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Abstract

This paper studies the preemption between programs running in different virtual machines on the same computer.
One of the current monitoring methods consist of updating the average steal time through collaboration with the
hypervisor. However, the average is insufficient to diagnose abnormal latencies in time-sensitive applications.
Moreover, the added latency is not directly visible from the virtual machine point of view. The main challenge is to
recover the cause of preemption of a task running in a virtual machine, whether it is a task on the host computer or in
another virtual machine.
We propose a new method to study thread preemption crossing virtual machines boundaries using kernel tracing.
The host computer and each monitored virtual machine are traced simultaneously. We developed an efficient and
portable trace synchronization method, which is required to account for time offset and drift that occur within each
virtual machine. We then devised an algorithm to recover the root cause of preemption between threads at every
level. The algorithm successfully detected interactions between multiple competing threads in distinct virtual
machines on a multi-core machine.
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Introduction
Cloud environments present advantages of increased flex-
ibility and reduced maintenance cost through resource
sharing and server consolidation [1]. However, virtual
machines (VMs, or guests) on the same host computer
may compete for shared resources, introducing unde-
sirable latency. Previous study found that jitter impacts
response time of programs on popular commercial cloud
environment [2]. In cloud environments, virtual machines
have the illusion of absolute and exclusive control over the
physical resources. However, the host’s resources aremore
often than not overcommitted, whereas they appear to
guest operating systems as being more available than they
actually are [3]. As a result, virtual machines on the same
host computer may interfere with each other without their
knowledge, inducing invisible yet real latency.
The diagnosis is more complex when the guest is iso-

lated from its external environment and an additional
virtualization layer is introduced. It is therefore necessary
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to have powerful and efficient tools to diagnose the root
cause of unexpected delays at low granularity when they
occur in a virtualized environment. To our knowledge, no
such tool was available.
This study focuses on processor multiplexing across

virtual machines. In particular, we are interested in auto-
matically identifying the root cause of task preemption
crossing virtual machines boundaries. The approach we
propose is based on kernel tracing, which is an effective
and efficient way to investigate latency problems [4]. The
method we propose consists of aggregating kernel traces
recorded simultaneously on the host and each virtual
machine. However, more often than not, timekeeping is a
task left to each of the operating systems. In such cases,
timestamps from different traces are not issued using the
same clock reference. As a result, trace merging with-
out an appropriate synchronizationmethod to account for
clock differences would produce incoherent results.
The challenge is to consider the system as a whole, while

preserving virtual machine isolation. Flexibility and porta-
bility constraints are also important for practical con-
siderations. The approach should be independent from
the underlying architecture and the operating system to
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account for portability, whereas flexibility requires inde-
pendence from the hypervisor and the tracer.
Three main contributions are presented in this paper.

First, we propose an approach for trace synchronization.
At the trace merging step, we propose an algorithm that
modifies timestamps of the guests’ traces to bring them
back to the same timespan as the host. Secondly, we
implemented an analysis program that transforms aggre-
gated kernel traces to a graphical view that shows the
states of the virtual machines and their respective virtual
CPUs (vCPUs) through time while taking into consid-
eration virtualization and its impact. Thirdly, we imple-
mented an additional analysis program that presents the
interactions of threads across different systems. Such an
analysis can be performed by recovering the execution
flow centered around a particular thread.
The rest of this paper is structured as follows:

Section ‘Related work’ goes through different approaches
currently used for virtual machine monitoring. Section
‘Problem statement and definitions’ introduces the
required concepts in virtualization and tracing, and states
the problem addressed by this paper. Section ‘Trace
synchronization’ explains our approach for trace syn-
chronization at the aggregation step. Each of sections
‘Multi-level trace analysis’ and ‘Execution flow recov-
ery’ introduces an analysis module and its inner work-
ing. Section ‘Use cases’ shows some representative use
cases and their analysis results. Section ‘Flexibility and
portability’ reiterates over flexibility and portability.
Section ‘Conclusion’ concludes.

Related work
On Linux kernels supporting paravirtualization, top
reports a metric specific to virtual machines, named steal
time. This metric shows the percentage of time for which
a vCPU of the VM is preempted on the host. While this
information can give a general idea or a hint of overcom-
mitment of the CPU, it does not report the actual impact
on the running threads nor the source cause of preemp-
tion. Additionally, this approach is specific for Linux par-
avirtualized systems and thus limits portability. Moreover,
top adds significant overhead as it gathers information by
reading entries in the proc pseudo-filesystem, and offline
analysis or replay of the execution flow are not possible.
Perf has been extended to support profiling and tracing

specifically for KVM. Using its “kvm” subcommand, one
can use Perf to get runtime statistics and metrics about
each virtual machine. Common metrics include the num-
ber of traps caught by the hypervisor, their cause and the
time to process each of them. The information reported
by Perf also includes CPU time for the guest kernel,
host kernel and the hypervisor, which are good indicators
about the overhead introduced by virtualization. Perf also
reports information about the Performance Monitoring

Unit (PMU), which is a set of counters that keep track
of particular events such as cache misses, TLB misses,
CPU cycles, etc. However, these performance counters
aren’t available for virtual machines. In [5], an approach
for PMU virtualization is proposed, which are then used to
monitor the runtime behavior of virtual machines in more
detail. In [6] and [7], the authors also use Perf for virtual
machine profiling and resource utilization. Such methods
may also require exporting the symbol table of the guest
kernel to the host to resolve. While it is possible to detect
performance degradation due to resource sharing among
virtual machines, the analysis doesn’t cover detailed fine-
grained information about the root causes of preemption.
However, the interactions between the virtual machines
through the usage of shared resources are essential to
understand performance degradations and easily pinpoint
their cause in order to remedy them. Finally, the approach
using perf kvm is dependent on both the operating sys-
tem and the hypervisor, which doesn’t meet the portability
requirement.
Shao et al. use an approach based on tracing within Xen

