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Abstract

Background: Common methods for confounder identification such as directed acyclic graphs (DAGs), hypothesis
testing, or a 10 % change-in-estimate (CIE) criterion for estimated associations may not be applicable due to (a)
insufficient knowledge to draw a DAG and (b) when adjustment for a true confounder produces less than 10 %
change in observed estimate (e.g. in presence of measurement error).

Methods: We compare previously proposed simulation-based approach for confounder identification that can be
tailored to each specific study and contrast it with commonly applied methods (significance criteria with cutoff levels of
p-values of 0.05 or 0.20, and CIE criterion with a cutoff of 10 %), as well as newly proposed two-stage procedure aimed at
reduction of false positives (specifically, risk factors that are not confounders). The new procedure first evaluates potential
for confounding by examination of correlation of covariates and applies simulated CIE criteria only if there is evidence of
correlation, while rejecting a covariate as confounder otherwise. These approaches are compared in simulations studies
with binary, continuous, and survival outcomes. We illustrate the application of our proposed confounder identification
strategy in examining the association of exposure to mercury in relation to depression in the presence of suspected
confounding by fish intake using the National Health and Nutrition Examination Survey (NHANES) 2009-2010 data.

Results: Our simulations showed that the simulation-determined cutoff was very sensitive to measurement error
in exposure and potential confounder. The analysis of NHANES data demonstrated that if the noise-to-signal ratio
(error variance in confounder/variance of confounder) is at or below 0.5, roughly 80 % of the simulated analyses
adjusting for fish consumption would correctly result in a null association of mercury and depression, and only an
extremely poorly measured confounder is not useful to adjust for in this setting.

Conclusions: No a prior criterion developed for a specific application is guaranteed to be suitable for confounder
identification in general. The customization of model-building strategies and study designs through simulations
that consider the likely imperfections in the data, as well as finite-sample behavior, would constitute an important
improvement on some of the currently prevailing practices in confounder identification and evaluation.
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Background
In the practice of epidemiology, researchers identify con-
founders theoretically or empirically. Theoretical identi-
fication is generally carried out through use of directed
acyclic graphs (DAGs) [1]. While the use of DAGs has
many virtues (such as explicit declaration of hypotheses
and theoretical analysis that can guide model-building in
a manner that increases the possibility of empirically
estimating causal association), they are subjective inter-
pretations that reflect an investigator’s belief of how the
world works, and does not necessary reflect how the
world actually is [2]. As such, relying on theory alone for
confounder identification is perilous: if we knew all
causal relations of interest and could draw perfect
DAGs, then there would be no need to empirically iden-
tify the confounders.

We focus specifically on a problem of identification of
a true structural confounder present in data-generation
process, i.e. a variable that would still be a cofounder if
sample size was infinite, from a finite sample situation
that can give rise to confounding by chance. Structural
confounding is to be contrasted with confounding that
arises by chance in finite samples. Such confounding by
chance can be due to an association between a variable
with an outcome, when such a variable is independent of
exposure in population but not a sample. In such situa-
tions, it is important to be able to realize that confound-
ing is a quirk of a finite sample, even if “controlling” for
covariate in a regression model has measurable impact on
exposure-outcome association. In essence, not every vari-
able that has influence on the magnitude of exposure-
outcome association in a finite sample is a structural
confounder, and vice versa. It is important to correct
exposure-outcome association for the peculiarities of the
finite sample but one has to be cautious about generaliz-
ing that any variable identified in such a manner is a struc-
tural confounder rather than and “incidental” confounder.
Distinguishing between the two types of confounding is
helpful for understanding how factors under study inter-
related in the population since it is the valid inferences
about the population that drive application of epidemi-
ology to policy. We attempt to address this issue in our
work. However, it seems prudent to reiterate before any
further analysis that it is sensible to include all know risk
factors in any regression analysis of exposure-outcome
association in epidemiology in order to guard against con-
founding by chance: application of DAG methodology can
be most helpful in this regard because it allows to codify
what is already known about the problem. Conceptually,
any model fitted to the data has to reflect our understand-
ing of the phenomena under study and that includes what
we know already (factors forced into the model) and what
we hope to learn from the data (factors that are tested the
model). Thus, we always adjust risk of cancer for age and
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risk of autism for sex, because to do otherwise amounts to
making a statement about data-generating mechanism
that is known to be wrong.

Empirical confounder identification is useful when the
true causal relations between the exposure, outcome,
and a set of potential confounders are unknown. This is
typically carried out with significance criterion, e.g., a p-
value cutoff (<0.05 and 0.2 are commonly used) for the
association between a potential confounder and out-
come, or a change-in-estimate (CIE) strategy, e.g., a
>10 % CIE of the effect of exposure between models that
do and do not adjust for the potential confounder [3, 4].
Practitioners of these approaches often cite papers by
Mickey and Greenland [3] or Maldonado and Greenland
[4]. However, even while these authors never advocated
CIE practice for all data situations, it is not uncommon
to see authors in the literature employing subjective a
priori CIE cutoffs in the same manner as they might do
with p-value significance testing, despite evidence that
fixed CIE cutoffs result in unacceptable type I and type
II error rates in many circumstances [5, 6]. Simulation-
based CIE that are customized to each application and
are meant to have pre-specified type I error rates were
recently proposed [5]. The inevitable measurement error
in covariates further complicates confounder identifica-
tion in practice [7] as does latent confounding, the ex-
treme case of miss-measured confounder. The topic of
latent confounding has been addressed extensively with
excellent proposal for analytical treatment, e.g. see [8, 9]
for review.

