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Abstract

Background: Cancer stem cell theory suggests that cancers are derived by a population of cells named Cancer
Stem Cells (CSCs) that are involved in the growth and in the progression of tumors, and lead to a hierarchical
structure characterized by differentiated cell population. This cell heterogeneity affects the choice of cancer
therapies, since many current cancer treatments have limited or no impact at all on CSC population, while they
reveal a positive effect on the differentiated cell populations.

Results: In this paper we investigated the effect of vaccination on a cancer hierarchical structure through a multi-
level model representing both population and molecular aspects. The population level is modeled by a system of
Ordinary Differential Equations (ODEs) describing the cancer population’s dynamics. The molecular level is modeled
using the Petri Net (PN) formalism to detail part of the proliferation pathway. Moreover, we propose a new
methodology which exploits the temporal behavior derived from the molecular level to parameterize the ODE
system modeling populations. Using this multi-level model we studied the ErbB2-driven vaccination effect in breast
cancer.

Conclusions: We propose a multi-level model that describes the inter-dependencies between population and
genetic levels, and that can be efficiently used to estimate the efficacy of drug and vaccine therapies in cancer
models, given the availability of molecular data on the cancer driving force.

Background
Systems biology is increasingly used to get insights into
the functioning of complex biological networks. Specifi-
cally, the use of mathematical formalisms to investigate
the mechanisms affecting tumor growth and maintenance
upon vaccination or drug treatment might represent a
powerful instrument to efficiently guide the design of long
and expensive in vivo experiments [1].
Building network models that accurately represent either

biochemical pathways, cell-to-cell interactions, or regula-
tion networks is necessary for different purposes. Indeed, a
model provides the basis for a clear description of the
interactions involved in a biological system. However, to

be useful, a model must be precise and suitable for an ana-
lysis that helps in getting a better understanding of the
phenomenon under investigation and appropriate formal-
isms must be used to achieve this goal. Furthermore,
when the objective of the study is the behavior of a biolo-
gical system described at the level of a biochemical reac-
tion scheme, the completion of the modelling process sets
the ground for a sensitivity analysis of the model where, at
the level of molecule concentrations, it is possible to per-
turb the net representation or the reaction rates to study
the influence of specific elements of the network on the
overall functionality of the system. From a structural point
of view, a qualitative analysis of the model can be used to
select key elements that may suggest interesting features
of the experimental system which are worth of detailed
investigations (e.g. therapeutic targets). All these points
highlight the need of a strong integration between
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computational modeling and quantitative experimental
data. The paper by Kreeger and Lauffenburger [2] reports
examples of recently proposed integrations of this type in
the field of cancer systems biology. However, even thought
a pathway-centric approach is widely and successfully used
to investigate cancer in terms of molecular effects, when a
specific gene or protein is identified to make a contribu-
tion to pathology, it is not easy to determine how its influ-
ence is propagated at population level, unless the
interaction between molecular effects and population
dynamics is specifically addressed by the model.
In this paper we propose a new approach, which

allows to describe in a single multi-level model different
dynamics levels (e.g. molecular regulation network and
cell population) of a complex biological system provid-
ing a way of highlighting the interactions among differ-
ent levels and making easier the model parameter
definition. For instance the difficulty of defining the
parameters of a population model, in the presence of
few measured results, can be overcome deriving such
parameters directly by a molecular network that mimics
the most relevant biochemical reactions occurring into a
cell population, thus accounting for the presence of
environmental changes, mutation, and noise in intracel-
lular biochemical reactions.
Even if it is true that with this methodology, dealing with

a lack of information is only moved one level down in the
modeling process, (functionally) simpler parameters are
now used in the basic model of our case study, leaving to
the solution of the molecular model the burden of deriving
the complex representations of the proliferation para-
meters that are now allowed to be expressed with intricate
functions of time.
As we just said, our case study has been modeled with a

2-level representation. The first level describes regulation
aspects of proliferation considering gene interactions;
specifically, our experimental model of carcinogenesis is
driven by ErbB 2 [3]. This molecular network is designed
using the Petri Net [4] formalism which is quite suitable
to build models of this type and which allows to compute
qualitative and quantitative properties of the experimen-
tal system with numerical and analytical methods. More-
over, PNs offer the possibility of representing a reaction
scheme as a graphical diagram that supports the compre-
hension of the behavior of the real system with simple to
understand, yet precise descriptions.
The second level describes the population interactions

in the ErbB 2-driven carcinogenesis, and is based on the
model presented in Fornari’s paper [5], where a system of
ODEs was used to describe the progression of malignant
tumors, assuming the validity the CSC theory [6]. Our
ODE model takes into account the main properties of
CSCs: tumorigenic capacity, self-renewal, and differentia-
tion into non-stem cells. The hierarchical organization of

the tumor is guaranteed both from the growth and
progression as well as from the differentiation capacity
characterizing CSC subpopulations. CSCs give rise to
committed Progenitor Cells (PCs) characterized by a
rapid proliferation rate. PCs are able to completely differ-
entiate into Terminally differentiated Cells (TCs). In the
paper by Fornari et al., parameters characterizing the
behavior of proliferation, death, and differentiation of
tumor cell populations are assumed to be affected by
external events such as vaccination or pharmacological
treatments and are tuned using experimental data based
on the tumor mass growth trend observed in mice after a
subcutaneous injection of cancer cells. However, to make
such cellular model interesting for the biological commu-
nity, it is necessary to link proliferation and differentia-
tion parameters to the molecular events which control
them, thus allowing the visualization at cellular level
of perturbations made on the underlying molecular
network.
To investigate how the perturbation at molecular level

impacts on population models, we used a simulative
approach to show the effects of well known inhibition of
progression of multifocal preneoplastic lesions [7] in
ErbB2-driven carcinogenesis, by means of chronic vacci-
nation and we provide an example of new hypothesis
that can be generated using such models and subse-
quently validated with biological experiments.

