 22]. We show that there are initial system-environment
correlated states for which the purity of the reduced open system can be greater than in the
case of initially uncorrelated system-environment states. Our results are complementary to
those obtained in Ref. [23], where the damped Jaynes-Cummings model has been used as
a composite system. Here, we consider both infinite and finite environments coupled to an
open system.

The layout of the paper is as follows: in Sect. 2, we recall the dephasing model of deco-
herence for a qubit coupled to its environment. Next, in Sect. 3, we consider time evolution
of the qubit purity in the case of an infinite bosonic environment with a continuum of bath
modes and modelled by a bosonic field. In Sect. 4, we analyze the purity evolution in the
case of a finite environment consisting of one boson. Section 5 provides a summary and
conclusions.

2 Dephasing Models

We consider a two-level system (qubit, spin) S coupled to its outer environment E. We
assume a pure dephasing interaction between the qubit and environment, and neglect the
energy dissipation process of the qubit. This assumption is reasonable in the case when the
phase coherence decays much faster than the energy. An example is a qubit constructed with
a quantum dot in semiconductor devices, where the environment is a phonon system [24].

The system can be modeled by the following Hamiltonian [20, 25, 26]

H = εSz ⊗ IE + IS ⊗ HE + Sz ⊗ HI , (2)
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where Sz is the z-component of the spin-1/2 operator and is represented by the diagonal
2 × 2 matrix Sz = diag[1,−1] of elements 1 and −1. The parameter ε is the qubit energy
splitting, IS and IE are identity operators (matrices) in corresponding Hilbert spaces of the
qubit S and the environment E, respectively. Finally, HE is the Hamiltonian of the envi-
ronment, HI is the operator in the Hilbert space of the environment and characterizes the
qubit-environment interaction.

For our purposes, it is more convenient to rewrite the spin-bosons system (2) in the so-
called block operator matrix representation [41], in which the Hamiltonian (2) has a block-
diagonal structure:

H = diag[H+,H−], H± = HE ± HI ± εIE, (3)

where the Hamiltonians H± act only on the environment Hilbert space.

2.1 Initial Pure States

We assume that at the initial time t = 0 the total (isolated) system S + E is in a pure state
characterized by the wave function |Ψ (0)〉 in the form

∣
∣Ψ (0)

〉 = b+|1〉 ⊗ |Ω1〉 + b−|−1〉 ⊗ |Ω2〉. (4)

The states |1〉 and |−1〉 denote the excited and ground state of the qubit S, respectively. The
complex numbers b+ and b− are chosen in such a way that the condition |b+|2 + |b−|2 = 1
is satisfied. The normalized states |Ω1〉 and |Ω2〉 are environment states. We will consider
two different initial states:

(A) If |Ω1〉〈Ω1| �= |Ω2〉〈Ω2|, the initial state is the correlated (entangled) state. The smaller
the overlap 〈Ω1|Ω2〉 is the ‘more entangled’ the initial state is. It is maximally entangled
provided that the states |Ω1〉 and |Ω2〉 are orthogonal and b± are nonzero.

(B) If |Ω1〉〈Ω1| = |Ω2〉〈Ω2|, the qubit and its environment are initially in an uncorrelated
(product) state

∣
∣Ψ (0)

〉 = (
b+|1〉 + b−|−1〉) ⊗ |Ω1〉. (5)

The initial wave function (4) of the isolated system S + E evolves unitarily according to
the Hamiltonian (2) and reads

∣
∣Ψ (t)

〉 = b+|1〉 ⊗ ∣
∣ψ+(t)

〉 + b−|−1〉 ⊗ ∣
∣ψ−(t)

〉
, (6)

where
∣∣ψ+(t)

〉 = exp(−iH+t)|Ω1〉,
∣∣ψ−(t)

〉 = exp(−iH−t)|Ω2〉.
(7)

The state of the total system is a pure state and the corresponding density matrix reads
�1(t) = |Ψ (t)〉〈Ψ (t)|. In turn, the partial trace TrE over the environment degrees of freedom
yields the reduced density matrix ρ1(t) = TrE�1(t) of the qubit. In the qubit base {|1〉, |−1〉},
it takes the matrix form

ρ1(t) =
( |b+|2 b+b∗−A1(t)

b∗+b−A∗
1(t) |b−|2

)
, (8)
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where the decoherence factor A1(t) = 〈ψ−(t)|ψ+(t)〉 is a scalar product of two wave func-
tions in the environment Hilbert space. At initial time, A1(0) = 〈Ω2|Ω1〉. The qubit is in a
pure state for |A1(t)|2 = 1 and it is completely decohered when |A1(t)|2 = 0.