Accurate knowledge of measurement error magnitude
and structure is sometimes lacking in epidemiology. How-
ever, in large-scale and well-conducted epidemiological
studies, researchers have to make use of measurements
with known error (obtained in validity and reliability stud-
ies) to achieve the required sample size and to reduce par-
ticipant burden, for example self-report of dietary intake
instead of a blood test [10—13]. The effects of measure-
ment errors in exposures and confounder on the per-
formance of different confounder identification criteria
are unknown, although insights exist on bias and vari-
ability of estimates in such cases, albeit with closed
form solutions currently for linear regression only [14].
When measurement error is not known exactly, re-
searchers may still conduct sensitivity analysis to see
how choice of confounder identification strategy may
bias the results; we illustrate this in the applied ex-
ample in this paper. There may be a range of plausible
measurement errors magnitudes that has negligible in-
fluence on confounder identification strategy. It is also
important to know that epidemiologists always have
some intuition about the accuracy of their tools and are
aware that most are imperfect, otherwise they would
not be able plan their work at all.
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The primary aim of removing cofounding from the esti-
mate of exposure of interest on the outcome is to obtain
unbiased estimate of the degree of exposure-outcome
association that can be useful in risk assessment. This is
indeed the conceptual foundation of CIE approach that
proposed cut-offs on the order of 10 % as these were
judged to be reflective of what can be reliably inferred in
observational epidemiology given limitations of the data.
From this perspective, it also acceptable to force all poten-
tial covariates into disease model so long as they are
suspected as potential confounders and can be ruled out
as factors that should not be adjusted for (e.g. mediators,
antecedents of exposure alone, etc.) on the basis of theor-
etical analysis (e.g. implemented via DAG). This is so
because if regression-based adjustment has negligible ef-
fect on estimate of interest, there is equally no harm in
the adjustment so long as the model is not over-fitted.
However, there is also virtue in understanding whether
there is evidence that a specific factor is a confounder, e.g.
in cases where such a factor is “costly” to assess and one is
planning future work on a particular topic and wishes to
optimize study protocol. In recognition of importance of
accurate estimate of causal effects in epidemiology, rather
than hypothesis testing, we also consider influence of
different confounder-selection strategies on accuracy of
the estimate of the exposure-outcome association.

Here, we illustrate a mixed approach for confounder
identification utilizing both theoretical and empirical cri-
teria that accounts for the realistic role of measurement
error in the exposure and putative confounder, along the
lines suggested by Marshall [15]. While using both theor-
etical and empirical criteria for model selection has been
proposed [16], we provide a simulation-based framework
that evaluates the performance of various empirical cri-
teria. We also address the issue of confounding by a risk
factor by chance in finite sample by proposing a modifica-
tion on the previously proposed simulation-based CIE
approach. Next, we demonstrate the application of CIE
criteria in a real-world study of mercury and depressive
symptoms, and where theory can be injected into the
process to optimize causal inference.

Methods

Empirical confounder identification strategies

Overview

Five strategies were used, namely significance criteria with
cutoff levels of p-values fixed at <0.05 and 0.2 (in which a
putative confounder is adjusted for if the p-value of the ¢-
test of the null hypothesis testing its effect on outcome
equals zero is smaller than the cutoff levels), and CIE
criterion with three different cutoff levels (fixed a prior at
10 %, with type I error controlled to a desired level, and
with type II error controlled to a desired level). The ob-
served change in estimate due to covariate Z is calculated
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as A=|(6p — 02)/(6p)|, where 6, is the effect estimate of
interest not adjusted for suspected confounder Z and 0 is
the effect estimate adjusted for suspected confounder Z.
When CIE approach is used, a covariate Z is included in
the final model if its inclusion in regression model pro-
duces A = §,, where J, is 0.1 in the 10 % CIE approach, or
d. is determined by simulations as described below. We
will describe simulation-based CIE approaches in more
detail below, as well as pre-screening aimed to reduce
confounding by a risk factor by chance.