Results and discussion
In this section, we first discuss the new proposed approach
in details, and then we show how it can be used to study
and analyze the effects of vaccination on a carcinogenesis
driven by ErbB 2 [3] receptor family considering both
population and molecular aspects.

Workflow
In this paper we propose a new multi-level approach to
model and analyze complex biological systems, which
exploits specific interdependencies among different
levels. The overall organization of the method is sum-
marized in Figure 1, and consists of the following four
main steps: (1) model definition, (2) model consistency
and correctness validation, (3) multi-level model interac-
tions, (4) model dynamics.

Model definition
In this first step the biological system is represented by a
multi-level model, where the number of levels is chosen
according to the phenomenon under study. As already
highlighted in the background Section, focussing at each
level on different aspects of the problem under study,
model creation and parameterization are made easier. For
instance, our case study which is concerned with the carci-
nogenesis driven by ErbB 2, was modeled by 2-level
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model, where the former level describes the molecular reg-
ulatory network and the latter one the cell populations. In
details, the dynamics of the low level, namely at the gene
and molecular scale, is modeled using the PN formalism.
It provides an explicit and intuitive representation of the
signaling cascade controlled by the ErbB receptors family,
capturing the relevant biochemical reactions involved in
the regulation aspects of proliferation. Instead, the
dynamic of the high level system, namely at the cell popu-
lation scale, which describes the interactions between dif-
ferent sub-populations of cells is represented by a system
of ODEs, following a trend that has already been estab-
lished in the literature [8].

Model consistency and correctness
This second step that naturally follows the model defini-
tion phase is focused on the validation and verification of
the accuracy and correctness of the representation.
Among several methodologies, used to perform these
analysis, we exploit structural validation and model
checking. The model structure is validated using the
P-semiflow analysis, and thus identifying the set of places
where a given kind of correlated matter is preserved dur-
ing the evolution of the model in order to make sure that
mass conservation laws are respected. On the other hand,
model checking is used to verify the consistency and cor-
rectness of the model with respect to well-known proper-
ties found in the literature and expressed through
Computational Tree Logic (CTL), a type of temporal
logic. In our case study, model checking is used to verify
if the growth factors stimulation always leads to a pro-
duction of specific protein complexes. Details on how
model checking is used in our case study also to analyze
other properties of the model will be provided at some
length in the Methods Section of this paper.

Multi level model interactions
After the creation and the validation of models, it is
necessary to define how models interact. In our case
study, to link populations proliferation parameters with

regulation events we identify for each level a set of inter-
action points. Specifically, for the molecular level we
select a set of (PN) places playing a pivotal role in cell
proliferation corresponding to Bad, cyclinD, and NF-kB
proteins. On the other hand, at population level, we
select proliferation rates of CSC and PC as the para-
meters that mostly depend on biochemical reaction
dynamics. Hence, we specify interactions defining each
proliferation rate as the product of three functions repre-
senting the temporal behaviors of protein targets.

Model dynamics
The last step is related to the analysis of the global model
dynamics. First, the corresponding ODE system is auto-
matically derived from the PN model.
In general, this system of ODEs can be very large and

complex, thus a preliminary reduction phase is per-
formed to obtain a suitable system of ODEs. Specifically
this phase consists in a downsizing of the ODE number
by identifying those equations which are redundant using
PN structural properties such as P-semiflows. Indeed, we
derive a set of ODEs from the PN model and, then, for
each minimal P-semiflow of the system one equation
from the ODE system is removed. After having reduced
the complexity of the model, the temporal dynamics of
the quantities contained in the places which play a pivo-
tal role in cell proliferation are studied through numeri-
cal integration of the derived ODE system. Hence, the
obtained quantities are used as parameters in the ODE
system modeling the cell proliferation, and it is solved by
numerical integration.
Referring to our case study, in the following paragraphs

we show how our methodology can be be put in practice
discussing first the individual components of our two-
level model.

First level: molecular regulation network
The network provides a fairly complete representation of
the signaling cascade controlled by the ErbB receptor
family where the targets are represented by three proteins

Figure 1 Workflow. Organization of the method partitioned in four main steps.
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(cyclinD, NF-kB and BAD) playing a pivotal role in cell
proliferation. The temporal behaviors of these targets are
used to control the proliferation rates of CSC and PC
populations. The main effect of ligand binding and
dimerization of ErbB family receptors regards the activa-
tion of the phosphoinositol-3-kinase(PI3K)/Akt pathway.
Akt is a serine/threonine kinase that functionally modu-
lates numerous substrates involved in the regulation of
cell proliferation, survival, angiogenesis and tissue inva-
sion [9]. This signaling cascade is modeled using a Petri
Net formalism (see Methods for more details). Figure 2
shows the complete PN formed by 111 proteins (places)
and 124 reactions (transitions) which require the defini-
tion of 235 parameters (reactions and parameter values
are available in the Additional file 1 and in Additional file
2). The model allows to specify the temporal dynamics of

protein targets and to investigate how therapeutic
approaches, such as vaccination or drugs treatments,
impact and spread on molecular network. A high level
description of our molecular network is reported in
Figure 3, where it is highlighted its organization in 5 por-
tions: (A) ErbB activation cascade; (B) Phosphatidylino-
sitol 3,4,5-triphosphate, Pip3 production and Akt
activation; (C) downstream effects of Akt activation; (D)
mammalian target of rapamycin, mTOR, regulation, and
(E) Toll-like receptor 2, TLR2, cascade. Portion A
describes the ligand binding and dimerization for three
ErbB receptors: ErbB 1, ErbB 2 and ErbB 3. These reac-
tions are based on the results contained in the paper by
Birtwistle [8] which describes a quantitative kinetic
model of the ErbB family cascade to the Akt activation.
ErbB receptor ligands, EGF and HGR, activate ErbB 1

