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Abstract
Background: Inflammation is believed to play an important role in the pathology of Alzheimer's
disease (AD) and cytokine production is a key pathologic event in the progression of inflammatory
cascades. The current study characterizes the cytokine expression profile in the brain of two
transgenic mouse models of AD (TgAPPsw and PS1/APPsw) and explores the correlations between
cytokine production and the level of soluble and insoluble forms of Aβ.

Methods: Organotypic brain slice cultures from 15-month-old mice (TgAPPsw, PS1/APPsw and
control littermates) were established and multiple cytokine levels were analyzed using the Bio-plex
multiple cytokine assay system. Soluble and insoluble forms of Aβ were quantified and Aβ-cytokine
relationships were analyzed.

Results: Compared to control littermates, transgenic mice showed a significant increase in the
following pro-inflammatory cytokines: TNF-α, IL-6, IL-12p40, IL-1β, IL-1α and GM-CSF. TNF-α, IL-
6, IL-1α and GM-CSF showed a sequential increase from control to TgAPPsw to PS1/APPsw
suggesting that the amplitude of this cytokine response is dependent on brain Aβ levels, since PS1/
APPsw mouse brains accumulate more Aβ than TgAPPsw mouse brains. Quantification of Aβ levels
in the same slices showed a wide range of Aβ soluble:insoluble ratio values across TgAPPsw and
PS1/APPsw brain slices. Aβ-cytokine correlations revealed significant relationships between Aβ1–
40, 1–42 (both soluble and insoluble) and all the above cytokines that changed in the brain slices.

Conclusion: Our data confirm that the brains of transgenic APPsw and PS1/APPsw mice are under
an active inflammatory stress, and that the levels of particular cytokines may be directly related to
the amount of soluble and insoluble Aβ present in the brain suggesting that pathological
accumulation of Aβ is a key driver of the neuroinflammatory response.

Background
Alzheimer's disease is a progressive neurodegenerative
disorder characterized by intra-cellular abnormally phos-
phorylated tau protein and extra-cellular beta amyloid

plaques. It has been suggested that inflammation may be
a key player in the pathophysiology of AD as evidenced by
epidemiological studies which have revealed that the long
term use of non-steroidal anti-inflammatory drugs
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reduces the risk of developing AD [1-3]. Transgenic mouse
models of Alzheimer's disease that over-express β-amy-
loid (Aβ) exhibit significant cerebrovascular inflamma-
tion and microgliosis around areas of plaque deposition
[4-7]. Chronic administration of ibuprofen can reduce
plaque pathology and brain Aβ levels in these animal
models of AD [8,9].

There are numerous reports of increased levels of
cytokines in the brains of Alzheimer's disease patients,
and in transgenic mouse models of Alzheimer's disease
[10-12]. However, all these reports have focused on a
small number of cytokines within the same sample. It is
not clear which cytokines are key in promoting and main-
taining the inflammatory environment in the AD brain.
Furthermore, it is unclear which Aβ species (1–40, 1–42,
soluble or insoluble) are most closely related to cytokine
levels. Multiplex technology enables the simultaneous
quantification of many cytokines within a single sample.

By examining different mouse models of AD using multi-
plex technology, it is possible to more clearly characterize
the particular cytokines which maintain the inflammatory
environment and to relate them to particular forms of Aβ
(1–40, 1–42, soluble or insoluble).

There is considerable debate over which length of Aβ and
which conformations are most potently toxic. Recently,
specific oligomeric forms have been shown to be most
toxic to neurons. These soluble species of Aβ differ from
the higher-molecular-weight aggregated insoluble forms
that are found precipitated in the AD patient and mouse
brain. This study sought to determine whether soluble or
insoluble Aβ fractions were most closely related to
cytokine levels.