Simulation-based change in estimate (CIE) approach

As a way of improving on an empirical approach with
criteria fixed a prior, we previously proposed a simulation-
informed CIE strategy [5] that performs better in con-
founder identification and causal effect estimation [17]. In
brief, the simulation-informed CIE criterion determines
change in the effect estimate of interest that arises when
the exposure of interest is adjusted for an independent
random variable. With this approach, an independent
random variable with the distribution identical to the
observed putative confounder is drawn and the causal ef-
fect estimates of the exposure and outcome adjusting and
not adjusting for this independent random variable are
obtained. Next, we record the change-in-estimate that
results from adjusting this independent random variable.
The above procedure is repeated and the resulting distri-
bution of changes in effect estimates upon adjustment
indicates where we need to place a cut-off for the CIE cri-
terion in order to achieve the desired type I error, e.g. for
5 % error the 95 %-percentile of the distribution is used.
One can also adopt a CIE criterion with a desired type II
error. To do so, one repeatedly simulates a variable with
particular correlations with the exposure and outcome,
and compares the CIE from models that do and do not
adjust for this simulated confounding variable. Using the
sth-percentile of the simulated CIEs as a cutoff could yield
a type II error of 1-s. In our simulations, we focus on
selection of these two CIE cutoffs. In the next section, we
describe this procedure in more detail, infusing it with
consideration of measurement error.

Screening potential structural confounders

In preliminary investigations, application of simulated CIE
approach resulted in an unacceptably high rate (e.g. 50—
80 % in some instances) of identification of a risk factor as
a structural confounder when it was in fact not correlated
with exposure of interest in the population (i.e. by data
generating process). We identified correlation of exposure
and covariate in finite samples as the culprit of this artifact
and developed a screening step that evaluated correlation
of exposure and putative confounder before evaluating it
further via the five strategies described above. Specifically,
only if the hypothesis that the observed exposure and
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covariate were not correlated was rejected, then the covar-
iate was considered further in the identification of struc-
tural confounding. On the other hand, if the hypothesis
that the observed exposure and covariate were not corre-
lated was not rejected, then the covariate was excluded
from further evaluation in the identification of structural
confounding.

Simulation study: overall framework and method of
analysis

In specific simulations that we undertook, we assumed
that (a) the exposure is associated with the outcome and
(b) the putative confounder is indeed a confounder by
virtue of its association with both exposure and the out-
come (but not the descendant of them). As in many
real-life situations, the exposure and confounder are
measured with error: for simplicity, we focus on additive
classical measurement error models with uncorrelated
errors (but our simulation framework can readily be
amended to accommodate more complex situations).

The disease model that was considered in our investi-
gation was of the form g(Y) = « + fX + yZ, with g() repre-
senting the link function of the generalized linear model,
the fixed effects a (background rate or intercept), 5 (in-
fluence of exposure X on outcome Y), and y (influence
of covariate Z on outcome Y). The regression coefficient
B is only identical to true value of the effects of interest
in linear regression but for logistic and Cox proportional
hazard regression, the effects of interest is calculate as
relative risk (RR) and hazard ratio (HR), respectively.
We denote these true effects of interest as 6 for
generality.

We assumed that we can only observe realizations of
true exposure and confounder with classical additive
measurement error models X =X +¢, and Z =Z+¢,
the error terms are unbiased and independent of each
other. The estimates of regression coefficients 5 from (Y]
X, Z") data with and without adjustment for Z" are de-
noted by S and f3, respectively. These regression coeffi-
cients can be used to calculate estimates of the effect of
interest 6 as 8., and 6, with and without adjustment, re-
spectively; the superscript “” denotes variables and esti-
mates contaminated by measurement error.

The screening test for Pearson correlation of X and
Z being different from zero used p<0.05 cutoff. The
datasets where covariates Z were not rejected are eval-
uated using the simulated CIE cutoff calculated as
follows.

The simulated CIE cut-offs in presence of measurement
error are determined by comparing effect estimates relating
X" to Y with and without adjusting regressions of ¥ on X"
for an independent random variable Z, with distribution
identical to that of Z  over K simulations. Let us denote
such effect estimates, functions of regression coefficient, as
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0p when unadjusted coefficient is used, and as 0,
when the adjusted coefficient for Z, (not the same as
adjusted for Z) is used in the kX simulation. Then, the
changes in the estimates in each simulation are then
calculated, in general, as

o = |(90*k— ezo*k)/(ao*kﬂ

and the g™ percentile of §; determined over K simula-
tions the cutoff for CIE that would lead to a type I error
of 1-g, i.e. 6. The CIE that is simulated to achieve de-
sired type II error can be obtained in a similar manner,
with the independent random variable Z, replaced by a
random variable correlated with X" and Z" according to
the simulation setting (i.e. under the assumption that we
guessed correctly the true nature of associations in data-
generating process), and the s™ percentile of § deter-
mined over K simulations the cutoff for CIE that would
lead to a type II error of s. As with all power calcula-
tions, this requires an informed guess of the structure
we aim to detect and is therefore the more difficult cri-
teria to establish objectively (e.g. we do not know true
value of all the correlations from the data contaminated
by measurement error) as opposed to the one that
strives to control type I error.