to generate useful metrics for virtual machines [8]. Based
on scheduling events, latency due to virtual CPU preemp-
tion can be easily calculated. Other metrics of interest are
also presented such as the wake-to-schedule time. How-
ever, these metrics are mostly useful for analyzing Xen’s
scheduler itself. Such an analysis would be less relevant
in the case of KVM (or some other hypervisors) as it is
a an “extension” to the Linux kernel via loadable kernel
modules and thus uses its scheduler. Moreover, the impact
of the applications running inside the virtual machines
on the system as a whole can not be retrieved from Xen
traces. Differently put, perturbations caused by userspace
applications across different virtual machines cannot be
analyzed or quantified using solely Xen traces.
As for trace synchronization, previous studies [8,9] have

used the TSC (TimeStamp Counter) as a common time
reference to approach timekeeping and clock drift issues
among VMs. The TSC is a CPU register on x86 archi-
tectures which counts CPU cycles since the boot of the
system (uptime). When read from a virtualized system,
the TSC is usually automatically offset in hardware to
reflect the uptime of the guest operating system. The
value of the offset is specified by the TSC_OFFSET field
in the Virtual Machine Control Structure (VMCS). Each
VM has its own TSC_OFFSET value, and reading the
TSC from different systems always returns a coherent
value with respect to their respective uptime. Once traces
are recorded on different systems, converting guest TSC
values to host TSC values comes down to subtracting
the value of TSC_OFFSET from each timestamp. How-
ever, the TSC offset may have to be adjusted during
the execution of the VM upon certain events, such as
virtual machine migration. As a result, TSC_OFFSET
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adjustments have to be tracked down by the tracer at run-
time. If tracing is not enabled before the creation of the
virtual machine, the initial value of the TSC offset can-
not be obtained, unless explicitly requested by the tracer.
Additionally, this approach does not allow for the possi-
bility of lost events since a TSC adjustment event could
be lost. In any manner, even if the TSC isn’t virtualized
and is unique across all systems, synchronization using the
TSC does not meet our requirement of portability, as it is
an x86-specific register. Moreover, TSC offsetting is spe-
cific to hardware-assisted virtualization, thus it cannot be
used with other virtualization methods, which does not
meet our flexibility requirement. Finally, the TSC register
only counts CPU cycles since boot time, which is not as
meaningful as an absolute wall clock time, especially on
computers with a non-constant TSCwhere the conversion
from TSC to real time would be an additional challenge
(CPU flag constant_tsc can be queried to verify this
property).

Problem statement and definitions
Addressed problem andmotivation
We noticed that one of the main limitations of current
approaches for virtual machine monitoring is the lack of a
general approach, which takes into account in-depth anal-
ysis of all the involved systems. Most of the monitoring
tools are designed to be centered either around the hyper-
visor or the guest OS. In the former case, only an analysis
from the host point of view, abstracted by the virtualiza-
tion layer, is possible. In the latter case, the analysis is
too restricted inside the guest OS and doesn’t consider
the outside environment for detecting the root causes of
performance degradations.
As mentioned in section ‘Introduction’, investigating

latency problems in virtualized systems is a non-trivial
task. The isolation of virtual machines from their envi-
ronments imposes limits on the scope of traditional anal-
ysis tools. Moreover, the virtualization layer itself adds
overhead due to the involvement of the hypervisor for
privileged operations [10]. Furthermore, the assumption
of exclusive access to the hardware layer by each vir-
tual machine inevitably induces hidden latency due to the
overcommitment of resources, particularly the CPU. As
a result, the CPU becomes a scarce resource, which has
to be shared among running VMs. As we presented in
the previous section, there is no obvious way for a VM to
detect runtime perturbation caused by the “outside world”.
While a guest OS may perceive one of its processes taking
full use of the CPU for a certain amount of time, this might
not be effectively the case on the actual hardware. Indeed,
when a process is allocated a limited amount of vCPU time
in a guest OS, it might get deprived of this resource by
the host’s scheduler which might elect a different VM for
execution at any moment. Analyzing preemption across

virtual machines boundaries (inter-VM) allows the user
to detect such perturbations and take actions to remedy
them.
In this paper, we explain how we used kernel traces

recorded in each VM and on the host simultaneously
to investigate such problems. As we present in section
‘Use cases’, the tools resulting from our study help the
users to easily find the latency cause due to CPU sharing
among virtual machines, as well as the actual threads that
affect the completion time of a certain workload. How-
ever, merging distributed traces is a problem in itself as
each operating system is solely responsible for its own
timekeeping. The next sections present prerquisites in
order to understand all of the parts used in our final
solution.

Hypervisor
CPU vendors introduced extensions at the hardware level
which allow for efficient architecture virtualization and
overcome design issues, as presented in [10] for x86. On
Intel hardware, this CPU extension is called VMX (Virtual
Mahine eXtension), while AMD-V is its counterpart from
AMD. On hardware-assisted virtualization, the CPU tran-
sits between non-root and root modes. On Intel CPUs,
these modes are respectively called VMX non-root and
VMX-root. The former is entered using the vmentry
instruction by the hypervisor, giving control to the VM’s
native code. The later is reached when the VM executes
an instruction that triggers a trap, called vmexit. A trap
is usually a sensitive instruction such as writing to a priv-
ileged register, and allows the hypervisor to take control
of the execution and react to the trapped instruction, usu-
ally through emulation. Vmexit can be thought of as
a reaction, as opposed to vmentry which is an actual
instruction. Moreover, a data structure called VMCS (Vir-
tual Machine Control Structure) [11] contains runtime
information about a virtual machine. This data structure
is used as an interaction mechanism between the VM
and the hypervisor [12] (i.e. between non-root and root
modes), as well as a way to define behavioral elements,
such as enabling or disabling hardware TSC offsetting.
The software that interacts with these hardware exten-

sions is called a hypervisor. KVM [13] is an example
of such software and is included in Linux as a loadable
kernel module. Its role is to exploit and manage the vir-
tualization capabilities of the hardware, and provide easy
access to these capabilities to any userspace component
via the ioctl interface. As a result, many userspace emu-
lators can be built atop KVM without reimplementing
hardware-specific functionalities. We use QEMU as this
userspace component that interacts with KVM to take
advantage of hardware assistance. Moreover, as KVM is
an extension to the Linux kernel, it can take advantage of
its basic functionalities, such as the scheduling, NUMA