2.2 Initial mixed states

Now, let us consider the next class of initial states of the total system, namely, mixed states
in the form

�2(0) = ρ1(0) ⊗ |Ω3〉〈Ω3|, (9)

where ρ1(0) is the qubit state (8) at t = 0 and |Ω3〉 is an initial normalized state of the
environment. It means that although initial states (4) and (9) of the total systems are different,
the reduced (with respect to E) initial states of the qubit are the same in both cases. From
the relation

ρ2(t) = TrE
{
e−iH tρ1(0) ⊗ |Ω3〉〈Ω3|e−iH t

}
(10)

we obtain the reduced dynamics of the qubit. It can be expressed in the matrix form as:

ρ2(t) =
( |b+|2 b+b∗−A2(t)

b∗+b−A∗
2(t) |b−|2

)
, (11)

where the decoherence function A2(t) = 〈Ω2|Ω1〉〈Φ−(t)|Φ+(t)〉 and
∣
∣Φ+(t)

〉 = exp(−iH+t)|Ω3〉,
∣
∣Φ−(t)

〉 = exp(−iH−t)|Ω3〉.
(12)

Let us emphasis that although ρ2(0) = ρ1(0) (with ρ1(0) given in Eq. (8)) the origin of
initial ‘mixedness’ is in both cases different. For ρ2(t) it is due to imperfect initial prepa-
ration whereas for ρ1(t) initial information is shared (via entanglement) by qubit and its
environment.

Properties of the purity of qubit states evolving according to the reduced dynamics (8)
and (11) are analyzed in this paper. For dephasing-type density matrices (8) or (11) the purity
takes a form

P
[
ρi(t)

] = |b+|4 + |b−|4 + 2|b+|2|b−|2∣∣Ai(t)
∣
∣2

, i = 1,2. (13)

Time evolution of the purity depends on the initial state of the total system and (of course)
on interaction with environment via the decoherence function Ai(t). The aim of our paper is
to determine the difference between purities P[ρi(t)] of the two types of reduced dynamics.

3 Infinite Environment

In this section, we consider the case when the environment is infinite with a continuum of
bath modes and modelled by a bosonic field. Then, in Eq. (2), the environment parts of the
Hamiltonian assume the form (with � = 1)

HE =
∫ ∞

0
dωh(ω)a†(ω)a(ω), (14)
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HI =
∫ ∞

0
dω

[
g∗(ω)a(ω) + g(ω)a†(ω)

]
, (15)

where the operators a†(ω) and a(ω) are the bosonic creation and annihilation operators,
respectively. The real-valued function h(ω) characterizes the energy spectrum of the envi-
ronment. The coupling is described by the function g(ω) and its complex conjugate g∗(ω).

To determine the environment vectors in Eqs. (4) and (9), we can propose any vectors
from the corresponding Hilbert space but for convenience we choose the following example:

|Ω1〉 = |Ω3〉 = |Ω0〉,
|Ω2〉 = C−1

λ

[
(1 − λ)|Ω0〉 + λ|Ωf 〉],

(16)

where |Ω0〉 is the ground (vacuum) state of the environment and |Ω2〉 is the linear combina-
tion of the vacuum state |Ω0〉 and the coherent state |Ωf 〉 defined by the relation

|Ωf 〉 = exp(iφ)D(f )|Ω0〉. (17)

It is determined by the phase φ and the square-integrable function f . The Weyl displacement
operator reads [29]

D(f ) = exp

{∫ ∞

0
dω

[
f (ω)a†(ω) − f ∗(ω)a(ω)

]}
. (18)

The constant Cλ normalizes the state (4) and is given by the expression

C2
λ = (1 − λ)2 + λ2 + 2λ(1 − λ)Re〈Ω0|Ωf 〉, (19)

where the real number λ ∈ [0,1] and Re is a real part of the scalar product 〈Ω0|Ωf 〉 of two
states in the environment Hilbert space.