Figure 2 Petri Net of molecular model. PN representing the 111 biochemical reactions describing regulation aspects of proliferation model.
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and ErbB 3, respectively. Both the ligand-bound ErbB 1
and ErbB 3 dimerize with receptor ErbB 2 and then lead
to the recruitment of different adapter proteins, namely
Grb2, SOS and Gab1. On the other hand, no known
ligand binds ErbB 2: it is a distinguished member of the
ERBB family since it does not bind any of the known
ligands with high affinity, but it is the preferred heterodi-
meric partner for other receptor of ErbB family. The
downstream signaling of ErbB receptors, conditional on
the recruitment of adapter proteins, involves the activa-
tion of the enzyme PI3K. Ligand-bound receptors after
dimerization with ErbB 2, can recruit Shc, via Grb2/Sos
complexes. This event is mutually exclusive with respect
to the activation of PI3K. The Shc adapter is involved in
the Ras/MAP kinase pathway, resulting, specifically, in
GDP/GTP exchange and Ras activation. Also Ras is sub-
sequently involved in the PI3K/Akt pathway.
The main effects of the downstream signaling is the
production of Pip3 that leads to the activation of Akt, as
reported in portion B of the network. The production of
Pip3, which is a second messenger involved in the regu-
lation of different processes, is catalyzed by PI-3K start-
ing from Phosphatidylinositol 4,5-triphosphate, Pip2. In

portion B a set of reactions involved in the regeneration
of Pip2 is also reported. Its recovery results from the
contribution of the Pten-dependent dephosphorylation
of Pip3.
With respect to Birtwistle’s work, we extend the net-

work with three additional blocks (Portions C, D, and E).
Portion C describes the downstream effects of Akt activa-
tion. Akt has a critical regulatory role in many cellular
processes, and in particular in cancer progression. As
described before, we decided to focus the effects of Akt
on three targets:

• the transcription factor Bad the proliferation action
of Akt is mediated through the direct inhibition of
this pro-apoptotic signal,
• the activation of cyclinD Akt occurs at the G1-S
transition of the cell cycle via phosphorylation and
inhibition of glycogen synthase kinase 3-beta (GSK-
3b) that stabilizes cyclin D1,
• the transcription factor nuclear factor-kappa B,
NF-kB Akt promotes NF-kB activity since it directly
phosphorylates I-kappa-B kinase a, IKKa, to activate
NF-kB whose broad oncogenesis activity - through

ErbB receptors family 
cascade and RAS activation TLR2 cascade 

Pip3 production and
Akt activation 

Cyclin D1 - activation
BAD - phosphorilation

NF-kB - activation

mTORC regulation

Portion A Portion E

Portion B

Portion D

Portion C

Figure 3 Simplified schematic representation of molecular network.
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its ability to control cell proliferation and to sup-
press apoptosis - is well known.

Another important regulation of cell growth by Akt
regards its primary effect on mTOR whose action is
depicted in portion D of the network. mTOR is asso-
ciated with two complexes: the rapamycin-sensitive
TORC1 complex which controls S6K phosphorylation
and 4E-BP1 to regulate translation, and TORC2 that
controls the phosphorylation of Akt. The activation of
TORC1 by Akt involves the phosphorylation of TSC2,
which reveals a negative regulatory effect on mTOR
controlled by the GTPase Rheb.
Finally, portion E specifies the cascade of TLR2. Func-

tional analysis of mammalian TLRs has revealed that
they recognize specific patterns involved in the cell pro-
liferation. The signaling pathway via TLR2 recruits the
adapter protein MyD88. Upon stimulation, MyD88
recruits IL-1 receptor-associated kinase (IRAK) to TLR2.
IRAK is activated by phosphorylation and then asso-
ciated with TRAF6, leading to the activation of two dis-
tinct signaling pathways, and finally to the activation of
JNK and NF-kB.
Overall, this network is a modification of that pro-

posed by Birtwistle in order to account the characteris-
tics of preclinical breast cancer model based on BALB/c
mice transgenic for the transforming rat ErbB2 onco-
gene, BALB-neuT mice. BALB-neuT mice develop
breast cancer with 100% penetrance [10]. These animals
are transgenic for a mutated ErbB2 rat gene, encom-
passing a single point mutation that replaces the valine
residue at position 664 in the transmembrane domain
with glutamic acid favoring ErbB2 homo-dimerization
thus transforming the ErbB2 proto-oncogene into a
dominant transforming oncogene [11]. In vivo experi-
ments have shown that PI3K represents an important
element in the ErbB2 signal transduction since anti-
ErbB2 antibodies impair PI3K/Akt-mediated tumori-
genic effects [12], these experiments also demonstrate
the ability of ErbB 2 to activate directly Akt without the
involvement of growth factors. Moreover, the choice of
adding the TLR2 contribution to the proliferation path-
way derives from the observation that the TLR2 recep-
tor shares the PI3K activation network [13] with ErbB2
[14], and accounts for recent results that show TLR2 to
be expressed by breast cancer cell lines [15] and to be
involved in cancer invasiveness.

