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Abstract The aim of the contribution is to formulate
a macroscopic mathematical model describing the dy-
namic behaviour of a certain composite thin plates.
The plates are made of two-phase stratified compos-
ites with a smooth and a slow gradation of macro-
scopic properties along the stratification. The formu-
lation of mathematical model of these plates is based
on a tolerance averaging approach (Woźniak, Micha-
lak, Jędrysiak in Thermomechanics of microheteroge-
neous solids and structures, 2008). The presented gen-
eral results are illustrated by analysis of the natural fre-
quencies for two cases of plates: a plate band and an
annular plate. The spatial volume fractions of the two
different isotropic homogeneous components are opti-
mized so as to maximize or minimize the first natural
frequency of the plate under consideration.
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B
αβγμ

eff effective stiffnesses tensor of
homogenized model

E strain energy
g(ξα) fluctuation shape function
gαβ metric tensor
K kinetic energy
καβ strain tensor
L Langrange function
〈L〉 averaged part of Langrange function
Oξ1ξ2ξ3 orthogonal curvilinear coordinate system
R1 inner radius
R2 outer radius
VA(ξα, t) amplitudes of fluctuation part of deflection
w(ξα, t) deflection of the plate midplane
w0(ξα, t) averaged part of deflection
�(ξ1, ξ2) arbitrary cell with a center at point (ξ1, ξ2)

λ microstructure length parameter
μ mass density related to plate midplane
	 the region of the plate midplane

1 Introduction

The object of the analysis is a composite thin plate
with the apparent properties smoothly varying along
a preferred direction in the plate midplane. Con-
siderations are restricted to the two-phased of the
functionally graded—type composites. The plate is
made of two different isotropic homogeneous mate-
rials (Fig. 1). In this case we say that the aforemen-
tioned functionally graded materials are longitudinally
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Fig. 1 Fragment of plates midplane with longitudinally graded
microstructure: (a) microscopic level, (b) macroscopic level

graded, i.e. the effective properties of the considered
plates are smooth and slowly-varying along the layer-
ing in the plate midplane.

The aim of the contribution is to derive and ap-
ply a macroscopic model describing dynamic be-
haviour of thin plates made of composites which have
the λ-periodic microstructure along ξ1-coordinate but
slowly varying apparent properties in the perpendic-
ular direction of ξ2-axis. The generalized period λ of
inhomogenity is assumed to be sufficiently small when
compared to the measure of the domain of argument
ξ1 (Fig. 1). Thus we deal with plates having space-
varying periodic microstructure. The above gradation
will be referred to as the longitudinal gradation.

The effective properties of the plate are constant in
the ξ1-direction and varying in the ξ2-direction. Since
effective properties of this plate are graded in space
then we deal here with a special case of a functionally
graded material (FGM), Suresh, Mortensen [18].

Functionally graded materials are a new class of
composite materials where composition of each mate-
rial constituent determines continuously and smoothly
varying apparent properties of composite. The dy-
namic analysis of functionally graded rectangular
plates (FGP) are to be found in many papers. We
can mention here as examples some of these papers.
Chen et al. [3] analyzed nonlinear vibration of an ini-
tially stressed functionally graded plates (FGP). The
material properties of the FGP are assumed to be
temperature-dependent and graded through the thick-
ness. In the paper of Gupta and Kumar [5] an analysis