Gebai et al. Journal of Cloud Computing: Advances, Systems and Applications  (2014) 3:23 Page 4 of 15

node management, and even its tracing infrastructure.
Thus, KVM is instrumented with tracepoints which can
be traced using any kernel tracer. In QEMU/KVM, each
virtual machine is a QEMU process, and each of its vir-
tual CPUs (vCPUs) is emulated by a separate thread that
belongs to that process.
In this article, the terms hypervisor and VMM (Virtual

MachineMonitor) will be used interchangeably. The same
applies for the terms VM, guest system and virtualized
system.

Trace indexing
We implemented our trace analysis algorithm using the
Trace Compass trace viewer (previously TMF - Tracing
andMonitoring Framework) [14]. Trace Compass is a Free
and Open tool for viewing traces in different graphical
views. Views are usually designed for specific kind of anal-
yses. The most common views in Trace Compass are the
Control Flow view and the Resource view. The former
shows the states of all threads on a system throughout
the tracing session (Running, Idle, Preempted, Blocked),
whereas the latter shows the states of different resources
such as the CPU and IRQ lines. This project resulted
in two additional views integrated to Trace Compass,
which can be used for Virtual Machine runtime analysis of
inter-VM preemption.
Trace Compass indexes the trace using a State His-

tory Tree (SHT) [15]. The SHT represents the state of
the whole system, and is updated at each event to define
time intervals [16]. This index allows efficient stabbing
queries, returning the complete state of the system at a
given time. A node of the tree is a key-value pair, where
the key is a path component, and the value is an attribute
associated with a duration, that gets updated as the trace
is being processed. The rules, by which attributes are
updated, are established by our algorithm presented in
section ‘Multi-level trace analysis’.
Our algorithm requires kernel traces from all systems

in the setup, i.e., the host and guests operating systems.
Events from these traces are then merged and sorted by
chronological order for processing. Trace Compass reads
the trace one event at a time and modifies the SHT
attributes. Figure 1 shows a part of our SHT. For instance,
the path “/Virtual Machines/Ubuntu/CPUs/
CPU0/Current Thread” contains the thread ID exe-
cuting on CPU 0 of the VM named “Ubuntu”. When
a scheduling event such as sched_switch from the VM’s
trace is processed, the value of the attribute is changed
from the TID of the former thread to the latter’s. Sim-
ilarly, the attribute at path “/Host/Threads/Thread
1234/Status” holds the status of the thread whose TID
is 1234 on the host. This attribute may be modified when
a context switch event involving the thread 1234 is being
processed.

Figure 1 Example of a state history tree.

Relevant tracepoints
In this study, we use LTTng as a kernel tracer. LTTng
was designed for high throughput tracing while reduc-
ing as much as possible its impact on the traced sys-
tem [17]. We now introduce the key tracepoints for our
analysis. We present their significance, as well as the
content of their respective payload. This section is com-
plementary to section ‘Multi-level trace analysis’ which
explains how these tracepoints are used to update the
SHT.
The sched_switch tracepoint indicates a context

switch on the CPU which recorded the event. Useful pay-
load fields are the names and the TIDs (Thread Identifiers)
of the former and new threads involved in the context
switch. Since all events are timestamped using the system’s
time at the nanosecond scale, the amount of time spent on
each CPU by a specific thread is easily computed by sub-
tracting the timestamps of the sched_switch events
involving a particular thread.
Tracepoint sched_migrate_task indicates the

migration of a thread from one CPU to another. Its
payload holds the TID of the migrated task, as well
as the origin and the destination CPU identifiers.
Tracepoint sched_process_ fork indicates the cre-
ation of a new process, and exposes the names, PIDs
(Process Identifiers) and TIDs of the newly created pro-
cess as well as its parent’s. Its complementary event,
sched_process_exit, records the end of life of a
thread. The payload contains the name and TID of the
process.
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VMX mode transitions by KVM can be tracked by
enabling the kvm_entry and kvm_exit events. Tra-
cepoint kvm_entry indicates a transition from root to
non-root modes, and thus the beginning of the execu-
tion of the VM’s native code. On the other hand, trace-
point kvm_exit indicates the opposite transition, which
interrupts the execution of the VM and gives control to
KVM. Elapsed time between consecutive kvm_exit and
kvm_entry events represents overhead introduced by
the hypervisor.

Trace synchronization
System timekeeping
LTTng uses the monotonic clock of the kernel for times-
tamping events, rather than the raw TSC. It avoids
architecture-dependent limitations inherent to the TSC,
such as TSC synchronization between cores and non-
constant TSC on variable frequency CPUs. Even in the
case of an ideal TSC (invariant and synchronized between
cores), the value is based on the processor frequency,
and thus needs to be scaled, or translated, for the user.
Moreover, the TSC is an x86-specific register and using
it as a clock source does not meet our requirement of
portability. However, it is worth mentionning that the
monotonic clock internally scales the TSC to nanosec-
onds and applies an offset to represent the current time,
as shown in Equation 1:

t = T + f (TSC) (1)

where T is a coarse-grained value updated on system
timer interrupts. For a finer timekeeping, T needs to be
adjusted using the TSC to account for the elapsed time
since the last update (last timer interrupt). This is done
using function f(), which translates the TSC to an actual
time value that can be used for fine-grained timekeeping.
In addition, the monotonic clock guarantees total order-

ing, even in the case of modification of the system’s wall
clock time while tracing, and therefore is an ideal source
for event timestamps.
Although the TSC is paced at the same rate across the

different virtual systems, the offset values T of each sys-
tem are not, and thus are subject to drifting apart as time
goes by. In fact, modern tickless operating systems dis-
able timer interrupts on idle processors to reduce energy
consumption. As a result, the update period of T is vari-
able, which may contribute to increase the time difference
between systems. Furthermore, virtual machines may be
set to different timezones, introducing even more inco-
herent timestamping when traces are merged together,
which would make them appear as being recorded at dif-
ferent moments. As a result, high precision timestamping
and clock drifting do not allow for simple clock offsetting

to ensure coherency between traces, and require a spe-
cific synchronization method. The next section presents
our approach to ensure coherent trace merging.