Simulation study: the specific scenarios

Our example synthetic data scenario features an out-
come Y and three different types of outcome were gener-
ated, namely binary (with the disease prevalence at
follow-up of 10 %), continuous (with a variance of 1),
and survival (with the death rate at follow-up of 10 %).
The exposure X and true confounder Z both simu-
lated to follow standard normal distributions, Z is as-
sociated with both X (via Pearson correlation p z0)
and Y (y#0). The binary, continuous, and survival
data were generated and fitted using a logistic model
(In(P(Y=1)/P(Y=0) =In(1/9) + BX + yZ)), a linear model
(Y=pX+yZ+e¢, &,~N(0, 1)), and a Cox model (survival
time ~ exp(SX + yZ-min(SX + yZ)), censored at survival
time > 0.1), respectively. The survival times were gener-
ated as follows: (1) mean survival time for all subjects
equaled BX +yZ, (2) the aforementioned means survival
times were linear transformed to make then all positive by
subtracting the minimum value of (X +yZ), (3) the
survival time for each subject was generated to follow an
exponential distribution with rate parameter equal to
mean survival time from step (2), (4) survival times were
censored at a value of 0.1 so that the outcome was ob-
served in only 10 % of subjects.

In illustrating the kind of information that this tool
can yield, we obtained N = 10,000 simulation realizations
of a cohort study (yielding a standard error of 0.5 %) of
either n =500 or 2,000 subjects, with pe{0.1, 0.2, 0.3, 0.4,
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0.5, 0.6, 0.7, 0.8, 0.9} and the true causal associations of
X-Y and Z-Y with f=y =0.1, as well as a situation in
which exposure of interest is measured with smaller
error than or equal to the putative confounder, i.e. €, ~
N(0, 62€{0.25, 1}) and &, ~N(0, 62€{0.25, 1}). We used
K=10,000 to determine simulation-based CIE for each
combination of parameters defined a simulation frame-
work above.

In each n” simulation realization (1, ..., N), when
screening potential confounders, we evaluated Pearson
correlation of X and Z° (pf,) and rejected Z" as potential
confounder when p-value of the null hypothesis p, =0
was larger than 0.05. In such instances, final model se-
lected excluded Z". If Z" remained in contention for
role of structural confounder after the screening text,
we next estimate the effects of X on Y in simulated
datasets by

(a) fitting a regression model appropriate for each
outcome with X" as an independent variable and Y
as the dependent variable (i.e., do not adjust for Z),
resulting in estimate of effect of X on Yas 6, which
is a function of S, and

(b) fitting a regression model appropriate for each
outcome with X and Z” as independent variables
and Y as the dependent variable (i.e., adjust for Z°),
resulting in estimate of effect of X on Yas 0y,
which is a function of Sz

Effect estimate and p-values resulting from these
models of the #n” simulation realization are compared
and, depending on the confounder selection rule that
was triggered, the final estimate of the effect of X on Y
in that particular simulated dataset was computed by
either model (a) or (b).

We also calculated root mean squared error (RMSE)
of effect

, where in the n™ simulation (n € {1,...,N}) ¢, = 6%, if
the confounder identification criteria suggested an ad-
justment, and ¢, = 05*, otherwise; recall that 6 is the
true value of the effect estimate set by simulation.

All simulations were carried out using R 3.2.0. The R
code we provide allows one to test various CIE cutoffs
in order to determine the percentage of the simulated
datasets correctly identifying Z* as a confounder or ef-
fect of X" as significant, as well as RMSE resulting from
model selected after application of each confounder-
identification strategy (Additional file 1).
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Application to study design to clarify role of a
confounder in NHANES

We illustrate the application of our approach in an ex-
ample arising from an earlier analysis of exposure to
total blood mercury (E) and depression (D) in 6,911
adults aged >40 years in the National Health and Nutri-
tion Examination Survey (NHANES) 2009-2010 [18] ap-
proved by The National Center for Health Statistics
Research Ethics Review Board; informed consent was
obtained from all participants at the time of data collec-
tion and further consent for specific analyses of this
publically available data is not needed. The dataset can
be downloaded at http://wwwn.cdc.gov/Nchs/Nhanes/
Search/nhanes09_10.aspx.

Contrary to an expected null association between ex-
posure and outcome, a nonsensical inverse (protective)
association was reported and the original investigators
argued that this was probably due to measurement error
leading to residual confounding by fish consumption (F)
[18]. That study assessed the binary recall of fish con-
sumption in the 30 days prior to data collection (F).
This variable does not demonstrate statistical properties
that support its inclusion as a confounder in the final
model because (a) p-value for F,; in the logistic regres-
sion model =0.82, and (b) inclusion of F,, the final
models does not affect the observed RRgp | pops = 0.83
(ORgp | pobs = 0.79) of depression due to mercury to the
third decimal place. Nonetheless, it is important to note
that our preliminary test for potential confounding would
not have rejected F,, from the final model because there
is evidence that it is correlated with exposure to mercury,
albeit “weakly”: Pearson correlations of 0.39 with mercury
exposure (95 % CI 0.37-0.41, p< 0.05). Furthermore, given
the established effects of habitual fish consumption F on
blood mercury E [19] and depression D [20], Ng et al. [18]
suspected that F is a confounder of association of total
blood mercury with depression (see Fig. 1 for the DAG of
the causal association), and that the pattern of results
arose because F,, is a poor measure of unobserved F.