There is no special reason for our choice of the superposition of vacuum and coherent
state in the environment, apart from the fact that it provides the simple instructive example.
The correlated initial state (4) with (16) differs from the one used in Refs. [27, 28] due to the
phase φ which affects considerably results of this paper. The decoherence functions A1(t)

and A2(t), which occur in the reduced density operators (8) and (11), take the form

A1(t) = Bλ(t), A2(t) = Bλ(0)B0(t), (20)

where [27, 28]

Bλ(t) = C−1
λ e−2iεt−r(t)

[
1 − λ + λe−2iΩ(t)+s(t)

]
(21)

and

r(t) = 4
∫ ∞

0
dωg2

h(ω)
{
1 − cos

[
h(ω)t

]}
, (22)

s(t) = 2
∫ ∞

0
dωgh(ω)f (ω)

{
cosφ − cos

[
h(ω)t − φ

]} − 1

2

∫ ∞

0
dωf 2(ω), (23)

where gh(ω) = g(ω)/h(ω) and

Ω(t) =
∫ ∞

0
dωgh(ω)f (ω)

{
sin

[
h(ω)t + φ

] − sinφ
}
. (24)
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We have assumed in Eqs. (22)–(24) that the functions h(ω), g(ω) and f (ω) are real valued.
The initial state (4) of the composite system depends on three parameters: (1) on the

complex number b+ or b− (remember that the condition |b+|2 +|b−|2 = 1 is satisfied); (2) on
the real number λ ∈ [0,1] and (3) on the phase φ of the coherent state. Moreover, it depends
on the function f (ω). The degree of the initial correlation of the qubit and environment
can be controlled by the above four quantities. For a fixed coherent state and fixed number
b+, the parameter λ ∈ [0,1] controls the strength of initial correlations of the qubit with
environment. For λ = 0 the qubit and the environment are initially uncorrelated while for
λ = 1 the correlation is most prominent for the assumed class of initial states.

Without loss of generality, we can assume that the energy spectrum h(ω) is an increasing
function of ω. Then, by changing the integration variable as ω̃ = h(ω), we obtain expres-
sions for r(t), s(t) and Ω(t) which in form are similar to (22)–(24) but with new redefined
functions gh and f . It formally corresponds to the case h(ω) = ω. Such a change of the in-
tegration variable is convenient because we can apply the Fourier transform theory for their
analysis. In particular, by applying the Riemann-Lebesgue lemma [30], we can evaluate the
long-time limit (t → ∞) of the functions (22)–(24). When the initial state is uncorrelated
(λ = 0) then the decoherence function Bλ(t) does not depend on s(t) and Ω(t). The func-
tion r(t) increases from zero to finite or infinite value (in dependence on the form of gh(ω)).
When the initial state is correlated (λ �= 0) then in the long time limit the behavior of the
decoherence function Bλ(∞) depends on

r(∞) − s(∞) =
∫ ∞

0
dω

[
4g2

h(ω) − 2gh(ω)f (ω) cosφ + 1

2
f 2(ω)

]
> 0. (25)

The integrand is a quadratic form of two variables gh and f . One can easily check that this
form is positive definite and therefore (25) is positive for any gh,f and φ. It means that the
purity (13) in both cases of uncorrelated and correlated initial states is a decreasing function
of time.

For detailed analysis of purity properties, we still have to specify two quantities: the spec-
tral density gh(ω) = g(ω)/ω for the linear energy spectrum h(ω) = ω and the function f (ω)

which determines the coherent state. The spectral density function gh(ω) describes the in-
fluence of environment modes at different frequency scales and for continuum environment
is taken as some continuous function of frequency. In literature, there are many examples of
such a function, see e.g. [31]. With this study we restrict ourselves to the case in which this
function assumes the explicit form [32]

g2
h(ω) = αωμ+1 exp(−ω/ωc), (26)

where α > 0 is the qubit-environment coupling constant, ωc is a cut-off frequency and μ >

−1 is the “ohmicity” parameter: the case −1 < μ < 0 corresponds to the sub-ohmic, μ = 0
to the ohmic and μ > 0 to super-ohmic environments, respectively. To avoid mathematical
inconsistencies we limit our considerations to super-ohmic systems μ > 0 [33, 34].