Event matching
We use the fully incremental convex hull synchroniza-
tion algorithm to achieve offline trace synchronization,
introduced by [18] for distributed traces synchronization.
Each guest trace is processed individually and synchro-
nized according to the host’s trace whose timeline is taken
as a reference. This approach is based on event matching
between two traces. In order to use the synchronization
algorithm, an event a from one tracemust be associated to
another complement event b from the other. Each couple
of events {a, b} must respect the following equation:

aT1
k−→ bT2 (2)

More formaly, the following requirements have to be met:

1. Causality: amust (quickly) trigger b;
2. Bijection: a and bmust share a common and unique

key k in their payloads;
3. Every event bmust be matched to at most one event

a (one-to-one). Unmatched events b are ignored.

The key k is used to ensure a one-to-one relation
between a and b. A lower delay between events a and
b results in a more precise synchronization scheme. A
synchronization formula is then derived by the algorithm
which is a function of clocks offset and time drift. This
formula is then applied to all timestamps of the guest’s
trace, bringing them to the same timebase as the host.
By using the relation “a triggers b”, a lower bound is
imposed on the timestamps of events b as they cannot
appear before their matching event a. Events between two
consecutive events b are then adjusted to respect this
constraint. With that being said, an upper bound has to
be imposed as well to events b. To set an upper bound
on events b, we use the same matching approach in the
opposite direction between systems. If a is an event in
the guest OS that triggers b on the host, then an event
c on the host that triggers an event d on the guest is
needed. Figure 2 shows events a, d, b, c from the original
traces correctly reordered as a, b, c, d after synchroniza-
tion. The next section explains how we used and adapted
this method for virtual machines.

Implementation in virtualized systems
Previous section ‘Event matching’ explained the theory
of the fully incremental convex hull algorithm for trace
synchronization. However, the requirements for this algo-
rithm are not directly met in the case of virtual machines.
Originally, the algorithm was built based on TCP packet
exchange events, where send and receive events are
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Figure 2 Lower and upper time bounds with matching events are used to synchronize traces.

respectively a and b: send triggers receive and the
TCP packet number is the key k. In Cloud environments,
virtual machines do not necessarily exchange TCP pack-
ets with each other or with the host, as VMs are usually
provided to different clients. As a result, we need to
customize the setup of the virtual machines to generate
events both in the VMs and on the host that would respect
the requirements established earlier. This section intro-
duces our approach to obtain events that can be used to
achieve trace synchronization.
We added tracepoints to the kernel through a load-

able module for flexibility, so no modification to kernel
code would be required to perform trace synchronization.
Upon loading, this module registers a probe to the system
timer’s interrupt. In other words, every time the system
timer issues an interrupt to the CPU, our synchronization
routine will be invoked. The synchronization routine can
be summed up as follows:

• Guest: Trigger hypercall (event a)
• Host: Acknowledge hypercall (event b)
• Host: Give control back to the VM (event c)
• Guest: Acknowledge control (event d)

The first pair of events (a, b) can be simulated by issu-
ing a hypercall. When executing the vmcall instruction
from the guest OS (event a), a trap is generated by the
CPU and control is given to the hypervisor, which in turn
acknowledges the trap (event b). A counter X is passed
to the host OS as a parameter to the hypercall. This
parameter will serve as the shared key required by the syn-
chronization algorithm. As a result, events a and b are
both recorded in a short period of time on the guest and
host OS respectively, both holding the same value X as
their payload.
Simulating the pair of events (c, d) is not as trivial since

different constraints are imposed on the host-to-guest
communication, as no mechanism of parameter transmis-
sion is easily accessible. Implementing shared memory
between the guest and host is too intrusive as it would add
toomuch complexity to both systems, and would probably
require modification to both kernels. However, the trap

generated by the hypercall is virtually invisible to the guest
OS, which continues execution “normally” after involve-
ment from the hypervisor. We can take advantage of this
property to simulate a parameter transmission when the
hypercall handling returns. Event c is recorded on the host
right before it finishes the synchronization routine and
gives control back to the VM. Event d is recorded on the
guest right after the hypercall, which effectively is as soon
as the guest OS resumes execution. This model simulates
property (1) as c indicates that the host is giving control
to the VM and d represents its acknowledgement. Both
these events hold X + 1 in their payloads to respect the
one-to-one relationship.
The downside of this approach is the overhead intro-

duced by the hypercall. Table 1 shows overhead measure-
ments added by the hypercall, with and without tracing.
However, registering to the system timer interrupt takes
advantage of tickless kernels as they aim to reduce energy
consumption by disabling interrupts on idle CPUs. In
other words, the synchronization routine is not invoked
on idle virtual machines, which otherwise would trigger a
costly context switch on the host for no actual work.
Once traces are generated on both systems, the fully

incremental convex hull algorithm is applied, which
derives a synchronization function applied on all of the
guest’s timestamps. This approach is resistant to clock
drifts as the convex hull algorithm considers this issue and
compensates for it in the generated formula. Additionally,
it does not require TSC_OFFSET tracking or any other
architecture-specific configuration.