of thermal effect on vibration of non-homogeneous
visco-elastic plate of linearly varying thickness has
been discussed. Batra and Jin [2] studied free vibra-
tions of a functionally graded anisotropic plate with
the objective of maximizing one of its first five nat-
ural frequencies. The gradation of material proper-
ties through the thickness is attained by varying the
fiber orientation angle. Tyliokwski [21] analyzed para-
metric vibrations of FGP subjected to in plane time-
dependent forces. Material properties vary contin-
uously in the thickness direction according to vol-
ume fraction power law distribution. In the paper
Orakdöğen et al. [14] an finite element analysis of
FGP multi-layered composite plate for coupling ef-
fect of extension and bending has been discussed.
The volume fraction of material properties is graded
in the thickness direction and was defined by using
two power-law functions. The studies concerned with
dynamic analysis of FGM circular and annular plates
are limited. They are mentioned here some papers:
Malekzadek et al. [9] presented analysis of free vibra-
tion of functionally graded annular plates on elastic
foundation. Temperature-dependent material proper-
ties are graded through the thickness. The equations
of motion are derived using the Hamilton’s princi-
ple based on the first-order shear deformation the-
ory (FSDT). In the paper of Prakash and Ganapathi
[16] the asymmetric free vibration and thermoelas-
tic stability of the FGM circular plates using finite
element method have been analyzed. Material prop-
erties are graded in the thickness direction according
to a simple power law distribution. In the paper of
You et al. [22], an analytical solution is developed to
determine deformations and stresses in circular disks
made of FGM subjected to internal and/or external
pressure. The governing equations are derived from
basic equations of axisymmetric, plane stress prob-
lem in elasticity. The mechanical properties of mate-
rials are the functions of the radial coordinate. Torn-
abene and Viola [20] analyzed a dynamic behaviour
of functionally graded parabolic and circular panels
and shells of revolution. The first-order shear defor-
mation theory (FSDT) is used to study these struc-
tures. The two-constituent shells are graded through
the thickness. Two different power law distributions
are considered for the ceramic/metal volume fraction.
The solution is given by means of the generalized dif-
ferential quadrature methods. The majority of above
mentioned studies are concerned with analysis func-
tionally graded plates where material properties vary
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continuously through the plate thickness. In contrast
to these papers, the plates under consideration have
effective properties varying in the midplane of the
plates.

The exact equations describing dynamics behaviour
of the FGM-plates comprise highly-oscillating and
non-continuous coefficients. The modeling problem
is how to describe microheterogeneous plate by cer-
tain averaged equations with functional but smooth
and slowly varying coefficients. For the above problem
we can apply homogenization technique for equations
with non-uniformly oscillating coefficients, cf. Jikov
et al. [6]. However, because the formulation of aver-
aged models by using the asymptotic homogenization
is rather complicated from the computational point of
view, these asymptotic methods are restricted to the
first approximation. Hence, averaged model obtained
by using this method neglects the effect of the mi-
crostructure size on the overall response of the FGM-
plate. The formulation of the macroscopic mathemat-
ical model for the analysis of dynamic behaviour of
the plates under consideration will be based on the
tolerance averaging technique. The general modelling
procedures of this technique are given by Woźniak et
al. in book [24]. Application of the tolerance aver-
aging technique to the analysis of periodic compos-
ites or structures were presented, e.g. for laminates
by Matysiak and Nagórko [10], for porous media by
Dell’Isola et al. [4], for honeycomb composites by
Wierzbicki and Wożniak [23], for stability analysis
of thin biperiodic cylindrical shells by Tomczyk [19],
for investigation of dynamic behaviour of different
periodic plates; by Baron [1] for medium-thickness
plates, by Jędrysiak [7] for thin elastic plates inter-
acting with an elastic periodic foundation, by Micha-
lak et al. [12] for dynamic modeling of elastic wavy
plates, by Michalak [11] for plates with initial geomet-
rical periodical imperfections interacting with a peri-
odic elastic foundation. In the book edited by Woź-
niak et al. [24] the list of references on this subject
can be found. The approach, based on the tolerance
averaging technique, to formulate an averaging model
for functionally graded stratified media was proposed
by Michalak et al. [13], Jędrysiak and Woźniak [8],
Rychlewska and Woźniak [17].

The aim of this contribution is two-fold. First, to
formulate a non-asymptotic model of the FGM-plate
under consideration. This model takes into account
the effect of the microstructure size on the dynamic

behaviour of the FGM-plate. Second, to investigate
a free-vibration problem in the framework of a non-
asymptotic model.

2 Preliminaries

The object of our considerations are rectangular plates
of microstructures shown on Fig. 1a or annular plates
with microstructure given in Fig. 2a. Let us intro-
duce the orthogonal curvilinear coordinate system
Oξ1ξ2ξ3 in the physical space occupied by a plate un-
der consideration. The time coordinate will be denoted
by t . Sub- and super-scripts i, k, l run over 1,2,3 and
α,β, δ run over 1,2. Setting x ≡ (ξ1, ξ2) and z = ξ3

Fig. 2 Fragment of annular plates midplane with longitudinally
graded microstructure: (a) microscopic level, (b) macroscopic
level
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it is assumed that the undeformed plate occupies the
region � ≡ {(x, z) : −h/2 ≤ z ≤ h/2,x ∈ 	}, where
	 is the plate midplane and h is the plate thickness.