Second level: cell population model
We have investigated the proliferation of the three
tumor cell populations CSC, PC and TC using an ODE
based model. The system of ODEs presented in For-
nari’s paper has been modified in this work neglecting
(at this level) the therapy effects. The resulting model of

the dynamics of these cancer cell populations is con-
structed by specifying the following system of linear and
homogeneous ODEs:

dNcsc
dt

= PsyωCSCNCSC + γPC

3∑

j=1

NPCj − η1NCSC − d1NCSC

dNPC1

dt
= PasyωCSCNCSC − ωPCNPC1 − γPCNPC1 − η1NCSC − η2NPC1 − d2NPC1

dNPCj

dt
= 2ωPCNPCj−1 − ωPCNPCj − γPCNPCj + η2NPCj−1 − η2NPCj − d2NPCj j = 2 . . . 3

dNPCi

dt
= 2ωPCNPCi−1 − ωPCNPCi + η2NPCi−1 − η2NPCid2NPCi i = 4 . . . 6

dNPC7

dt
= 2ωPCNPC6 + η2NPC6 − η3NPC7 − d2NPC7

dNTC

dt
= η3NPC7 − d3NTC

(1)

where NCSC, NPCi and NTC are the numbers of cancer
stem cells, progenitor cells, and terminal cells, respec-
tively. Notice that the terms characterizing these equa-
tions depend on 4 parameters: ωCSC and ωPC describe
the proliferation rates; gPC represents the bidirectional
inter-convertibility parameter that involves CSC, PC1,
PC2 and PC3 subpopulations; di indicates the death rate;
and hi describes the differentiation rates.

Parameter definition
Before discussing how model consistency and correctness
are validated in our case study we explain how the input
parameters for the two models are chosen. All the reaction
rates of the molecular network as well as the initial protein
concentrations, reported in the Additional file 2, are tuned
starting from the values reported in the Birtwistle’s paper.
For what concerns TLR2 receptor concentration, we eval-
uated the presence of surface expression of TLR2 in
TUBO cell line, which is a cell line derived from BALB-
neuT tumors [16]. TLR2 positive cells represent a signifi-
cant subpopulation of the ErbB2 positive cells, which con-
stitute the cell majority both in the TUBO cell line (E) and
in the serial passages of spheroids formation (P1, ..., P3).
Interestingly, TLR2 positive cells increase over serial pas-
sages of spheroids formation, which represent a method to
enrich in CSC, see Table 1. For this reason, we set the
concentration of TLR2 in CSC subpopulation 100 times
higher than that of PCs.
The initial marking of three growth factors is defined as

a function which models injections happening at regular
time intervals. For what concern the parameters at popula-
tion level, the TCs/CSCs ratio was defined indirectly on

Table 1 TLR2 and Neu expression on TuBo (E) and serial
passages mammospheres (P1, P2, P3).

Cell line ErbB2 (%) TLR2 (%)

E 52.7 ± 4.2 8 ± 1

P1 51.9 ± 12.7 21 ± 3

P2 45.5 ± 10.5 24.5 ± 5.3

P3 41.2 ± 10.4 27.1 ± 3.8

Percentage of positive cells evaluated by FACS analysis. Data shows mean
+/-SD from 6 different experiments.

Cordero et al. BMC Bioinformatics 2013, 14(Suppl 6):S11
http://www.biomedcentral.com/1471-2105/14/S6/S11

Page 6 of 14



the basis of spheroids that can be produced starting from a
cell culture of 1000 TUBO cells. Since spheroids are clo-
nal, i.e. each spheroid is derived from a unique CSC,
counting the number of spheroids allows to quantify the
number of CSCs present in the starting cell culture (15
+/-5 CSCs every 1000 TUBO cells). The differentiation,
death, and bidirectional inter-convertibility parameters are
set as reported in Fornari’s work [5]. Otherwise, prolifera-
tion rates of cell population are defined considering several
proteins dynamics at regulation level.
Model consistency and correctness
The consistency and correctness of the model has been
verified applying three preliminary checks. The first check
is based on P-semiflows that, as explained in details in the
Methods Section, can be used to identify the sets of places
where a given kind of correlated matter is preserved. In
this way using the biological reactions involved in the
model construction it is possible to identify sets of places
that must appear in the same P-semiflows.
For instance if we consider the following reactions:

R:41 Pip3 + Pten
k67←→
k68

Pip3 : Pten

R:42 Pip3 : Pten
k69−→ Pip2 + Pten

R:43 Pten + Pip2
k70←→
k71

Pten : Pip2

R:44 Pten : Pip2 + Pip3
k72←→
k73

Pten : Pip2 : Pip3

R:45 Pten : Pip2 : Pip3
k74−→ Pten : Pip2 + Pip2

we observe that the places representing the conserva-
tion of Pten are correctly in the same P-semiflow: Pten,
Pip3:Pten, Pip2:Pten, Pten:Pip2:Pip3.
The second check is based on model checking: a tech-

nique that provides a useful quality control for the devel-
opment of large scale complicated models. As described
in the Methods Section, model checking is based on the
use of temporal logic to specify system behavioral propri-
eties which can be processed automatically using compu-
tationally efficient procedures that determine whether
they are effectively reproduced by a model. In this work
we have used model checking to verify the consistency
and correctness of our model with respect to a set biolo-
gical reactions used for its construction, and to other
well-known properties found in literature.
For instance, the following reachability query has been

tested and shown to be satisfied in our model: the
growth factors stimulation always leads to a production
of at least one of the following protein complexes:
HER2:Pi3k, TLR:Pi3k, TLR:MyD88:Pi3k, H2:Gr:Gab:
Pi3k, Ras:GT:Pi3k, ERBB3:ERBB2:Gr:Ga:Pi3k, and
ERBB1:ERBB2:Gr:Ga:Pi3k

EF((HER2∗ : Pi3k∗ > 0) ∨ (TLR : Pi3k∗ > 0) ∨ (TLR : MyD88 : Pi3k∗ > 0) ∨ ∨(H2 : Gr : Gab : Pi3k∗ > 0)