Synchronization results
To show the results of our trace synchronization
algorithm, we traced simultaneously a running virtual

Table 1 Overhead induced by the hypercall

Time (ns)

Without With Relative
tracing tracing

One synchronization tracepoint 102 153 50.0%

Hypercall round-trip 5168 5565 7.7%
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machine and its host. We thenmerged the traces recorded
from both systems and used Trace Compass to view the
result.
We show in Figure 3 the state of threads on different

systems (the color legend is shown in Table 2). Thread
qemu:Debian with TID 7030 serves as a virtual CPU
of the VM as seen from the host. Events from the host’s
trace are used to recreate its state. Thread wk-pulse is
a periodic CPU workload (in a pulse-like manner) run-
ning inside the VM. Therefore, events from the VM’s trace
are used to show its state. We can already expect that
the vCPU of the virtual machine will follow a pulse-like
pattern, as the guest system is mostly idle. On Figure 3,
the staggered start of wk-pulse indicates a time gap of
about 6 seconds between the host’s and guest’s clocks.
We then used our synchronization algorithm to correct
the guest trace’s timestamps and reused the same view in
Trace Compass to view the result, as shown in Figure 4.
We clearly see that wk-pulse is running on vCPU
qemu:Debian because of their simultaneous state tran-
sitions. It is worth mentioning that the states of threads
qemu:Debian and wk-pulse are computed indepen-
dently from each other, yet they appear almost in perfect
sync after applying the synchronization formula.

Multi-level trace analysis
This section presents how the state of each virtual CPU
of a VM is recovered and rebuilt by analyzing the merged
traces. The purpose of the analysis is to show the state
of the vCPU throughout the trace as seen from the host.
Our module parses the resulting trace and updates the
attributes of the state system after each processed event.
Moreover, we want to show the impact of preemption on
the threads running within a VM. This analysis is useful
as it shows the effective running time and execution of a
thread compared to what is visible to the guest operating
system. A vCPU at any time can be in one of the following
states: VMM, RUNNING, IDLE or PREEMPTED. The state
attribute of each vCPU can be found in the state system at
path “/Virtual Machines/VM Name/CPUs/vCPU
ID/Status. Figure 5 is a FSM (finite state machine) that
shows transitions between these states. All of the events
that trigger transitions originate from the host. Although
not included in Figure 5, events from the virtual machines’
traces are used to rebuild the states of the threads running
on each vCPU within a VM. These threads can be found

in the state system at paths “/Virtual Machines/
VM Name/Threads/TID/Status”. Following section
‘Virtual CPU states’ explains these states as well as the
transitions by which they can be reached.
For clarity, we introduce the term pCPU which desig-

nates a physical CPU, as opposing to a vCPU which is in
reality a QEMU thread emulating the CPU of a VM.

Virtual CPU states
VMM
State VMM represents the state when a QEMU thread is
running hypervisor code instead of virtual machine code.
In other words, it represents participation or involve-
ment from the VMM, as to provide emulation, inject
an interrupt into the guest’s OS, or any other instruc-
tion requiring the external help of KVM. As explained in
section ‘Hypervisor’, CPU transitions between non-root
and root are instrumented with tracepoints kvm_entry
and kvm_exit respectively. When a kvm_exit event
is reached, the vCPU’s state is set to VMM (transition 2).
On the other hand, it leaves this state on a kvm_entry
event, returning to the state it was in prior to the ’s
involvement (transition 1). This state serves as an interme-
diate between any two states, as hypervisor cooperation is
required for QEMU threads scheduling.
We also noticed that this state is reached everytime a

QEMU thread is involved in a context switch, i.e., when
a vCPU is scheduled out of a pCPU. Interestingly, when
a QEMU thread is selected by the scheduler to run again,
it first executes in the VMM state before explicitly invoking
the vmentry instruction to give control to the guest’s OS.
This procedure is required because KVMneeds to execute
specific operations related to the Virtual Machine Control
Structure of the VM. KVM uses Linux’s notifier chains to
“register” on context switches involving a vCPU. When a
vCPU reaches this state, its current thread’s status is set to
PROCESS_VIRT_PREEMPTED, which designates wasted
time due to the virtualization layer (we see it as preemp-
tion to execute hypervisor code, the thread is marked as
“virtually preempted”).

RUNNING
RUNNING shows execution of the VM’s code.When in this
state, a virtual CPU is considered as running without any
involvement from the hypervisor, and instructions dedi-
cated to a specific vCPU are running directly on one of

Figure 3Merged traces without synchronization.
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Table 2 Virtual Machine Analysis Color legend

Color State

Green Running

Yellow Blocked

Orange Preempted

Grayed out green PROCESS_VIRT_PREEMPT

the host’s pCPUs. For this state to be reached, two condi-
tions must be satisfied. First, the QEMU thread emulating
a vCPU must be in a running state on the host operating
system. Secondly, in the guest operating system, the CPU
associated with the specified QEMU threadmust be in the
running state as well, meaning that any process other than
the idle task (swapper) is executing on the CPU.

IDLE
IDLE represents a state when a vCPU is not executing
any code, and thus voluntarily yields the physical CPU.
This state is reached when the QEMU thread emulating a
vCPU is scheduled out of a pCPU, and if no thread other
than the idle task is scheduled to run on this vCPU
in the guest OS (transition 4). On Linux, the purpose of
swapper (the idle task) is to invoke the scheduler to
choose potential threads ready for execution, or to halt the
CPU in case no thread is ready to run. The vCPU goes
out of this state as soon as the thread emulating it gets
scheduled back on the host (transition 3).