The model equations for the dynamic behaviour of
the plate will be obtained in the framework of the lin-
ear approximated theory for thin elastic plates. Let
w(ξα, t),p(ξα, t),μ stand for the midplane deflec-
tion, loadings and the mass density related to plate
midplane. Denoting by gαβ the metric tensor, by εαβ

a Ricci tensor, by ∂α = ∂/∂ξα and by vertical line be-
fore the subscripts the covariant derivative, we obtain
strain-deflection relations

καβ(ξγ ) = −w(ξγ )|αβ. (1)

The strain energy averaged over the plate thickness is
given by

E(ξλ) = 1

2
Bαβγ δκαβκγ δ, (2)

where

Bαβγμ = 0.5B(gαμgβγ + gαγ gβμ

+ v(εαγ εβμ + εαμεβγ )),

B = Eh3/12(1 − v2)

and kinetic energy by

K(ξα) = 1

2
μẇ · ẇ. (3)

In order to derive governing equations we shall define
Lagrangian

L(·,w|αβ., ẇ) = K(·, ẇ) − E(·,wαβ). (4)

Introducing the action functional

A(w(·),p(·)) =
∫

	

(L(·,w|αβ., ẇ) + p(·)w(·))dξα,

(5)

we can write the following Euler-Lagrange equations

∂

∂t

∂L

∂ẇ
−

(
∂L

∂w|αβ

)
|αβ

= p. (6)

This direct description leads to plate equations with
discontinuous and highly oscillating coefficients,
which are too complicated to be used in the analysis
of dynamics problems.

3 Modelling concepts

Introduce the polar coordinates system Oξ1ξ2 so
that the undeformed midplane of annular plate oc-
cupies the region 	 ≡ [0, ϕ] × [R1,R2]. Let λ,
0 < λ � ϕ, be known microstructure parameter. De-
note 	� as a subset of 	 of points with coordinates
determined by conditions (ξ1, ξ2) ∈ (λ/2, ϕ − λ/2) ×
(R1,R2). An arbitrary cell with a center at point
with coordinates (ξ1ξ2) in 	� will be determined by
�(ξ1, ξ2) = (ξ1 −λ/2, ξ1 +λ/2)×{ξ2}. At the same
time, the thickness h of the plate under consideration
is supposed to be constant and small compared to the
microstructure parameter λ.

In order to derive averaged model equations of lon-
gitudinally graded plates we apply the tolerance av-
eraging approach, see Woźniak et al. [24]. We men-
tion some basic concepts of this technique, as a toler-
ance parameter, a tolerance periodic function, a slowly
varying function, a highly oscillating function, an av-
eraging operator.

The main concept of the tolerance averaging ap-
proach is that values of functions belonging to region
	 can be determined only within to certain accuracy δ.
Let δ stand for an arbitrary positive number and X be a
linear normed space. Tolerance relation ≈ for a certain
δ is defined by

(∀(x1, x2) ∈ X2) [x1 ≈ x2 ⇔ ‖x1 − x2‖X ≤ δ],
(7)

where δ is said to be the tolerance parameter.
Let ∂kf be the k-th gradient of function f = f (x),

x ∈ 	, k = 0,1, . . . , α (α ≥ 0), ∂0f ≡ f . Function
f ∈ Hα(	) is called the tolerance periodic function
(with respect to cell � and tolerance parameter δ),
f ∈ TPα

δ (	,�), if for k = 0,1, . . . , α, the following
conditions hold

(∀x ∈ 	) (∃f̃ (k)(x, ·) ∈ H 0(�))

[‖∂kf |	x .(·) − f̃ (k)(x, ·)‖H 0(	x)
≤ δ],

∫
�(·)

f̃ (k)(·, y)dy ∈ C0(	̄).

(8)

Function f̃ (k)(x, ·) is referred to as the periodic ap-
proximation of ∂kf in �(x),x ∈ 	, k = 0,1, . . . , α.