Let us suppose that in the course of future research
we have a particular method of measuring fish consump-
tion (W) with a known degree of measurement error
that may prove to be superior to F,. It is important to

Habitual fish consumption

Blood mercury Depression

Fig. 1 Direct acyclic graph of the causal effect between blood mercury
and depression
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note that we do not wish to use F,, in the new research
project with the same sample: it yielded what we believe
to be confounded estimates and the motivation of new
research would be to improve on quality of data to
understand the problem better. We need to simulate W
because it is not given in the data but is a reflection of
what we can hope to obtain in the study that is being
planned under the assumption of given causal structure:
we can never hope to measure F itself but need to be
generate W and thereby evaluate performance of W. We
want to know two things: (a) whether W is a confounder
of the mercury-depression relationship, and (b) whether
models adjusted for this measure of fish consumption W
will result in the hypothesized null mercury-depression
association (i.e., RRgp | w=1, as opposed to the ob-
served estimate RRgp | pops = 0.83) Here, W is related to
true habitual fish consumption F by classical measure-
ment error: W=F+e¢, ¢ ~N(0, 0°); F~N(0,1); ¢ is inde-
pendent of both E and F. To more specifically motivate
these assumptions, reflecting on common experience
in exposure assessment, we consider that F is a meas-
ure of fatty acid intake that is measured by a bio-
marker and then normalized to Gaussian distribution
via log-transformation, hence additive measurement
error model for W and distributional assumptions can
be appropriate. In practice, such assumptions would be
verified in a validation or reliability study.

We assumed that total blood mercury E is near-perfectly
measured because a precise analytical technique exists. To
simplify, we ignored the matter of etiologically relevant
windows of exposure, although this may not be trivial
because the biologic half-life of mercury in blood is short.

Based on prior research [18], we also assumed: (a) the
association between F and D is based on the correlation
of underlying continuous measures of F and D, and set it
to prp = —0.35, and (b) that the correlation of F and E is
pre=0.39, same as the observed correlation F,;, and E.
With these inputs, we simulated true (F) and mis-
measured (W) values of fish consumption subjected to
different magnitudes of measurement error. Under vari-
ous conditions of measurement error, we simulate W
10,000 times. Different degrees of error in measured
confounder, ¢°, were examined. We acknowledge that a
different model for confounding could have been postu-
lated and included in our simulation framework but we
followed the path deemed as sensible by the original
investigators in [18].

To empirically determine whether measured fish con-
sumption (W) would correctly remove confounding from
effect of mercury on depression, the proportions of simu-
lated datasets in which the adjusted association of mercury
on depression, RRgp | v, has p>0.05 were recorded. This
is akin to asking how well should we measure confounder
in order to have the power to observe true exposure-
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response association upon adjustment. We also reported
the simulation-determined confounder identification cri-
terion described above (i.e. aimed to control type I error at
5 %) to compare it to the conventional CIE of 10 %. Finally,
we also determined the average and the 95 % empirical
confidence intervals of the estimates of the mercury-
depression association with adjustment for simulated
values of W based on the 10,000 simulations, in order to
determine how well the adjustment for W is able to esti-
mate a specified true causal effect of E-D adjusted for F.
(The number of simulations we informed by the observa-
tions that it was sufficient to obtain stable behavior of
simulation realizations; in every specific situation, a differ-
ence size of simulation may be needed.) This reflects a
theoretical perspective for confounder identification where
based on some pre-determined DAG, W is theoretically a
confounder of the exposure-outcome association and
should therefore be included in models regardless of meas-
urement properties. To visualize the empirical distribution
of RRgp | ws we plotted its histogram from the 10,000 sim-
ulated estimates with ¢° = 1. The R code for the simula-
tions can be found in the Online Supplementary Materials
(Additional file 2).

Results

In the synthetic example, we performed simulations com-
paring CIE between models that did and did not adjust for
the confounder. Results of the simulations are shown in
Figs. 2, 3, 4, 5, 6 and 7. The simulations indicated that a
change in the estimate of the exposure-outcome relation-
ship of 0.2 % (e.g. Cox model, n=2,000, 62=02=1, p=
0.4) to 7.3 % (linear model, n =500, o2=02=1, p=0.5)
between models that do and do not adjust for the con-
founder is expected to result in type I error 5 % in the
studied settings. The control of type II error to 20 % was
achieved with simulated CIE on the order of 0.25 % (binary
model, # =2,000, 07 =0.25, 62 =1, p=0.2) to 64 % (linear
model, n =2,000, 6> =1, o> =0.25, p=0.9). Upon further
investigations, we found that the simulation-determined
cutoff was very sensitive to measurement error in exposure
and potential confounder; there was some tendency for an
inverse association between the cutoffs but the clear pat-
tern was only apparent for large error variances (details
available upon request). For example, under the sce-
nario of linear regression, n =500, p = 0.5, and o = 1, the
simulation-determined cutoff with expected type I error of
5 % equaled 3.6 % when o2 = 0.25 and increased to 7.3 %
when o2 =1. We also verified that evaluation of p(p = 0)
with criteria of 0.05 was important in this setting for con-
trolling false positives. In absence of such a screening test,
the rate of Z falsely identified as structural (rather than
chance) confounder was commonly on the order of 50—
80 % as seen by acceptance of Z  as confounder when in
fact p = 0 by simulation (details available upon request).
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Fig. 2 Proportion of analyses that correctly identify a confounder and root mean squared error under different empirical confounder identification
strategies in a cohort study (500 subjects with binary outcome)