Materials and methods
Organotypic brain slice cultures
Mouse brain slice cultures were prepared as previously
described [29]. Briefly, 15-month-old PS1 (M146L),
TgAPPsw (K670M / N671L), PS1/APPsw and wildtype lit-
termates were humanely euthanized and the brains
extracted under sterile conditions. One-mm-thick brain
slices were sectioned from co-ordinates 1 to -4 from
bregma using a mouse brain slicer. Sections were cultured
in neurobasal medium with 5% B27 supplement (Gibco-
Invitrogen, CA) and Penicillin-Streptomycin-Fungizone
mixture (Cambrex Corp., NJ). After 40 hours, media was
collected for quantification of cytokine levels.

Multi-plex cytokine array analysis was performed using
the Bio-plex protein multi-array system, which utilizes
Luminex-based technology [13]. For the current experi-
ments, a mouse 12-plex assay was used according to the
recommendations of the manufacturer (BioRad, CA).

Measurement of Aβ levels in brain slices
Brain slices were washed with PBS (BioSource, CA), and
300 µl of lysis buffer was added. Lysis buffer consisted of
mammalian protein extraction reagent (Pierce-Endogen,
IL) with 1X protease inhibitor cocktail XI (Calbiochem,
CA), 100 µM Sodium Orthovanadate, and 1 µM Phenyl-
methylsulfonyl Fluoride (PMSF) (Sigma-Aldrich, MO).
The resulting mixture was sonicated using a sonic dis-
membrator (Fisher Scientific, PA)

Protein content in each slice was determined using the
bicinchoninic acid (BCA) protein reagent kit (Pierce-
Endogen, IL), as per the manufacturers protocol. Insolu-
ble Aβ was extracted using 70% formic acid as previously
published [14].

Aβ content in brain slices was determined using human
Aβ 1–40 and Aβ 1–42 ELISA detection kits (Biosource,
CA), as per the manufacturers protocol.

Statistical analyses
For statistical analyses, ANOVA and t-tests were per-
formed where appropriate using SPSS for Windows
release 10.1. Hierarchical cluster analysis of Aβ-cytokine
data from brain slices were performed with the R program
http://cran.r-project.org/. A correlation matrix was con-
structed using the raw data and subsequently converted to
a distance matrix by subtracting each element in the cor-
relation matrix from 1. The distance matrix was used as
the dissimilarity matrix for building an hierarchical cluster
using the averaging method. The resulting dendrogram
consists of closely related members under the same node.
The farther one needs to traverse across the tree to reach
another member, the higher the dissimilarity represented.
The distance from the base in the y-axis represents dissim-
ilarity or 1-r, where r is the correlation co-efficient.

Results
Cytokine production by organotypic brain slice cultures
Cytokine production was evaluated by multi-plex
cytokine array analysis using the cell culture supernatant
of organotypic brain slice cultures from control, PS1
(Presenilin 1 mutant heterozygotes), TgAPPsw, and
TgPS1/APPsw mice at 15 months of age. We chose non-
transgenic littermates as controls for the TgAPPsw mice
and the PS1 animals as controls for the PS1/APPsw mice
as the PS1 animals were the littermates of the PS1/APPsw
mice. There were no significant differences in cytokine
production between control slices and PS1 slices showing
that PS1 over-expression does not directly induce inflam-
matory events. Compared to control slices, production of
IL-1α, TNF-α, GM-CSF and IL-6 was increased in TgAPPsw
slices (figs. 1, 2). Compared to TgAPPsw slices, PS1/
APPsw brain slices produced significantly more IL-12p40,
IL-1β, IL-1α, TNF-α, GM-CSF and IL-6. Across control,
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TgAPPsw, and PS1/APP transgenic brain slices, there was
a graduated increase in IL-1α, TNF-α, GM-CSF and IL-6.

Correlation between Aβ level and cytokine production by 
transgenic mouse brain slices
Quantification of amyloid levels in brain mouse slices
revealed that PS1/APPsw mice produce significantly more
total Aβ as compared to TgAPPsw mice at the same age,
and levels of insoluble and soluble Aβ (both 1–40 and 1–
42) correlated well with each other (Table 1). Analysis of
the ratio of soluble:insoluble Aβ revealed a wide range of
values across the TgAPPsw and PS1/APPsw mouse brain
slices, with a 15.3-fold variance for Aβ 1–40 and a 5.4-fold
variance for Aβ 1–42 (for Aβ 1–40, comparison of solu-

ble:insoluble ratios revealed an average difference of 3.9
fold, and an average 1.7-fold difference for Aβ 1–42).