Function F ∈ Hα(	) is called the slowly varying
function (with respect to the cell � and tolerance pa-
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rameter δ), F ∈ SV α
δ (	,�), if

F ∈ TPα
δ (	,�),

(∀x ∈ 	)

[F̃ (k)(x, ·)|�(x) = ∂kF (x), k = 0, . . . , α].
(9)

It can be observed that periodic approximation F̃ (k) of
∂kF (·) in �(x) is a constant function for every x ∈ 	.
If F ∈ SV α

δ (�,�) then

(∀x ∈ 	)

(‖∂kF (·) − ∂kF (x)‖H 0(�(x)) ≤ δ, k = 0,1, . . . , α).

Function φ ∈ Hα(	) is called the highly oscillating
function (with respect to the cell � and tolerance pa-
rameter δ), φ ∈ HOα

δ (	,�), if

φ ∈ TPα
δ (	,�),

∀F ∈ SV α
δ (	,�) (f ≡ φF ∈ TPα

δ (	,�))
(10)

and for k = 1, . . . , α these functions satisfy conditions

(∀x ∈ 	) [φ̃(k)(x, ·)|�(x) = ∂kφ̃(x)],
f̃ (k)(x, ·)|�(x) = F(x)∂kφ̃(x)|�(x).

(11)

If α = 0 then we denote f̃ ≡ f̃ (0).
Let by ϕ(·) denote a highly oscillating function,

ϕ ∈ HO2
δ (	,�), defined on 	̄, continuous together

with gradient ∂1ϕ. Its gradient ∂2ϕ is a piecewise con-
tinuous and bounded. Function ϕ(·) is called the fluc-
tuation shape function of the 2-nd kind, if it depends
on λ as a parameter and satisfies conditions:

1. ∂kϕ ∈ O(λα−k) for k = 1, . . . , α,α = 2,
2. 〈ϕ〉(x) ≈ 0 for every x ∈ 	�.

Set of all fluctuation shape functions of the 2-nd
kind is denoted by FS2

δ (	,�). Condition (2) can be
replaced by 〈ρϕ〉(x) ≈ 0 for every x ∈ 	�, where
ρ > 0 is a certain tolerance periodic function.

The important concept of the modelling technique
is the averaging operation

〈f 〉(ξ1, ξ2) = 1

λ

∫ ξ1+λ/2

ξ1−λ/2
f (η, ξ2)dη (12)

for every ξ1 ∈ [λ/2, ϕ − λ/2], ξ2 ∈ [R1,R2].
The starting point of the modeling procedure is a

decomposition of displacement field w(ξ1, ξ2, t)

w(ξ1, ξ2, t) = w0(ξ1, ξ2, t) + gA(ξ1)VA(ξ1, ξ2, t),

A = 1, . . . ,N. (13)

The first modeling assumption, related to the above
decomposition, states that w0(·, ξ2, t),VA(·, ξ2, t) are
slowly varying functions together with all partial
derivatives. Functions w0(·, ξ2, t) ∈ SV 2

δ (�,�),
VA(·, ξ2, t) ∈ SV 2

δ (�,�) are the basic unknowns of
the modelling problem. Functions gA(·) are known,
dependent on the microstructure length parameter λ,
fluctuation shape functions.

The second modelling assumption of tolerance av-
eraging approximation states that terms O(λ) in the
course of averaging can be neglected, see Woźniak
et al. [24]. Under this approximation for an arbitrary
integrable function f , slowly varying function F and
fluctuation shape function g, we have

〈f F 〉 = 〈f 〉F + O(λ),

〈f ∂α(gF )〉 = 〈f ∂1g〉F + 〈fg〉∂2F + O(λ).
(14)

4 Averaging description

The tolerance averaging approach can be applied to
(1)–(5) by using decomposition of displacement field
w(ξ1, ξ2, t). Substituting the right-hand sides of (13)
into (4), (5) and using the tolerance averaging approx-
imation we obtain

Ah(w
0,VA) =

∫
	

(〈L(∇w(·)〉 + 〈p(·)〉w0(·)

+ 〈p(·)hA(·)〉VA(·))dξα, (15)

where the averaged Lagrangian (4) has the form

〈L〉(ξα,w0|αβ,VA|22,VA|2,VA, ẇ0, V̇A)