Comparison of confounder identification strategies in a
synthetic data: identification of structural confounder
Compared with the empirical criteria tested that were fixed
a priori (significance criteria with cutoff levels of p-values
of 0.05 or 0.20, and CIE criterion with a cutoff of 10 %), the
two simulation-determined CIE criterion exhibited superior

performance in selecting the correct model within at least
80 % of simulated datasets for exposure-confounder correl-
ation of 0.2 or higher. In contrast, the three traditional
methods perform poorly in all three outcome models.

The traditional methods identified a true confounder
generally in less than 60 % of the simulated datasets with
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Fig. 3 Proportion of analyses that correctly identify a confounder and root mean squared error under different empirical confounder identification
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binary outcomes (logistic regression), even when the
cohort size increased from 500 to 2,000 (Figs. 2 and 3,
left-hand panels). The gap in performance in cofounder
identification was more apparent for smaller cohort
(Fig. 2, left-hand panels): 20-40 % drops in power for
the stronger simulated confounding with p>0.5. Similar

gap in performance remained when cohort was in-
creased to 2,000 while measurement error in exposure
was fixed at the lower value, and when measurement
error in cofounder was greater than that in exposure
(Fig. 3, top 2 left-hand panels). However, as both cohort
size and measurement error in exposure increased and



Lee and Burstyn BMC Medlical Research Methodology (2016) 16:54

Page 9 of 18

Variance (error_X)=0.25, Variance (error_Z)=0.25

—4—sig (p<0.05) ——sig (p<0.2) —t—sig (p<0.05) —o—sig (p<0.2)
=t CIE 10% ~— CIE simulated (type | error = 0.05) ——CIE 10% =i CIE simulated (type | error = 0.05)
=@ CIE simulated (type Il error =0.2) =—8—CIE simulated (type Il error = 0.2)
100% e - S 0.10
- 0.09
3 0% |
3 eo% E 0.07
'§ ﬂ‘ 0.06
g 0% gaos
£ 2% g 0o
e 0.03
o% 0.02
0 01 02 03 04 05 06 07 08 03 0 01 02 03 0.4 0s 06 07 08 09
P and foud: © lation of exp and foud
Variance (error_X)=0.25, Variance (error_Z)=1 Variance (error_X)=0.25, Variance (error_Z)=1
—4—sig (p<0.05) —a—sig (p<0.2) —4=—sig (p<0.05) —8—sig (p<0.2)
——CIE10% =@ CIE simulated (type | error = 0.05) —+—CIE 10% ~8—CIE simulated (type | error = 0.05)
——CIE simulated (type Il error =0.2) =&~ CIE simulated (type Il error = 0.2)
100% 0.10
E 0.09
% 80% § oos
-E 50% 0.07
- Zoos
E 40% E 0.05
| -~ 3 0.04
& 003
0% 0.0z
0 01 02 03 04 05 06 07 08 08 0 01 0.2 03 0.4 05 06 07 08 09
I of exp and confoud of exp and
Variance (error_X)=1, Variance (error_2Z)=0.25 Variance (error_X)=1, Variance (error_Z)=0.25
—+—3ig (p<0.05) —o—3ig (p<0.2) —+—sig (p<0.05) —o—sig (p<0.2)
—4+—CIE 10% =8~ CIE simulated (type | error = 0.05) ——CIE 10% —@—CIE simulated (type | error = 0.05)
100% - —8—CIE simulated (type Il error =0.2)
N 5 0.09
z B0% .5 e
:g 60% £ 007
H E’ 0.06
0% § 005
20% % 0.08
5 0.03
% 0.02
1] 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 08 o 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
[ lati f exp: and conf I f exp and P
Variance (error_X)=1, Variance (error_Z)=1 Variance (error_X)=1, Variance (error_Z)=1
—t—sig (p<0.05) —a—sig (p<0.2) —t—sig (p<0.05) —8—sig (p<0.2)
—+—CIE 10% —@—CIE simulated type | error = 0.05) =—a=CIE 10% =@=CIE simulated (type | error = 0.05)
=#=—CIE simulated (type Il error =0.2) ~#—CIE simulated (type || error = 0.2)
100% 0.10
] ! 0.09
3 B80% % 0.08
'E 60% § 0.07
H .;' 0.06
g - ; S M
0.08
e E 003
0% 0.02
[+] 0.1 0.2 03 04 0.5 0.6 0.7 0.8 09 o 01 0.2 03 0.4 0.5 0.6 07 0.8 09
of exp and confoud I f exp and confl
Fig. 4 Proportion of analyses that correctly identify a confounder and root mean squared error under different empirical confounder identification
strategies in a cohort study (500 subjects with continuous outcome)
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confounding became stronger (p>0.3), a more regular
pattern of power was observed: CIE criteria simulated to
control type I error had power 70-100 %, CIE criteria
simulated to control type II error had power 70-80 %,
significance test p<0.20 had power 40-60 %, significance
test p<0.05 had power 20-30 %, and 10 % CIE criteria