∨(Ras : GT : Pi3k∗ > 0) ∨ (RERBB3 : ERBB2 : Gr : Ga : Pi3k∗ > 0) ∨ (ERBBI : ERBB2 : Gr : Ga : Pi3k∗ > 0)

Moreover, examples of pathway queries which show
that our model exhibits one well-known properties dis-
cussed in the literature [17] is: mTOR inhibition abro-
gates feedback inhibition of the proliferation pathway
resulting in Akt activation;

AG(P3Akt∗ : Pdk1 �= 0 ⇒ (TO2∗ �= 0 ∨ (P3 : Akt : Pdk1 : TO2∗)))

An example of steady-state property that has been
proved in our model is: the system exhibits a cyclic
behavior with respect to the presence of Pten

EG((Pten ⇒ EF¬Pten) ∧ ((¬Pten ⇒ EFPten).

Finally the last check consists in verifying that the
quantitative behavior of the model is consistent with the
literature, for instance according to results presented in
[18] we verified that Pten inhibition leads to an inhibi-
tion of the proliferation pathway.

Multi-level model interaction
To link proliferation (population level) with regulation
events (regulatory network) it is necessary to set interac-
tion points from both models. Those points of interactions
are selected through the singling out of proteins (at regula-
tory level) directly involved in the phenomenon under
study (at population level). As hinted before, for what con-
cerns the population level, we select proliferation para-
meters, i.e. ωCSC and ωPC . Instead, at the molecular level
we select proteins which have a pivotal role in cell prolif-
eration, i.e. cyclin D, NF-kB and BAD. The interaction is
then defined assigning at proliferation parameters specific
values deduced from those target proteins. In detail, three
functions representing the temporal behaviors of cyclinD,
NF-kB and BAD are created for both CSC and PC regula-
tory networks. These functions are obtained from the
solution of the ODE systems corresponding to the (first
level) molecular network of CSC and PC. Proliferation
rates are then evaluated as the product of the three func-
tions, which take different values in CSC and in PC regula-
tory networks.
The vaccination backlash, applied at molecular level, is

directly reflected on protein targets.

Model dynamics
In this last step we describe the two experimental ana-
lyses performed within our case study.

Effects of ErbB2 vaccination
To evaluate if the ErbB2 network controlling cell prolifera-
tion exhibits a behavior similar to that observed in BALB-
neuT animals (at least from a qualitative point of view),
we investigated the effect of ErbB2 repetitive vaccinations
on our model. Since ErbB2 is constantly active due to the
mutation that favors its homo/hetero-dimerization,
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without the need of ligand binding, proliferation is always
stimulated and it results in a massive production of TCs.
On the other hand, the sub-population of CSCs is a small,
but very important quantity, that represents the driving
force of tumor development as shown in Figure 4. In this
experiment, growth factors are injected first at time 1500
and subsequently other two times with intervals of 1000
time units.
We focused on the analysis of this phenomenon to test

the validity of our model since chronic vaccination against
ErbB 2, in BALB-neuT mice, is well-known and allows
progressive clearance of neoplastic lesions and complete
protection from the tumor in 1-year old mice [7]. Further-
more, it has been shown that anti-ErbB2 Ab induces a
functional block of ErbB2 receptor function [19], down-
regulates its expression on the cell membrane [19,20],
impedes its ability to form the homo or heterodimers that
spontaneously transduce proliferative signals to the cells
[20,21], and blocks its ability to bind ligands [22]. Since
vaccination directly affects the concentration of ErbB2 on
cell surface, it represents a suitable test to establish if our
model can simulate a cell growth trend similar to that
observed in the BALB-neuT model upon vaccination.
Without external interventions, the number of TCs starts
to increment exponentially immediately after time 1000,
see Figure 5A. In case we apply five vaccination steps,
starting just before the exponential growth, i.e. at time

1000, and repeating the vaccination every 1000 time units,
the exponential growth is strongly delayed, as shown in
Figure 5B. Although our model seems to simulate the
effect of vaccination observed in BALB-neuT animals, it
must be noticed that BALB-neuT experiments are based
on the observation of tumor mass changes, while our
model gives a representation at cell population level.
Furthermore, our representation is based on an arbitrary
time scale, while the BALB-neuT experiments are based
on results generated over months. Aligning the time line
of the two models corresponds to the difficulty of obtain-
ing reliable experimental estimations of the amount of
tumor cell present in tumor mass of a given size (e.g. a
tumor of 1 mm of diameter). The growth behavior with
and without the vaccination effect is obviously reflected at
molecular level. Figure 6A shows the behavior of cyclinD
in the cancer growth, it is notable that this dynamics
reveals three peaks at times corresponding to the growth
factors injections. Figure 6B reflects the cyclinD trend dur-
ing ErbB 2 vaccination, and shows three definite deeps
consistent with the three vaccinations and one bump syn-
chronized at time 6000 with a growth factor injection.