Although all the cytokines that changed in the transgenic
brain slices were correlated with increases in Aβ levels,
some showed a closer relationship than others to Aβ levels
(Figs. 3, 4, and 5). A table of r-correlation values is given
in Additional file 1. It is important to note that the den-
drograms depict the closeness of a correlation between a
particular cytokine and Aβ levels, and that all the mem-
bers in the dendrograms are in fact highly correlated with
Aβ levels (1% significance was considered as r >= 0.496,
and 5% significance was considered as r >= 0.388). IL-4
and IL-5 were not produced in detectable amounts, were

Cytokine production by brain slices from transgenic mouse models of AD at 15 months of ageFigure 1
Cytokine production by brain slices from transgenic mouse models of AD at 15 months of age. Freshly harvested 
brain slices were incubated in neurobasal medium with B27 supplement. Media was collected after 24 hours, and cytokine lev-
els measured. Mean concentrations (N = 15) +/- standard error are expressed in picograms per milligram of protein. P < 0.05 
was considered statistically significant.
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Cytokine production by brain slices from transgenic mouse models of AD at 15 months of ageFigure 2
Cytokine production by brain slices from transgenic mouse models of AD at 15 months of age. Freshly harvested 
brain slices were incubated in neurobasal medium with B27 supplement. Media was collected after 24 hours, and cytokine lev-
els measured. Mean concentrations (N = 15) +/- standard error are expressed in picograms per milligram of protein. P < 0.05 
was considered statistically significant.

Table 1: Quantification of Aβ levels in TgAPPsw and PS1/APPsw mouse brain slices. Data expressed as picograms/mg protein, mean ± 
S.E.M. for 13 determinations.

TgAPPsw PS1/APPsw

Soluble Aβ1–40 331.15 ± 35.36 4957.79 ± 322.30
Soluble Aβ1–42 68.11 ± 6.82 1644.29 ± 90.30
Insoluble Aβ1–40 67619.38 ± 7089.61 4095442 ± 409212.3
Insoluble Aβ1–42 6837.22 ± 2741.70 286463.3 ± 31395.63
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therefore omitted from the dendrograms. Of all the
cytokines, IL-12p40 showed the strongest correlation with
levels of both Aβ1–40 and 42 (soluble or insoluble). IL-
1α and IL-1β were also highly correlated with Aβ1–40 and
42 (soluble or insoluble).

Discussion
Levels of both peripheral and local CNS cytokines are ele-
vated in AD patients, indicating that there is cellular acti-
vation occurring in response to inflammatory stimuli [15-
20]. However, there is still considerable debate over
exactly what is triggering this inflammation. Studies using
mouse models of AD have shown that ibuprofen is effec-
tive in reducing plaque pathology and also in improving
behavioral deficits characteristic of these transgenic mod-
els [8,21]. The transgenic mouse models used to study AD
exhibit some of the pathological features seen in the AD
patient brain and show an increased production of
inflammatory markers such as COX-2, PGE2 and also
increased levels of the pro-inflammatory cytokines IFN-γ
and IL-12, TNF-α, IL-1α, IL-1β and IL-6 [12,22]. Patholog-
ical analysis of tissue from AD patients and from mouse
models of AD shows that there is extensive astrocytic and
microglial activation around areas of Aβ plaque deposi-

tion [6,7]. In addition, the chronic use of non-steroidal
anti-inflammatory drugs (NSAIDs) has been associated
with a reduced risk of developing AD [23,24], suggesting
that inflammation is an important contributor to the
pathophysiology of AD.

One aim of this study was to create a cytokine expression
profile for organotypic brain slice cultures from transgenic
mouse models of Alzheimer's disease, and to further
relate this increase to the level of Aβ present in the brain.
Another purpose of our study was to determine whether
inflammatory events may be correlated with the accumu-
lation of particular forms of Aβ; either soluble or
insoluble.