failed to identify structural confounder in almost all in-
stances (Fig. 3, bottom 2 left-hand panels).

In linear regression, the traditional methods were more
comparable to simulated-based CIE approaches but their
performance depended on strength of confounding and
degree of measurement error in a complex fashion.
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Fig. 5 Proportion of analyses that correctly identify a confounder and root mean squared error under different empirical confounder identification
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When higher value of error variance in exposure X were
examined, all approaches had similar performance in
confounder identification for the large cohort of 2000
(Fig. 6, bottom 2 left-hand panels), except that CIE
method designed to control type II error to 20 % be-
haved erratically as strength of confounding increased

beyond p=0.3. In smaller cohort size with the same
“large” error in exposure (Fig. 5, bottom 2 left-hand
panels), however, there was a clear advantage to
simulation-based CIE method catered to control type I
error to 5 %, especially when cofounding grew stronger:
it maintained power of at least 80 % beyond p=0.3
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Fig. 6 Proportion of analyses that correctly identify a confounder and root mean squared error under different empirical confounder identification
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whereas significance testing and CIE cutoff for control
of type II error to 20 % were less successful, with power
dropping below 80 % as both the strength of confound-
ing (p>0.3) and measurement error in confounder in-
creased (Fig. 5, bottom left-hand panel). The divergence
in performance of different criteria was the greatest

when error in confounder exceeded error in exposure
and the cohort size was smaller (e.g. compare Fig. 5, 2™¢
from top left-hand panel vs. Fig. 5, 2" from top left-
hand panel).

Survival analysis mimicked linear model but defi-
ciency of performance of traditional approaches tended
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Fig. 7 Proportion of analyses that correctly identify a confounder and root mean squared error under different empirical confounder identification
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to be greater and, paradoxically, worse with smaller meas-
urement errors for exposure. For example, in survival ana-
lysis with cohort size of 2,000 and error variances 0.25 (the
smallest tested) and strongest confounding (p = 0.9), when
simulated CIE criteria correctly included Z as confounder
in >80 % of cases, the “significance-testing” approaches had

power of 30-60 % only (Fig. 7, top left hand panel). The
gap in performance reduced when error variances in-
creased to the largest value tested: 90 % vs. 60—80 % (Fig. 7,
bottom left hand panel); it must be noted that the reverse
pattern held for the 10 % CIE approach as its power
dropped to zero as measurement error increased. It can be
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observed that when error in confounder increased for this
setting, but error in exposure was help constant, the sig-
nificance criteria suffered greatest loss of performance
(from power of 90 % to <40 %) and 10%CIE criterion
dropped power from about 60 % to <10 % (Fig. 7, two mid-
dle left hand panels). The patterns in smaller cohort of 500
were similar (Fig. 6).

Comparison of confounder identification strategies in a
synthetic data: precision

The simulation-determined CIE criterion achieved the
smallest RMSE in all survival analyses (Figs. 6 and 7,
right hand panels). In linear models, the pattern was
complex. For the smaller cohort size, simulation-based
CIE approaches led to smaller RMSE only when error in
exposure measurement was at the lower tested value
(Fig. 4, two upper right hand panels), otherwise, the
significance testing approached yielded smaller RMSE
(Fig. 4, two bottom right hand panels). For a larger
cohort, linear model built using simulation based CIE
tended to be associated with lower RMSE (Fig. 5, right
hand panels). In logistic regression, simulation-based CIE
approaches also tended to produce larger RMSE for the
smaller of the tested cohort (Fig. 2, right hand panels),
with the 10 % CIE criteria leading to the lowest RMSE
across varying degrees of confounding (Fig. 2, bottom
right hand panel). When a large cohort was considered
in logistic regression analysis, the simulation-based ap-
proaches had lower RMSE when measurement error in
exposure was fixed at a smaller value only (Fig. 3, right
hand panels), just like in the linear model.

Larger degree of measurement error tended to pro-
duce lower RMSE values (e.g. survival analysis, Figs. 6
and 7, right hand panels), possibly indicating clustering
of estimates around attenuated effect estimate and con-
veying false certainty in the effect estimate under meas-
urement error. There was also a tendency for RMSE to
increase with the degree of cofounding in most studied
settings (Figs. 2, 3, 6 and 7, right hand panels) However,
the RMSE deceased with the exposure-confounder correl-
ation in linear models, when the measurement errors of
exposure and confounder were both “large” (i.e. set at 1)
(Figs. 4 and 5, bottom right hand panels). On the other
hand, when measurement errors are smaller, in linear
model there is an increase in RMSE with the strength of
confounding (Figs. 4 and 5, top 3 right hand panels) as in
other models.