= 1

2
〈Bαβγμ〉w0|αβw0|γμ + 〈B11γμgA|11〉VAw0|γμ

+ 2〈B12γμgA|1〉VA|2w0|γμ

+ 〈B22γμgA〉VA|22w
0|γμ

+ 1

2
〈B1111gA|11g

B|11〉VAVB

+ 〈B1122gA|11g
B〉VAVB|22

+ 2〈B1212gA|1gB|1〉VA|2VB|2

+ 1

2
〈B2222gAgB〉VA|22VB|22 + 1

2
〈μ〉ẇ0ẇ0

+ 〈μgA〉ẇ0V̇A + 1

2
〈μgAgB〉V̇BV̇A. (16)
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Tolerance model Applying the principle of station-
ary action to Lagrangian (16) we obtain the following
system equations for w0(·),VA(·)
(〈Bαβγμ〉w0|γμ)|αβ + (〈B11αβgA|11〉VA)|αβ

+ 2(〈B12αβgA|1〉VA|2)|αβ

+ (〈B22αβgA〉VA|22)|αβ + 〈μ〉ẅ0 = 〈p〉,
(〈B22αβgA〉w0|αβ)|22 + (〈B1122gB|11g

A〉VB)|22

+ (〈B2222gAgB〉VB|22)|22

− 4(〈B1212gA|1gB|1〉VB|2)|2 − 2(〈B12αβgA|1〉w0|αβ)|2

+ 〈B11αβgA|11〉w0|αβ + 〈B1111gA|11g
B|11〉VB

+ 〈B1122gA|11g
B〉VB|22

+ 〈μgAgB〉V̈B = 〈pgA〉.

(17)

Coefficients in the above equations are smoothly vary-
ing in contrast to coefficients in Euler-Lagrange equa-
tions for action functional A(·). The model (17) have
the physical sense only if w0(·, t),VA(·, t) are slowly
varying functions with respect to ξ1-coordinate. This
condition determines the range of the physical appli-
cability of the proposed model.

Homogenized model For the purely formal point of
view the homogenized model equations can be ob-
tained directly from the tolerance model equations by
neglecting terms which are linear with respect to λn,
for n = 1,2, . . . . This formal procedure has nothing in
common with the limit passage λ → 0 since the period
λ remains constant in the course of the modelling. It
means that in (17) we neglected the underlined terms.
The homogenized model equations have the form

(〈Bαβγμ〉w0|γμ)|αβ + (〈B11αβgA|11〉VA)|αβ

+ 〈μ〉ẅ0 = 〈p〉,
〈B11αβgA|11〉w0|αβ + 〈B1111gA|11g

B|11〉VB = 0.

(18)

It can be observed that VA(·, t) can be eliminated
from (18)

VA = − 〈B11γμgB|11〉
〈B1111gA|11g

B|11〉
w0|γμ. (19)

Denoting

B
αβγμ

eff = 〈Bαβγμ〉 − 〈B11γμgB|11〉
〈B1111gA|11g

B|11〉
〈B11αβgA|11〉,

(20)

we arrive from (18) the following equation

(〈Bαβγμ

eff 〉w0|γμ)|αβ + 〈μ〉ẅ0 = 〈p〉. (21)

Equations (20), (21) represent the homogenized model
of the composite plate under consideration. It has to
be emphasized that for the homogenized model only
averaged deflection w0(·, t) can be taken as the basic
unknown.

5 Applications

We shall investigate free vibrations of two types of
plates with inhomogeneous microstructure. We as-
sume that composite plates are made of two different
isotropic homogeneous materials. The crucial point of
the tolerance modelling technique is a determination
of fluctuation shape functions (FSF). In a dynamic
processes system of FSF; gA(·), A = 1, . . . ,N , can
be assumed as a representing eigenvibrations form of
free vibrations of the cell �(ξα), ξα ∈ 	. We restrict
our analysis to the simplest case N = 1 in which we
take into account only the lowest free vibration mode.
The calculation of the exact form of fluctuation shape
function for the plates under consideration is very dif-
ficult, hence we apply approximate form of this func-
tion in our consideration. For one dimensional cell un-
der consideration �(ξ1, ξ2), ξ1, ξ2 ∈ 	 as the fluctu-
ation shape function, we assume function

g(ξ1, ξ2) = λ2(cos(2πξ1/λ) + C(ξ2)). (22)

The function C(ξ2) will be derived from condition
〈μg〉 = 0.