PREEMPTED
PREEMPTED is the state that indicates direct latency to the
execution of a virtual machine. This state is reached when
a vCPU is scheduled out of the pCPU by the host’s sched-
uler (transition 5), while the vCPU was effectively serving
a thread. Note that the running process on the vCPU
stays in the PROCESS_VIRT_PREEMPTED state, which
indicates that the vCPU on which the thread is running
was preempted on the host operating system. Usually, this
kind of information is not visible to a virtual machine,
though it directly impacts the completion time of a task by
introducing delays throughout the execution. As a result, a
task may seem to complete in much longer than the effec-
tive time during which it was running. When scheduled
back in (transition 6), the vCPU passes by the VMM state

again to finally reach the RUNNING state and resume VM
code execution.

Illustrative example
We launched a thread that computes a Fibonacci sum
on what appeared to be an idle virtual machine. The
computer used was an Intel i7 (Nehalem) with 4 hyper-
threaded cores (8 logical CPUs), 8 GB of RAM, 1 TBHDD,
and running Debian GNU/Linux. Using top, no CPU-
intensive thread was reported in the VM, and the steal
time column showed a 0% vCPU preemption. Figure 6
shows the state of the Fibonacci task (thread fibo) as
seen from the guest operating system. This view shows a
monopoly of the CPU and a 100% utilization by the fibo
task for the whole duration of the trace. This state has
been reconstructed by processing only the trace recorded
on the guest.
Figure 7 shows the result of our analysis module for

the same experiment, after the host’s and guest’s traces
merging and synchronization. We notice that vCPU 0
of the “Debian” VM is constantly transitioning between
states RUNNING (green) and PREEMPTED (purple). With
proper zooming, we can see VMM state as an interme-
diate for every transition. These transitions have direct
repercussions on the execution of the fibo task, which
is in turn moving between states RUNNING (green) and
PROCESS_VIRT_PREEMPTED (grayed out green). With
a quick look at the graphical view, we can see that the
Fibonacci sum could potentially execute approximately
twice as fast on a fully available pCPU, or less loaded host
system.
The reason why top reported a 0% vCPU preemption

(steal time), before starting the Fibonacci task, is because
the vCPU was mostly idle. As a result, when it asks for
CPU time, its request is immediately answered by the
host’s scheduler as it has the “highest priority” due to its
idle nature. We can see that using such a tool to mea-
sure resource availability can actually be misleading. The
only way to detect vCPU preemption using top would
be to actively monitor the steal time while running the
Fibonacci task.

Execution flow recovery
We now reach the second part of the analysis, which is to
reconstruct the execution flow for a specific task of one of
the virtual machines. The execution flow with regard to

Figure 4Merged traces with synchronization.
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Figure 5 vCPU state transitions.

a certain task A is defined as the ordered set of execution
intervals of all the tasks affecting the completion time of
A. The purpose of the execution flow is to show detailed
information about the execution of a certain thread as well
as its interactions with other threads.
In the scenario shown in Figure 8, the execution flow

is computed with regard to task A. The timeline shows
the start and the end of the lifespan of this task, thus the
analysis is time-bounded. In this example, it is clear that
task A yields the CPU to allow execution of other tasks B
and C. The scheduler then selects A after a certain amount
of time, letting it complete its execution. Therefore, the
completion of A was affected by the execution of B and C.
When flattened, the execution intervals of all the threads
form one continuous execution interval which represents
a busy CPU for the duration of the trace. Although this
kind of information could be vaguely suspected from top-
like tools, this level of detailed information is necessary for
an advanced analysis of latency sources.
For a task executing inside a virtual machine, the com-

putation of the execution flow should be adjusted to take
into consideration interactions between different operat-
ing systems through the usage of shared resources. The
objective of such an analysis is to provide detailed infor-
mation not only about the execution of a certain task,
but also about its interactions with other threads, whether

they belong to the same VM, the host, or even a differ-
ent VM.With such information, major causes of overhead
can be easily tracked down by the host’s administrator, and
adjustments can be made to resolve the issues. Recovering
the execution flow comes down to tracking all preemption
events involving A. Causes of preemption can be within
the same operating system and thus easier to investigate,
or from a different systemmaking them almost completely
hidden. In this section, we show that the execution flow
recovery can be computed simply by querying the state
system for key attributes modifications, without having to
read the trace again.

Implementation
In this section, we call A the thread around which
we want to recover the execution flow. The first step
of the algorithm is to find all the entries involved in
the execution flow according to task A. In Figure 8,
each of tasks A, B and C represents an entry. First, all
the threads of all the systems are inserted as entries
in the execution flow. This list of all the threads
across systems can be recovered by parsing through
attributes “/Virtual Machines/*/Threads/*”
and “/Host/Threads/*” in the SHT. The second step
of the algorithm is to compute the execution intervals
of each entry with regard to task A. As a final step,

Figure 6 View of Fibonacci experiment with traditional analysis.
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Figure 7 View of Fibonacci experiment with virtual machine analysis.

we remove the entries that have minimal or no impact
on the analyzed thread according to a minimal impact
threshold. The selection of the threshold doesn’t affect
the computing time of the algorihtm, as it is performed
only after the whole algorithm has executed and all
the durations have been computed. The impact of each
thread can be measured using Equation 3, as explained in
section ‘Investigation of execution anomalies’.
To respect the relationship of affiliation between a

thread and its system (host or VM), entries are stored in a
tree-like structure with a depth of 2, where each node on
the first level represents a system, and its children on the
second level represent its threads.
As mentioned earlier, the execution flow can be rep-

resented with an ordered list of intervals, where each
interval contains a start time, end time, a state, and the
TID of the thread executing for the said interval. Algo-
rithms 1 and 2 explain how this list can be built, recovering
the execution flow with regard to task A.
Algorithm 1 is used to insert all intervals of A holding

the “RUNNING” state. As a first step, we query the SHT
to retrieve all modifications to the “Status” attribute of
thread A. The SHT returns a list of intervals for differ-
ent values of this attribute. Algorithm 1 parses this list

and each interval holding the “RUNNING” state is directly
inserted in the result list. However, for each inter-
val holding the “PREEMPTED” value, a separate function
is invoked to find which thread is preempting A. This
function is shown in Algorithm 2.