The function f (ω) determining the coherent state |Ωf 〉 is taken in the form

f 2(ω) = γων+1 exp(−ω/ωc). (27)

This form is convenient because we are able to calculate analytically the integrals in
Eqs. (23) and (24) but one can take any square-integrable function. As a result one gets

r(t) = 4αΓ (μ)ωμ
c

{
1 − cos[μ arctan(ωct)]

(1 + ω2
c t

2)μ/2

}
, (28)
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s(t) = 2
[
L1 − L2(t)

]
cosφ − L3(t) sinφ − 1

2
γΓ (ν)ων

c , (29)

Ω(t) = [
L1 + L2(t)

]
sinφ + L3(t) cosφ, (30)

where

L1 = √
αγΓ

(
μ + ν

2

)
ω

μ+ν
2

c , (31)

L2(t) = L1
cos[μ+ν

2 arctan(ωct)]
(1 + ω2

c t
2)

μ+ν
4

, (32)

L3(t) = L1
sin[μ+ν

2 arctan(ωct)]
(1 + ω2

c t
2)

μ+ν
2

(33)

and Γ (z) is the Euler gamma function.
As it was shown, the purity is a decreasing function of time for any functions h,gh, f

and φ. Therefore to reveal the role of initial qubit-environment correlations (entanglement)
on purity evolution, we will analyze the difference P[ρ1(t)] − P[ρ2(t)] between the purity
P[ρ1(t)] for the initially correlated qubit-environment state (8) and the purity P[ρ2(t)] for
the initially uncorrelated qubit-environment state (11). We fix all values of parameters except
λ, which controls degree of correlations. From Eq. (13) it follows that sign of the purity
difference is fully determined by sign of the difference

Δ(t) = ∣
∣A1(t)

∣
∣2 − ∣

∣A2(t)
∣
∣2 = C−2

λ e−2r(t)Π(t), (34)

where

Π(t) = λ2
[
e2s(t) − e2s(0)

] + 2λ(1 − λ)
[
es(t) cos 2Ω(t) − es(0)

]
. (35)

We address the issue of whether, and to which extent, the nonzero correlation parameter
λ can influence purity of qubit states as time grows. Our results are shown in the upper
panel of Fig. 1 for selected values of the correlation parameter λ and the phase φ = 0 of
the coherent bosonic field, cf. Eq. (17). In this case, increase of the correlation parameter
λ results in higher purity in comparison to the case of an initial uncorrelated state. For the
maximally entangled initial state (for λ = 1) the purity difference is highest. However, it
is very sensitive to the relative phase φ between the ground state |Ω0〉 and the coherent
state |Ωf 〉 of the environment. It is demonstrated in the bottom panel of Fig. 1. The main
conclusion from this figure is that the phase φ is crucial and can control the dynamics of
purity states of the qubit and the sign of Δ(t) can be modified by a change of the phase. Let
us notice that for the proper choice of φ in Eq. (17) one can relate the purity difference to
the amount of initial system-environment entanglement of reduced dynamics.

4 Finite Environment

While studying open systems it is natural to think about infinite environment (with a contin-
uum of bath modes) causing true irreversibility of various processes related e.g. to ther-
modynamical properties of open systems [35]. Nevertheless, states of such systems are
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Fig. 1 Rescaled purity
difference Π(t) given by
equation (35) as a function of
time in units of 1/ωc . Top panel:
Π(t) for selected values of the
parameter λ characterizing initial
correlations between the qubit
and its environment and fixed
phase φ = 0. Bottom panel: Π(t)

for several values of the phase φ

and fixed correlation parameter
λ = 1. Remaining parameters
are: ε = 1, α = 0.1,
γ = 0.01,μ = ν = 0.1 (Color
figure online)

rather awkward for an effective engineering. Much more convenient is to manipulate fi-
nite environments (with discrete bath modes) which can, to some extent and for certain time
scales, mimic the properties of ‘real’ surroundings. From a finite environment we require
the amount of the minimal energy which it can absorb to be finite. This property does not
necessary indicate finiteness of the environment Hilbert space. As an example, we consider
a qubit coupled to a single boson via the dephasing process (3) with

H± = ωa†a ± g0
(
a + a†

) ± εIE, (36)

where g0 is a coupling constant. Now, as the environment vectors in Eqs. (4) and (9), we
choose

|Ω1〉 = |Ω3〉 = |0〉,
|Ω2〉 = C−1

λ

[
(1 − λ)|0〉 + λ|z〉].