5.1 Plate band

Free vibrations of a cantilever plate band with mi-
crostructure given in Fig. 3 will be considered in this
subsection.

Fig. 3 The microstructure of cantilever plate band
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Tolerance model After a simple manipulation we ob-
tain from (17) the following system of two differential
equations describing dynamic behaviour of the plate
band

∂22(〈B2222〉∂22w
0 + 〈B2211g|11〉V + 〈B2222g〉∂22V )

+ 〈μ〉ẅ0 = 0,

∂22(〈B2222g〉∂22w
0 + 〈B1122g∂11g〉V

+ 〈B2222gg〉∂22V ) − 4∂2(〈B1212∂1g∂1g〉∂2V )

+ 〈B1122∂11g〉∂22w
0 + 〈B1122∂11gg〉∂22V

+ 〈B1111∂11g∂11g〉V + 〈μgg〉V̈ = 0.

(23)

Equations (23) represent a system of two partial dif-
ferential equations for the averaged deflection w0(·, t)
and fluctuation amplitude V (·, t).
w0(x2, t) = w̃0(x2)e

iωt , V (x2, t) = Ṽ (x2)e
iωt .

(24)

Substituting (24) into (23) we obtain equations for
w̃0(x2) and Ṽ (x2)

∂22(〈B2222〉∂22w
0 + 〈B2211g|11〉V + 〈B2222g〉∂22V )

− 〈μ〉ω2w̃0 = 0,

∂22(〈B2222g〉∂22w
0 + 〈B1122g∂11g〉V

+ 〈B2222gg〉∂22V )

− 4∂2(〈B1212∂1g∂1g〉∂2V ) + 〈B1122∂11g〉∂22w
0

+ 〈B1122∂11gg〉∂22V

+ 〈B1111∂11g∂11g〉V − 〈μgg〉ω2Ṽ = 0.

(25)

Since g(·) ∈ O(λ2), the inertial module 〈μgg〉 and the
underlined terms depend on the microstructure length
parameter λ, hence aforementioned equations describe
the microstructure length-scale effect on the natural
frequencies of the plate under consideration.

Homogenized model Using (21) we derive equation
for the homogenized model

∂22(〈B2222
eff 〉∂22w

0) + 〈μ〉ẅ0 = 0. (26)

The basic unknown is averaged deflection w0(·, t).
Similarly as in a tolerance model we look for a so-
lution to (26) in the form of a function with separable
variables

w0(x2, t) = w̃0(x2)e
iωt . (27)

Substituting (27) into (26) we obtain equations for
w̃0(x2)

∂22(〈B2222
eff 〉∂22w

0) − 〈μ〉ẅ0 = 0. (28)

The above equation represents the single partial differ-
ential equation for the averaged deflection w̃0(x2).

Equations (25), (28) have smooth and slowly vary-
ing functional coefficients. Hence in most cases so-
lutions to specific problems for longitudinally graded
plates have to be obtained using approximate methods.
In order to obtain the solution of (25) and (28) the fi-
nite difference method will be used.

Numerical calculations For verification the obtained
averaged model equations we will compare values of
the first vibration frequency from the tolerance model
with these values from the finite element method. In
Fig. 4 there are shown ratios of the first vibration fre-
quency obtained from the tolerance model ω1 to the
same obtained from finite element method ω̂1. The
span L of the plate band is taken as a parameter. With
the rise of the span the gradation of the effective prop-
erties is slower and the ratio of the frequencies is de-
creasing to 1.0. From Fig. 4 we can see that differences
between values of the first vibration frequency for tol-
erance model and the same for a finite element method
are smaller than 7%.

The aim of numerical calculations is to derive free
vibrations frequencies for different volume fractions
of the two component of the composite plate un-
der considerations. In Fig. 5 are presented results for
composite plate with steel beams and aluminum ma-
trix.