Algorithm 1: Recovering the execution flow: inserting
intervals in the RUNNING state
Input: StateHistoryTree s
List result; // the list of execution intervals
StatusIntervals intervals = Query status intervals of A
from s;
for each interval in intervals do

currentPCpu = Query current pCPU of A;
if interval.state == RUNNING then

result.insert(interval);
else

result.insertAll(resolve(s, interval,
currentPCpu));

end
end
return result;

Figure 8 Simple example of an execution flow.
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The resolve function requires an interval as well as
a pCPU Id as input values. The work done by this rou-
tine is to find which threads are running on the pCPU for
the duration of the interval. In the case where the running
thread is the vCPU of another VM, this function will then
query the state system to get the running thread inside this
VM. Once the running thread preempting A is deduced,
it is returned to Algorithm 1 which will insert it in the
result list.

Algorithm 2: Function resolve(): Querying the
state history tree to get the running threads while A is
preempted
Input: interval
Input: pCpu
Output: outList
start = interval.start;
end = interval.end;
ThreadIntervals = Query “Current Thread” intervals
of pCpu between start and end;
for each interval t in ThreadIntervals do

if t.tid is a vCPU then
intervals = Query “Current Thread” intervals
of t between t.start and t.end
outList.addAll(intervals);

else
outList.add(t);

end
end
/* All intervals inserted in outList are in RUNNING
state */
return outList;

Finally, in the result list returned by Algorithm 1,
each interval “interval” of the list respects the follow-
ing rules:

prevInterval.end = interval.start − 1
interval.end + 1 = nextInterval.start

Where prevInterval and nextInterval are
respectively the previous and next intervals of interval
in the ordered list result from Algorithm 1.

Use cases
This section shows how our work can be used in real-life
cases to investigate latency in virtual machines. We start
with a follow-up on the Fibonacci example introduced ear-
lier (section ‘Follow-up on the Fibonacci Case’). We then
present different use cases that show either how to inves-
tigate a known issue (section ‘Investigation of execution
anomalies’), or a general analysis to verify normal exe-
cution of the system as a whole (Investigating a residual
timer).

Follow-up on the Fibonacci Case
Figure 7 showed that the Fibonacci took longer to execute
due to preemption of the vCPU on which it was running.
We follow-up on the matter by recovering the execution
flow of the experiment. Figure 9 shows the result; we can
see that the preemption is due to a single CPU-intensive
process on the host called burnP6.

Investigation of execution anomalies
We now show a use case of a performance issue
which can be easily tracked down using our graphi-
cal views. We developed a CPU-intensive task, named
critical_task which computes for approximately
280 ms. A script spawns a critical_task thread in
a periodic fashion, asynchronously every second (without
waiting for completion). We traced the host and the guest
operating systems simultaneously. Figure 10 shows only
the guest’s trace over 7 seconds, for 7 critical_task
threads. We can see the rate of thread forking at one
thread per second. However, executions 3, 4, 5 and slightly
6 (threads 3523, 3525, 3527 and 3529) show abnormal
computing duration although they appear as running
(green) without interruption.
We then merged and synchronized kernel traces, and

used our first graphical view to analyze the execution,
as shown in Figures 11, 12 and 13. In Figure 11, the
vCPU 0 line shows transitions between states IDLE (gray)
and RUNNING (green) which indicates that the VM is
mostly idle, except when critical_task threads are
spawned. Additionally, still by looking at the vCPU 0
line, we can clearly see vCPU preemption (purple) for
executions 2, 3, 4 and 5. These vCPU preemptions trans-
late into unexpected latency on threads 3523, 3525, 3527
and 3529, as shown by their respective lines in the view

Figure 9 Execution flow recovery of previous Fibonacci experience.
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Figure 10 Execution of a periodic task as perceived by the VM. In some cases, the execution inexplicably takes longer to compute although the
task appears as running.

(greyed out green). This is an indicator that the VM is
not allocated enough CPU time by the host’s scheduler,
which is time slicing the pCPUmore or less equally among
the host processes. We also notice that vCPU0 of the VM
Ubuntu woke up from the IDE state into the RUNNING
state for this period of time, which might be the rea-
son for the latencies on the critical tasks running in VM
Debian. Figure 12 shows the state of two vCPUs of differ-
ent virtual machines, respectively Debian andUbuntu. For
simplicity reasons, the Figure shows only the timeframe
for the lifespan of critical_task with PID 3525. The
Figure suggests that these two vCPUs are complimentary
in their execution, as when one of them is running, the
other one is preempted. This is a strong indicator of a
shared resource between these two vCPUs. Moreover, the
Figure also shows that both vCPUs are simultaneously
being preempted for small amounts of time, which sug-
gests that another thread, outside of the scope of these
VMs, is also competing over the same resource. Figure 13
is a magnified view of Figure 11 over the lifespan of
critical_task 3525, showing how the preemption of
vCPU0 is perturbating its execution.
Finally, as a last step, we recovered the execution flow

to investigate the source of this latency. The result is
shown in Figure 14. The execution flow is centered

around thread 3525, which seems to be the execution of
the critical_task with the most latency. For clar-
ity reasons, we only show a part of the lifespan of the
critical_task. The view shows that the pCPU is
shared amongst three operating systems: Debian (the VM
in which the critical tasks are running), Ubuntu (which
is another virtual machine) and the host. We notice
that threads burnP6 from the host and cc from the
Debian VM both strongly preempt the critical task, which
explains its excessive duration. The “Duration” column
shows the duration of the preemption of each process
for the lifespan of thread 3525. For system entries (non-
leaf nodes), the “Duration” number indicates the sum of
all their threads, ie. the time for which the whole system
preempted the analyzed task.
We can see that the critical task ran for 274 ms (as

expected, however it was over a longer period), the
Ubuntu virtual machine ran for 270 ms and the host ran
for 260 ms. These numbers indicate approximately a 33%
usage of the CPU for each system, which indicates that
the pCPU is strongly shared amongst them. Moreover, we
see that process irq/46-iwlwifi executes for 296 us,
indicating heavy network usage and packet processing.
For each thread T , the proportion of time for which it

preempted A is computed using Equation 3, where Tout is

Figure 11We can see that the vCPU on which the critical task is running is actually being preempted on the host, which impacts the
execution of the running thread.
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Figure 12 vCPU0 of Debian and vCPU1 of Ubuntu are taking turns in exection, which indicates competition over a shared resource. The
figure also shows some timeframes in which both vCPUs are preempted, most probably by a different thread on the host system.