In the current study, we used the organotypic brain slice
culture model to assess multiple cytokine production in
the culture medium surrounding brain slices from trans-
genic mice that are engineered to over-produce Aβ.
Cytokine production from 15-month-old control, PS1,
TgAPPsw and PS1/APPsw mouse brain slices was assessed
using the Bioplex cytokine multi-array system. Cytokine
levels were not significantly elevated in PS1 brain slices
compared to control slices, indicating that the PS1

Dendrogram correlations of Aβ1–40 and Aβ1–42-cytokine relationshipsFigure 3
Dendrogram correlations of Aβ1–40 and Aβ1–42-cytokine relationships. Closely related members appear under the 
same node. The farther one needs to travel across the tree to reach another member, the greater the dissimilarity.
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(M146L) mutation does not have a significant impact on
cytokine production. No significant change in the
production of IL-4 and IL-10 was observed in the brains of
these transgenic mice compared to their respective con-

trols, indicating the absence of an anti-inflammatory
response. All of the cytokines that were increased in the
TgAPPsw brain slices (IL-1α, TNF-α, GM-CSF and IL-6)
were further increased in the PS1/APP brain slices. This

Dendrogram correlations of Total Aβ (Aβ1–40+Aβ1–42)-cytokine relationshipsFigure 4
Dendrogram correlations of Total Aβ (Aβ1–40+Aβ1–42)-cytokine relationships. Closely related members appear 
under the same node. Total Aβ levels were calculated by adding soluble and formic acid extracted Aβ. The farther one needs 
to travel across the tree to reach another member, the greater the dissimilarity.

Total Aβ
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suggests that the presence of these inflammatory mole-
cules is related to the amount of β-amyloid protein
present, in agreement with a pro-inflammatory effect of
Aβ [25-29]. A recent report has also shown increases in IL-
1β, IL-6 and TNFα in-vivo after intra-cerebral administra-
tion of fibrillar Aβ into rat brain [30].

In order to further understand the correlation between the
amount of Aβ and cytokine levels in the brains of trans-
genic mice, levels of both soluble and insoluble (formic
acid-extracted) Aβ1–40 and 1–42 were quantified in the
same slices from which cytokine production was meas-
ured, allowing a direct correlation of Aβ-cytokine levels.

Levels of soluble and insoluble Aβ1–40 correlated well
with each other, and the same was observed for Aβ1–42.

As expected, quantification of Aβ levels generally revealed
significantly higher amyloid levels in the PS1/APPsw
mouse brain slices compared to TgAPPsw (for soluble Aβ,
approximately 15 fold more Aβ1–40, and 20 fold more 1–
42) but there was considerable slice-to-slice variation in
soluble and insoluble Aβ levels within and between geno-
types. The TgAPPsw and PS1/APPsw mice express equal
levels of the APPsw molecule, but the PS1/APPsw model
produces greater levels of Aβ and develops plaques at an
earlier age (10 weeks) [31-33]. This increased deposition
of Aβ in the PS1/APPsw mouse is due to a PS1 mutation,
resulting in increased production of Aβ1–42 [34-36].

The Aβ data in the current report found a significant range
of values for soluble:insoluble Aβ ratios between brain
slices. This broad spread of values allowed correlation

Dendrogram correlations of (Aβ1–42:40 ratio)-cytokine relationshipsFigure 5
Dendrogram correlations of (Aβ1–42:40 ratio)-cytokine relationships. Total Aβ1–42:40 ratio's were calculated for 
both soluble and formic acid extracted Aβ. Closely related members appear under the same node. The farther one needs to 
travel across the tree to reach another member, the greater the dissimilarity.

Aβ 1-42:40 ratio
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with equally wide ranges of cytokine production. This
approach of examining Aβ-cytokine correlations within
the same slices in the same aged animals eliminated the
confounding factor of age related changes in cytokine pro-
duction. Both Aβ1–40 and 1–42 correlated closely with
all the cytokines that changed in the brain slices, but the
correlation was particularly striking with IL-12p40. IL-12
is a hetero-dimeric cytokine which can comprise two sub-
units; IL-12p40 and IL-12p35. It is produced mainly by
monocytes and macrophages and is a crucial factor in
directing the T-cell response to infection, by inducing a
Th1-type cytokine response. Our data agrees with that of
previous reports showing that IL-12p40 is strongly up-reg-
ulated in-vitro (in response to an inflammatory stimulus)
and in-vivo in the cerebral cortex of TgAPPsw mice
[12,37,38].