Material properties assigned to steel and aluminum
are as follows: steel—E = 210 GPa, ρ = 7800 kg/m3,
v = 0.3; aluminum—E = 69 GPa, ρ = 2720 kg/m3,
v = 0.3.

These diagrams show that the first free vibration
frequency of a longitudinally graded cantilever plate
could be greater or smaller than those of a steel and
aluminum plate. For plate band on the span L = 3 m
with d2/λ = 1.0 and d1/λ = 0.0 (more aluminum on
clamped boundary) the first frequency is 20% and 18%
lower than the first frequency of a steel and aluminum
plate, respectively. For plate band with d2/λ = 0.0 and
d1/λ = 1.0 (more steel on clamped boundary) the first
frequency is 25% and 32% higher than the first fre-
quency of a steel and aluminum plate, respectively.
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Fig. 4 Comparison of the values of the first vibration frequency obtained from tolerance model with those from FEM; the span L of
the plate band is taken as a parameter

Fig. 5 The first free vibrations frequency versus non-dimensional parameter d1/λ: Q—d2/λ = 1, 2—d2/λ = 0, - - - - steel plate, —
aluminum plate

From Fig. 5 we can confirm that composite which has
only steel fraction on clamped boundary and only alu-
minum fraction on free boundary, make the first fre-
quency largest. Similar results are given by Qian and

Batra in paper [15] where we have deal with func-
tionally graded cantilever plate made of steel and alu-
minum composite. In that paper a volume fraction of
an aluminum constituent is expressed as power func-
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tion of x2-coordinate and the effective properties of
composite are deduced by Mori-Tanaka technique.

5.2 Annular plate

We shall investigate a simple problem of natural polar-
symmetrical vibrations of an annular plate simply sup-
ported on its boundary. The fragment of midplane of
this plate is shown in Fig. 6.

Tolerance model Setting w0 = w0(ρ, t), V = V (ρ, t)

we obtain from (17) the following system of equa-
tions of motion described in polar coordinate system
(ξ1 = ϕ, ξ2 = ρ)

∂22(〈B̃2222〉∂22w
0) + 1

ρ
∂22(〈B̃2211〉∂2w

0)

+ 2

ρ
∂2(〈B̃2222〉∂22w

0) + 1

ρ3
〈B̃1111〉∂2w

0

− 1

ρ2
∂2(〈B̃1111〉∂2w

0) − 1

ρ
∂2(〈B̃2211〉∂22w

0)

+ 2

ρ4
〈B̃2211g|11〉V − 2

ρ3
∂2(〈B̃2211g|11〉V )

+ 1

ρ2
∂22(〈B̃2211g|11〉V ) + 2

ρ4
〈B̃1111g|11〉V

− 1

ρ3
∂2(〈B̃1111g|11〉V ) + ∂22(〈B̃2222g〉∂22V )

+ 2

ρ
∂2(〈B̃2222g〉∂22V )

− 1

ρ
∂2(〈B̃1122g〉∂22V ) + 〈μ〉ẅ0 = 0,

1

ρ3
〈B̃1111g|11〉∂2w

0 + 1

ρ2
〈B̃1122g|11〉∂22w

0

+ 1

ρ4
〈B̃1111g|11g|11〉V + 1

ρ2
〈B̃1111g|11g〉∂22V

+ ∂22

(
1

ρ
〈B̃2211g〉∂2w

0
)

+ ∂22(〈B̃2222g〉∂22w
0)

+ ∂22

(
1

ρ2
〈B̃2211g|11g〉V

)
+ ∂22(〈B̃2222gg〉∂22V )

− 4∂2

(
1

ρ2
〈B̃1212g|1g|1〉∂2V

)
+ 〈gμg〉V̈ = 0,

(29)

where we have denoted B̃2222 = B2222,
B̃1122 = ρ2B1122, B̃1111 = ρ4B1111.