Involvement of TLR2 in CSC proliferation
Although our model is still incomplete and needs
further refinements, it successfully provides a proof of
concept that the use of molecular networks to estimate
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Figure 4 Breast cancer growth. Simulation of growth behaviors of CSC, PC and TC subpopulations in the breast cancer growth considering
the initial condition of concentration and rate and with three growth factors injections starting from time 1500.
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specific parameters for the high level ODE systems (per-
formed also using a network perturbation analysis)
represents an interesting method for the formulation of
new hypothesis to be tested with in vitro/in vivo experi-
ments. As an example of the application of this metho-
dology, consider the case in which we want to evaluate
the presence of TLR2 on the surface of breast cancer
cell and the effect that it has on the AKT/PI3K network.
Preliminary findings suggested to investigate with our
model weather the perturbation of TLR2 could func-
tionality affect the CSC driven proliferation in a signifi-
cative manner. For this reason, we have inserted the

TLR2 regulation network as part of the network con-
trolling cell proliferation parameters. Furthermore, on
the basis of the above mentioned experimental data, the
TLR2 network is only acting on CSC proliferation. We
also analyze the effect of a vaccine against ErbB2 and
TLR2 at population level. From this experiment we
observed a limited reduction of the cell number at the
time of vaccination in presence of TLR2 vaccination
that is reflected in a reduction of cancer cells in particu-
lar TCs. Indeed, if only the ErbB 2 vaccination is per-
formed, it is possible to observe about 107 TCs at time
6000, (see Figure 7), while if we perform also the TLR2

Figure 6 Cyclin D behavior. Panel A shows the cyclinD trend in breast cancer growth while panel B reports the cyclinD during three
vaccination injections staring form 1500 time units.
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Figure 5 ErbB2 vaccination on breast cancer. Panel A reports the exponential increment of TCs and PCs after time 1000. Otherwise in panel B
it is applied a vaccination effect on ErbB 2 receptor in five injection spaced every 1000 time units.
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vaccination at the same time point there are 8*106 TCs,
(see Figure 7B). Such reduction is not sufficient to affect
the overall tumor growth, since we did not observed any
changes in the time at which the exponential tumor
growth starts, with or without TLR2 vaccination.
We are presently evaluating with in vitro experiments,

the effect of TLR2 silencing in TUBO cell proliferation
to confirm these simulation results. It is notable that lit-
erature data [16] indicate that TLR2 mediate innovation
by the activation of the NF-kB pathway. This finding
together with our observation that TLR2 positive cells
are mainly associated with subpopulation of cancer cells
enriched for CSC (Table 1), suggest that TLR2 might
play some important role in CSC invasiveness. Thus, the
TLR2 network might represent an interesting starting
point to design a network controlling the parameters
linked to CSC from PC differentiation, since invasive-
ness is associated with undifferentiated cells, i.e. CSC,
and is lost in fully differentiated cells, i.e. TC.

Conclusions and perspectives
In this paper we propose a novel approach in which a
multilevel model is constructed and where molecular net-
works are used to estimate certain parameters of a cell
population model based on a system of ODEs. With this
method we have been able to reproduce at a qualitative
level the effect of anti-ErbB2 chronic vaccination in
BALB-neuT model. Although the model needs some
refinement to provide a punctual representation of vacci-
nation, i.e. aligning the time line of the computational
model with in vivo data, it successfully supports the idea
that new in vitro/in vivo experiments can be designed to
test hypothesis that are formulated on the basis of the
solution of the model. Furthermore, our approach can be
extended to consider the immunological tumor micro-
environment by adding new equations in the ODE system
of the population representation and by defining their

parameters on the basis of a cell-to-cell network, instead
of a genetic network. This might be particularly interesting
in the area of combined treatment development. Tumor
vaccination alone is not sufficient to eradicate the disease,
but combined with other immuno-pharmacological treat-
ments, affecting the CSC differentiation rate might repre-
sent an interesting approach in the area of tertiary cancer
prevention, i.e. reducing the negative impact of disease by
restoring functions and reducing disease-related
complications.

Methods
The following section reports the details of the biologi-
cal techniques used for the experiments as well as the
notation and the basic definitions of formalism and
algorithms used for the analysis discussed in this paper.
Part of this section is similar to an analogous descrip-
tion reported in our previous work [23] and is included
here only to help the reader in understanding the subse-
quent discussion.

Flow cytometry analysis
E, P1, P2, and P3 cells were collected after 7 d of culture
and disaggregated through enzymatic and mechanical dis-
sociation. They were then washed in PBS (Sigma-Aldrich)
supplemented with 0.2% BSA and 0.01% sodium azide
(Sigma-Aldrich) and stained for the membrane antigen
Toll Like Receptor (TLR) 2 using an Alexa Fluor647-
conjugated anti-TLR2 and for ErbB2 antigen using Ab4
moAb (Calbiochem) followed by FITC anti-mouse IgG
(Dako Cytomation) as secondary Abs. Samples were
collected and analyzed with a CyAn ADP Flow Cytometer
and Summit 4.3 software (DakoCytomation).

Petri Net formalism
A brief introduction of the PN formalism [24] is pro-
vided here to help the reader in understanding the
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Figure 7 ErbB2 and TLR2 vaccinations on breast cancer. Panel A shows the behavior of CSC, PC and TC subpopulation after only a ErbB2
vaccination at 1500 time while panel B reports the combinatorial ErbB2 and TLR2 vaccinations both at 1500 time units.
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model of the proliferation pathway that we have used in
this work.
PNs have been first proposed for the representation of