(37)

The state |0〉 is a vacuum state (a ground state) of the boson and |z〉 is the coherent
state for any complex number z = |z|eiφ . Initial coherent states are chosen because of their
experimental accessibility both in optical [36–38] and microwave [39, 40] systems. The
decoherence functions A1(t) and A2(t), which occur in the reduced density operators (8)
and (11), take the form (20) but now with the modified function Bλ(t) in the form

Bλ(t) = C−1
λ e−2iεt−R(t)

[
1 − λ + λe−2iΛ(t)+S(t)

]
, (38)
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where

R(t) = 4g2[1 − cosωt],

S(t) = 2g|z|[cosφ − cos(ωt − φ)
] − 1

2
|z|2, (39)

Λ(t) = g|z|[sin(ωt + φ) − sinφ
]

for z = |z|eiφ and g = g0/ω is the rescaled coupling constant.
The function Δ(t) has the similar form as in Eq. (34) and reads

Δ(t) = ∣∣A1(t)
∣∣2 − ∣∣A2(t)

∣∣2 = C−2
λ e−2R(t)Π(t), (40)

and

Π(t) = λ2
[
e2S(t) − e2S(0)

] + 2λ(1 − λ)
[
eS(t) cos 2Λ(t) − eS(0)

]
. (41)

This formula has a similar structure to (35) for an infinite environment. Quantitative results
obtained for finite systems presented in Fig. 2: (top panel) show that as long as z = z∗ =
|z|eiφ is real (for the phase φ = 0), one gets purity enhancement, with no regard to the value
of |z| > 0. Let us notice that when the environment is finite, the characteristics of purity
oscillate in time (as expected for a finite system) but the most pronounced difference occurs
in the case of large correlations in the initial state of the qubit and its environment. The
ordering of graphs with respect to λ is similar to that observed for infinite systems in Fig. 1.
There is also an optimal amplitude |z| for which the difference Π(t) is largest. It is depicted
in the middle panel of Fig. 2. The ordering of Π(t) with respect to the correlation parameter
λ, as shown in the upper panel, is not preserved in the case when z is complex and the phase
φ �= 0, see the bottom panel of Fig. 2. As in the case of infinite environment, the phase φ

can be a control parameter for the qubit states purity.

5 Summary

We have analyzed an impact of initial correlations between the open system (qubit) and its
environment on the properties of purity of a qubit. With this work we have presented two
models of the environment: the infinite one described by the bosonic field and the finite one
consisting of a single boson. In both models we compare two types of evolution different
with respect to the form of initial S + E preparation but of the same reduced (with respect
to the environment) state. The first type of preparation is defined by Eq. (4) and carries
non-trivial qubit-environment correlations whereas the second one is the product state given
by Eq. (9). As a natural reference we use a separable initial state. Correlated initial states
of the total system S + E are chosen in a specific form of a superposition of two qubit-
environment states consisting of a qubit basis vectors tensorized with coherent states of
environment (with vacuum as one of them). The formal structure of this states is identical for
both infinite, Eq. (16), and finite, Eq. (37), environments. We have revealed that the phase of
the coherent environment state can radically influence of the purity difference. The general
conclusion is that by a proper choice of an initial state preparation of the qubit-infinite
environment, one can arrive at ‘initial entanglement-assisted’ purity growth, i.e. there are
initial system-environment correlated states for which the purity of the qubit can be always
greater than in the case of initially uncorrelated qubit-environment states. We hope that our
results, although provided for very specific models, can serve as a guideline for an effective
design of quantum evolutions equipped with desired properties.
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Fig. 2 (Color online) Rescaled
purity difference Π(t) given by
equation (41) plotted as a
function of time in units of 1/ω.
Top panel: Π(t) for various
initial entanglement quantified
by λ. The state |z〉 is fixed with
z = |z|eiφ = 1 (φ = 0). Middle
panel: Π(t) for selected values
of z = |z|, fixed φ = 0 and λ = 1.
Bottom panel: Π(t) for several
values of the phase φ, fixed
|z| = 1 and λ = 1. In all cases
g = 0.1 and ε = 1
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