the timestamp indicating a scheduling out and Tin is the
timsetamp indicating a scheduling in.

D(T) =
∑A.end

A.start Tout − ∑A.end
A.start Tin

A.end − A.start
(3)

Investigating a residual timer
We now present a use case that helped us investigate an
unexpected operating systems problem. Figure 15 shows
the result of our analysis for a workload similar to the one
presented in the previous use case (section ‘Investigation
of execution anomalies’). We first see that the analyzed
task is sharing the CPU with threads cc from the VM
“Ubuntu” and burnP6 from the host. However, for the
second half of the analysis, the ciritcal task is being pre-
empted by swapper, the idle task, from “Ubuntu”. Such
a behavior seems problematic as control is taken away
from the analyzed thread to serve an idle thread. With
a quick look at the trace when swapper is scheduled,
we noticed events indicating the expiration of a timer. It
turns out that a periodic timer was scheduled in the virtual
machine, which would require CPU time for a very short
period to acknowledge each timer expiration. This behav-
ior introduces significant overhead as context switches are
somewhat costly on the host system. We clearly see the
use of such an analysis specifically for virtualized systems.
While acknowledging an expired timer on an idle phys-
ical machine only consumes a few CPU cycles and little
energy, it is muchmore costly in a virtualized system since
it generates a context switch on the host. To sum up this
example, we saw how a “forgotten” timer in one virtual

machine can affect the execution of others. Such a prob-
lem can be easily fixed by the system administrator once
it is located.

Flexibility and portability
Throughout this project, we set different constraints to
ensure for a portable and flexible solution to our initial
problem. First, we used the State History Tree as an
abstraction for the traces. The SHT not only delivers per-
formance enhancement for event querying in the trace
[15], but allows to dissociate the analysis step from the
trace itself. In other words, multiple trace parsers can
be used to handle the kernel traces, regardless of the
operating system on which they were recorded, or the
tracer used, as long as the trace format is open. As long
as the backend used for trace representation is the SHT,
and given that the required events are reported in the
trace, our proposed algorithms will produce the expected
results, which accounts for both portability (independant
from the OS) and flexibility (independant from the tracers
and trace formats). It is worth mentioning that although
we used LTTng as a kernel tracer for this project, any
other kernel tracer could have been potentially used as
long as a trace parser is available.

Moreover, as we explained in previous sections,
although a TSC-based approach for trace synchronisation
is potentially simpler to use under certain conditions, the
TSC is an x86-specific CPU register. Using a higher-level
algorithm such as the fully incremental convex hull algo-
rithm provides portability to the synchronisation solu-
tion. And, although using hypercalls as a communication

Figure 13Magnified view of the execution of critical_task 3525.
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Figure 14 Execution flow recovery of problematic critical_task.

mechanism between the host and its guests is specific to
hardware virtualization, any pair of events across systems
with a causality relation can be a potential replacement,
such as network packets exchange.
Finally, it is worth mentioning that the only KVM-

specific tracepoints are kvm_entry and kvm_exit,
which represent VMX mode transitions. Since these
transitions are common to all hypervisors supporting
hardware-assisted virtualization, our approach is there-
fore not specific to KVM. And, although these trace-
points are already included in Linux’s source tree, they
can be added in any hypervisor by simply instrument-
ing all calls to vmentry and vmexit instructions which
requires very little effort, thus allowing this model to be
used with any hypervisor. Moreover, if the administrator
chooses not to instrument these transitions, little infor-
mation would be lost, as the only state lost in Figure 5
would be VMM. Preemption and execution recovery would
still be possible with little analysis precision lost (hyper-
visor involvement would account as effective CPU time
instead of overhead due to virtualization). Furthermore,
kernel traces generated from other operating systems
can be used as well with minimal effort. As long as the
events required to cover the FSM presented in section

‘Multi-level trace analysis’ are available, the model can be
ported by simply specifying the names of these events.
Moreover, in the case of microcomputers without hard-
ware virtualization, the synchronization approach could
potentially be extended to any other type of communica-
tion between the guest and the host, such as a TCP packet
exchange. The rest of the analysis is based on the state sys-
tem built, and thus does not depend on the details of the
underlying traces.

Conclusion
Cloud computing and virtualization are evolving at a rapid
pace. These emerging technologies created a need for
analysis tools that can live up to the technological advance.
In this paper, we showed that kernel tracing can be used
to analyze the execution of virtual machines under such
conditions. We first proposed an approach to resolve the
problem of clock drift and offset between operating sys-
tems. We then showed how the merged traces can be
processed to rebuild the state of the virtual machines,
as well as their vCPUs, throughout the trace. Finally, we
explained how the execution flow with regard to a cer-
tain thread can be rebuilt for an in-depth analysis of
its execution and interactions with other systems. All

Figure 15 Execution flow recovery of problematic critical_taskwith a periodic timer in another VM.
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the solutions proposed in this paper were designed with
requirements of portability and flexibility in mind. As a
result, all the approaches explained are portable across
operating systems, computer architectures, and comple-
mentary software (tracer and hypervisor).
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