biological pathways by Reddy et al. in [4]. Subsequently,
many other researchers discussed the advantages of
using PNs to model biological systems [25] because of
their ability of representing reaction systems in a natural
graphical manner and of their capability of allowing the
computation of qualitative and quantitative information
about the behavior of these systems. Most of the analy-
sis of PN models in Systems Biology is performed using
simulative approaches [26,27] where transitions occur
after random firing delays. The extension of the basic
PN formalism with stochastic firing delays of this type
has been proposed in the literature with the definition
of the so-called Stochastic Petri Nets (SPNs) [28-30]
which allow the automatic construction of an underlying
Continuous Time Markov Chain (CTMC) that can be
studied using numerical or simulative techniques and
that can also be translated into systems of ODEs when
average results are sufficient for the analysis [31]. Sev-
eral papers recently published by Heiner et al. [32,33]
show that the available biological data can be analyzed
by means of PNs formalism in order to obtain the gen-
eral behavioral patterns and timing measures of biologi-
cal entities. In general, biological models are affected by
a high level of complexity due to the functional proper-
ties of the systems that are considered. The interaction
of qualitative and quantitative analysis is necessary to
check a model for consistency and correctness as we
will show in the rest of this paper using PNs. In details,
PNs are bipartite directed graphs with two types of
nodes: places and transitions. The places, graphically
represented as circles, correspond to the state variables
of the system (e.g. enzymes, compounds, etc.), while the
transitions, graphically represented as boxes, correspond
to the events (e.g. interactions among biochemical enti-
ties) that can induce state changes. The arcs connecting
places to transitions (and vice versa) express the rela-
tions between states and event occurrences. Places can
contain tokens (e.g molecules of the corresponding enti-
ties) drawn as black dots within places. The state of a
PN, called marking, is defined by the number of tokens
in each place. The evolution of the system is given by
the firing of enabled transitions, where a transition is
enabled if only if each input place contains a number of
tokens greater or equal than a given threshold defined
by the cardinality of the corresponding input arc. A
transition occurrence/firing removes a fixed number of
tokens from its input places and adds a fixed number of
tokens into its output places (according to the cardinal-
ity of its input/output arcs).
The set of all the markings that the net can reach,

starting from the initial marking through transition

firings, is called the Reachability Set (RS). Instead, the
dynamic behavior of the net is described by means of
the Reachability Graph (RG), an oriented graph whose
nodes are the markings in the RS and the arcs represent
the transition firings that produce the corresponding
marking changes.
Here we recall briefly the notation and the basic defi-

nitions that are used in the rest of the paper.

Definition: Petri Net
A PN system is a tuple N = (P,T, I−, I+,m0) where:

• P = {pi} is a finite and non empty set of places.
• T = {ti} is a finite and non empty set of transitions
with P ∩ T = ∅.
• I−, I+ : T × P → N are the input, output, that
define the arcs of the net and that specify their
multiplicities.
• m0 : P → N is a multiset on P representing the
initial marking of the net.

A marking m (or state) of a PN is a multiset on P.
A transition t is enabled in marking m iff I-(t, p) ≤ m(p),
∀p Î P , where m(p) represents the number of tokens in
place p in marking m. Enabled transitions may fire, so that
the firing of transition t in marking m yields a marking m’
= m + I+(t) - I-(t). Marking m’ is said to be reachable from
m because of the firing of t and is denoted by m[t〉m’. The
firing of a sequence s of transitions enabled at m and
yielding m’ is denoted similarly: m[s〉m’.

How to check model consistency and correctness
Before describing how it is possible to study the tem-
poral dynamics of a phenomenon described with a PN
model, we discuss two preliminary analysis steps useful
to verify the model consistency and correctness, based
on P-semiflows and CTL properties. The first step can
be used to identify the set of places where a given kind
of correlated matter is preserved during the evolution of
the model, while the latter allows the modeler to verify
more complex behavioral properties.
Mathematically, P-semiflow [34] can be defined as

follows:

Definition: P-semiflow
Given a Petri Net, let C be the Incidence Matrix whose
generic element ct,p = I+(t, p) − I−(t, p) describes the effect
of the firing of transition t on the number of tokens in
the place p; and let x ∈ Z |P| be a place vector; then a
P-semiflow is a place vector x such that it represents an
integer and non-negative solution of the matrix equation
xC = 0.
All the P-semiflows of a PN can be expressed as linear

combinations of a set of minimal P-semiflows, and the
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support of a P-semiflow F , denoted supp (F) can be
defined as the set of nodes corresponding to the non-
zero entries of F . Using supp (F), each P-semiflow F
allows the computation of a corresponding weighted
sum of tokens contained in a subset of places of the net
that remains constant through the entire evolution of
the model; this constant ia called P-invariant.
In a biological context, where tokens represent com-

pounds, enzymes etc., the interpretation of such P-invar-
iant is relatively simple: the places of supp (F) represent
the portion of the PN where a given kind of correlated
matter is preserved. Obviously when all the places of a
net belong to at least one P-semiflow, then the markings
of the places are bounded and the state space of the net
is finite.
Finally it is important to observe that P-semiflow ana-

lysis involves only the structural proprieties of the net
and is thus independent of the initial marking of the
PN.
The second preliminary analysis step allows the user

to verify more complex behavioral properties using the
model checking technique, a well-established formal
method that is widely-used for ascertaining the correct-
ness of real-life systems. It requires a description of the
system usually given in some high level modeling form-
alism such as PN, and the specification of one or more
desired properties of the system, normally using tem-
poral logics. Given this input, the model checker can
derive the system behavior (e.g. generating the system
RG) and automatically verify whether or not each prop-
erty is satisfied though a systematic and exhaustive
exploration of the RG.
Among the many available temporal logic formalisms,

we choose the Computational Tree Logic, CTL, a
branching-time logic that extends propositional logic
used for describing states, with operators for reasoning
over time and non-determinism.
In details the following temporal operators are consid-

ered in CTL: Xp meaning that the proposition p is true at
the next transition, Gp meaning that p is always true, Fp
meaning finally true, pUq meaning that p is true until q
becomes true. For reasoning about non-determinism, the
two following path quantifiers are used: Ap meaning that
p is true on all paths and Ep meaning that p is true on
some path. All the temporal operators have to be imme-
diately preceded by a path quantifier, hence AXGp is not
a valid CTL formula, since the temporal operator G is
not preceded by a path operator. Moreover, atomic pro-
positions consist of statements on the current token
situation in a given place, and they can be recursively
composed into more complex propositions using the
standard logical operators: ¬ (negation), ∧ (conjunction),
∨ (disjunction), and ⇒ (implication). Hence the CTL can

be sufficiently expressive to encode a wide range of biolo-
gical queries:

• reachability queries: there is a cascade of reac-
tions that lead to the production of a protein p -
EFp;
• pathway queries: an enzyme can reach an activa-
tion state s through a substrate-bound state sb - EF
(sb ∧ EF (s)); a cell can reach a state s without violat-
ing a certain constrain c - E(cUs); a protein p can be
synthesized without a set of transcriptional factors q
- E(¬qUp);
• steady state query a certain state s of a network is a
steady state - s ⇒ EG(s); an enzyme can stay in active
or inactive state - EF (AGs); an enzyme exhibits a cyc-
lic behavior with respect to the presence of an activa-
tor or inhibitor z - EG((z ⇒ EF ¬z) ∧ ((¬z ⇒ EFz).

Finally, it is worth noting that, while CTL is an extre-
mely powerful and flexible language to describe special
properties, it can be used only by skilled users since it
requires a certain experience to correctly express the
specification of the desired behavior. Furthermore
model checking technique, in case of very complex sys-
tems, can require substantial computational resources
(in terms of memory and time) since it needs the gen-
eration of the RG of the system. In literature several
approaches based on efficient RG encoding and manipu-
lation [35] or level concept and monotonic liveness [33]
have been proposed to cope with such problem.

How to analyze temporal dynamics of the modeled
system
To model and study the temporal dynamics of a PN we
have to introduce temporal specification in the formalism.
As we already said at the beginning of this Section, the
most common timed extension of PN is Stochastic PN,
SPN [28] in which exponentially distributed random
delays (interpreted as durations of certain activities) are
associated with the firings of the transitions. In details a
SPN can be defined as a pair (N ,w), where N is a Petri
net and w : NP × T → R is a (possibly marking depen-
dent) function that assigns to each transition of the net
the rate of a negative exponential distribution of the firing
delay.
Hence, for any transition t it is necessary to specify a

function w(m, t), so that when t is enabled in a marking
m then w(m, t) has to be evaluated to provide the rate
of t in m.
Assuming that the firing times are characterized by

probability function with infinite support, this way of
adding temporal specifications in the model does not
modify the qualitative behaviors of SPN underlying

Cordero et al. BMC Bioinformatics 2013, 14(Suppl 6):S11
http://www.biomedcentral.com/1471-2105/14/S6/S11

Page 12 of 14



un-timed models so that all the available theoretical
results for the PNs can be reused. Specifically, where the
firing time distributions is negative exponential, its
memory less property allows to recognize that the tem-
poral behavior of the model corresponds to a Con-
tinuous Time Markov Chain (CTMC) that can be
represented as a graph which is isomorphic to the RG
of the same model without time. Then, each marking of
the SPN corresponds to a state of the CTMC and the
stochastic approach based on SPN adopts a discrete
view of the quantity of the entities that appear in the
mathematical representation as state components. This
means that the temporal behavior of a SPN is seen as a
random process governed by the so-called Chapman-
Kolmogorov differential equations [36], which corre-
sponds to the behavior of the biological system
described by the Master Chemical Equations [37]. How-
ever, for very complex model, the underlying CTMC
cannot be derived or/and solved due to well-known
state space explosion problem. To cope with this pro-
blem, the simulative approach can be used to estimate
the quantities of interest at the cost of extensive compu-
tational efforts [38,39]. Another way of studying this
type of model is that of using a so-called deterministic
approach in which from an SPN model, it is possible to
derive a set of ODEs (one for each place) which assumes
that the temporal behavior of the quantity of the entities
contained in the different places is a completely predict-
able process [43]. When modeling metabolic pathways,
the most common way to translate the reactions into a
set of ODEs is provided by the law of Generalized Mass
Action (GMA) [40] from which the system of ODEs
describing the model is of the form:

dXi(t)
dt

=
Ni∑

j=1

wij

E∏

h=1

Xh(t)
gijh i = 1, . . . ,E

where E is the number of interacting entities and Xi(t)
represents the amount of the ith entity at time t, Ni the
number of reactions in which the ith entity is involved,
the parameters wij the rate describing the speeds of these
reactions, and the parameters gijh the so-called kinetics
orders which depend on the stoichiometry and on the
mechanisms of the reactions. The ODEs and the initial
amount of the different entities can be automatically
obtained from the SPN representation, and numerical
integration of the ODEs is performed to calculate the
quantities at a given time instant. It is important to
observe that when the number of tokens increases the
quantitative behavior obtained applying the stochastic
approach tends to that obtained from the ODEs [31].
Hence from the SPN description of the biological phe-
nomenon, the choice of using one of the two approaches

(stochastic or deterministic) for studying the behavior of
the system is left to the analyst who decides on the basis
of the objectives of his/her study. In this paper we use
the deterministic approach because it allows a faster and
simpler evaluation of the proposed pathway.

How to use the P-semiflow to reduce the number of
ODEs
P-semiflows can be used to reduce the number of ODEs
representing the behavior of the system, by identifying
those which are redundant. Indeed, as already explained,
P-semiflows, can be used to derive the set of places in
which the total mass is preserved so that the sum of their
corresponding ODEs yields a zero identity. Hence, for
each minimal P-semiflow in the model we can select one
place belonging to it and re-write its corresponding vari-
able as a linear combination of the other variables in the
same P-semiflow. In this way we reduce the number of
ODEs of one unit for each minimal P-semiflow present
in the system.

Additional material

Additional file 1: List of reactions.

Additional file 2: Parameter Values: reaction rates and
concentration values.
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