IL-1, which was increased in the transgenic brain slices, is
a major immune-response molecule functioning in the
periphery and brain. The family comprises three related
proteins (IL-1α, IL-1β and IL-1 receptor antagonist (IL-
1ra)). IL-1α and IL-1β are two different isoforms of IL-1
that have similar affinities for their receptor IL-1R, and
therefore have similar activities. Both are capable of
inducing inflammatory cascades in-vivo and in-vitro, and
it has been shown that they are capable of up-regulating
expression of astrocyte-derived S100B and APP [39,40]. It
has been shown that IL-1β can promote β-secretase cleav-
age of APP in human astrocytes and thereby increase pro-
duction of Aβ1–40 and 1–42 [41,42]. It is also known that
accumulation of plaques and the formation of neurofi-
brillary tangles are correlated with increased IL-1 levels in
the AD brain [43-45]. Certain polymorphisms of IL-1A
(the gene for IL-1α) are associated with late onset AD,
although there is controversy as to whether all IL-1 gene
polymorphisms represent risk factors for AD [46-50].
Microglia, in particular, have been shown to locally up
regulate IL-1α at both the protein and mRNA level when
inflamed, a situation that occurs in chronic disease states
such as AD [51]. Both IL-1α and IL-1β can enhance the
translation of APP mRNA in human astrocytes [52]; an
up-regulation of IL-1α/β production in-vivo could there-
fore increase Aβ production, and an inflammatory cycle
with increased Aβ levels may further increase IL-1α/β
production.

The Aβ 1–42:40 ratio is also of considerable interest in
relation to cytokine levels and although there are cur-
rently no studies correlating Aβ 1–42:40 ratio with
cytokine levels in-vivo, certain reports have suggested that
cytokines can modulate Aβ production [53-55]. PS1
mutations are known to cause a shift in the production of
Aβ species, favoring the production of Aβ1–42 over 1–40
and causing an increase in the Aβ1–42:40 ratio [56]. Since
TNF-α correlated better with the level of Aβ1–42 than

with that of Aβ 1–40, and correlated particularly well with
the Aβ1–42:40 ratio in our study, TNF-α levels may be
partly determined by this ratio. Higher levels of Aβ1–42
can promote the formation of toxic oligomers [57-59],
and it therefore seems possible that the increased level of
Aβ oligomers in PS1/APP mice (compared to APPsw) and
the level of oligomeric forms present in the brains of our
transgenic mice may be related to the amount of TNF-α
being produced.

It is important to consider the nature of the exact form of
Aβ that may be most responsible for the inflammatory
events seen in AD brains. Aβ can exist in various forms
(monomeric, dimeric, oligomeric and fibrillar), but it is
not yet clear which of these forms are most potent in
inducing inflammatory cellular responses [57,60,61].
This is of interest because the oligomeric forms of Aβ
which are thought to be the most toxic are produced more
readily by Aβ1–42 (for review see [62]). Future studies
will assess the relative proportions of monomers/dimers,
oligomers or fibrils occurring in these mice brains and
their relationship with the cytokine increases observed.

List of abbreviations
AD: Alzheimer's disease

APP: Amyloid precursor protein

APPsw: Amyloid precursor protein Swedish mutation

PS1: Presenilin 1

Aβ: Beta-amyloid

Tg: Transgenic

TNF: Tumor necrosis factor

IL-x: Interleukin-x

IL-1ra: Interleukin-1 receptor antagonist

GM-CSF: Granulocyte macrophage colony stimulating
factor

PBS: Phosphate buffered saline

COX-2: Cyclo-oxygenase-2

PGE2: Prostaglandin E2

IFN: Interferon

NSAID: Non-steroidal anti-inflammatory drug
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