Homogenized model Denoting Dr(ρ) = B2222
eff ,

Dϕ(ρ) = ρ4B1111
eff , Drϕ(ρ) = ρ2B1122

eff we obtain from

Fig. 6 Fragment of midplane of annular plate with longitudi-
nally graded microstructure

(21) equation of motion for the homogenized model
of annular plate

∂22(Dr∂22w
0) + 2

ρ
∂2

((
Dr − 1

2
Drϕ

)
∂22w

0
)

+ 1

ρ
∂22(Drϕ∂2w

0) − 1

ρ2
∂2(Dϕ∂2w

0)

+ 1

ρ3
Dϕ∂2w

0 + 〈μ〉ẅ0 = 0. (30)

The above equation represents one partial differential
equation for the averaged displacement w0(·, t) and
has the form similar to equation of motion of circular
plate with cylindrical orthotropy.

Numerical calculations Substituting (24) into (29),
(30) we derive equations with functional coefficients;
hence in order to obtain the solution of these equations
the finite difference method will be used.

In Fig. 7a–c are presented results for annular plate
made from steel-aluminum composite. In Fig. 7a there
are shown diagrams of the first free vibrations fre-
quency for the annular plate with an inner radius
R1 = 4 m, while in Fig. 7b and Fig. 7c for the annular
plate with an inner radius R1 = 8 m and R1 = 12 m
respectively. Figure 7d shows diagram of the first free
vibrations frequency for the band plate. The span of
all plates is equal R2 − R1 = 3 m. The diagrams show
value of first natural frequencies versus volume frac-
tion of the beams where the 2—line relates to beams
from aluminium, while Q—line relates to beams from
steel. These diagrams show that also for simply sup-
port longitudinally graded annular plate, the first free
vibration frequency can be greater or smaller than that
of a steel and aluminum plate. Let’s notice that, the
biggest differences are for plate with smaller inner ra-
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Fig. 7 (a) The first free vibrations frequency for annular plate
with inner radius R1 = 4 m. Q—composite with aluminum
matrix and steel beams, 2—composite plate with steel ma-
trix and aluminum beams, - - - - aluminum plate, — steel plate.
(b) The first free vibrations frequency for annular plate with
inner radius R1 = 8 m. Q—composite with aluminum matrix
and steel beams, 2—composite plate with steel matrix and alu-
minum beams, - - - - aluminum plate, — steel plate. (c) The

first free vibrations frequency for annular plate with inner ra-
dius R1 = 12 m. Q—composite with aluminum matrix and steel
beams, 2—composite plate with steel matrix and aluminum
beams, - - - - aluminum plate, — steel plate. (d) The first free vi-
brations frequency for annular plate with inner radius) R1 = ∞
(band plate). Q—composite with aluminum matrix and steel
beams, 2—composite plate with steel matrix and aluminum
beams, - - - - aluminum plate, — steel plate

dius Fig. 7a (for volume fraction of beams equal 70%
there are 16% lower than aluminum plate and 20%
higher than steel plate, respectively). When the inner
radius of plate rises, annular plate tends to band plate
and these phenomena slowly disappear. For an annular
plate with an inner radius R1 = 12 m (Fig. 7c) we can
see that the first free vibrations frequency for compos-
ite plate is almost completely between frequencies for
steel and aluminium plate.

6 Conclusions

In this study, in contrast to the majority FGM plates
with stochastic microstructure, the plate with a de-
terministic but space-varying microstructure has been
considered. The main feature of considered micro-
stratified plates is that the effective properties are
slowly varying along the layering. The results ob-
tained in this contribution justify formulating the fol-
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Fig. 7 (Continued)

lowing conclusions:

1. The composite thin plates having functionally
graded material structure in a certain direction
and micro-periodic in a perpendicular direction are
described by equations of motion involving only
smooth coefficients. These coefficients vary in the
midplane of the plate, are slowly varying in the
preferred direction and constant in a perpendicu-
lar direction. The material properties of majority
FGM plates are assumed to be graded through the
thickness of the plate.

2. Since the proposed model equations have smooth
and slowly varying functional coefficients then in
most cases solutions to specific problems for func-
tionally graded plates under consideration have to
be obtained using numerical methods.

3. It is shown that the obtained averaged model equa-
tions make possible to find the compositional pro-
file of a two-component longitudinally graded plate
so that the first natural frequency is greater or
smaller than that of each component plate. The sim-
ilar results only for FGM rectangular plates are
given in paper [15].
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4. The general tolerance model (17) (as well as (23)
for plate band and (29) for annular plate) describe
effect of microstructure size on the dynamic be-
haviour of the functionally graded plate.
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