Influence on power of excluding a true confounder by
the screening procedure

We can expect the screening of correlation of potential
confounder and exposure by means of testing correl-
ation between them to erode power: observed correl-
ation in a sample can be very weak and imprecisely
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estimated even when there is true correlation in the popu-
lation. This can be expected to most serious in small sam-
ple sizes and for weak true correlations. We examined this
issue by examining loss of power due to the screening pro-
cedure in the case of =500 (small sample size in our
simulation). We noted that our screening procedure ex-
cluded variables with little correlation (p< 0.1 for ol=0’=
0.25, and p< 0.2 for 02 = 02 = 1) with the exposure, and for
p >0.3 these variables were nearly never being excluded
(Fig. 8). When confounding was weak, the loss of power
was more apparent. Thus, there appeared to be observable
loss of power only for the weakest strength of confound-
ing and when error variances are large.

Application to the mercury, fish consumption, and
depression example

As the degree of measurement error in the confounder
increases, there is a precipitous drop in the proportion
of analyses that would correctly suggest a null association
(ie. p>0.05) of total blood mercury with depression
(Table 1). If the noise-to-signal ratio (error variance in con-
founder (0%)/variance of confounder) is at or below about
half, roughly 80 % of the simulated analyses adjusting for
fish consumption would correctly result in a null associ-
ation of mercury and depression. We also observed that
for the most part, if the confounder is forcibly adjusted for
(as can be expected when a DAG confounder identification
strategy is used) even while measured imperfectly, the
effect estimates are noticeably much less confounded
(i.e., RR closer to 1) as compared to the unadjusted RR
of 0.83. Only when the noise-to-signal ratio is 1 or lar-
ger does adjusting for the miss-measured confounder
make little to no difference. In other words only an ex-
tremely poorly measured confounder is not useful to
adjust for in this setting.

If we do not have sufficient knowledge to guide a
theory-based confounder selection strategy, application of
model selection cutoffs may be useful. In this specific set-
ting, a simulation-derived CIE cutoff was small (0.06 %). If
such a strategy is adopted, for the observed RR=0.83 a
change of 0.1 % after adjustment for W identifies it as a
confounder, even though one can question whether such a
small change is discernible from background noise in real-
istic applications. The degree to which it is important to
remove such a degree of confounding depends on the spe-
cific application and can range from immaterial to import-
ant depending on the association of interest and the role it
plays in whatever action is taken on the basis of effect
estimation. However, it is clear that the CIE of 10 % is too
coarse to detect confounding in this setting with the
desired certainty.

Figure 9 shows the empirical distribution of the adjusted
RR for the noise-to-signal ratio of 1 (median 0.909, inter-
quartile range 0.905-0.914). We can see that we expect all
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Fig. 8 The change in the proportion of analyses that excluded a confounder due to the proposed screening procedure under different empirical
confounder identification strategies in a cohort study (500 subjects) under varying degrees of measurement error

estimates to be closer to null than the naive and can there-
fore take the observed effects of that size to support the
hypothesis that an apparent mercury-depression associ-
ation is due to confounding by fish intake. Thus, even if
residual confounding is not eliminated after adjusting for a
mis-measured confounder, we can still determine whether
evidence supports its role as a confounder. This clearly
argues for a much more liberal rule for evaluating evidence
for confounding, based on statistical grounds alone in the
given motivating example, in the presence of measurement
error in confounder, than is permitted by the 10 % CIE
criteria. It also illustrates the peril of reliance on hypothesis
testing: we do not expect to find a statistically significant
effect of fish intake in the example illustrated in Fig. 9 and
yet all “imperfectly” adjusted point estimates of RR are
expected to be less biased than the crude value. This fur-
ther argues for forcing a variable into a model if there is a
theoretical reason to do so, regardless of whether a fre-
quentist hypothesis test indicated an association.

Discussion
Overview of findings
Our study provides a framework that evaluates the per-
formance of various empirical criteria with considerations
of strength of causal and confounding effects, sample size,
measurement errors in exposure and confounder, and
types of outcomes. This framework is useful for study
design and planning. During the stage of study design, re-
searchers often need to choose, among many options, the
tools for measuring the exposures and confounders. For
example, they can choose among self-report or objectively-
measured BMI, physical activity level, and dietary intake.
Using the existing results from validation studies [10-13],
researchers can make use of our framework to choose the
most appropriate measurement tools that maintain a bal-
ance between the error of causal effect estimation and the
total cost induced.

We were also successful in proposing a solution to the
problem of false positive identification of risk factor as
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Table 1 The proportion of 10,000 simulated adjusted analyses
where a hypothesized null exposure-outcome association (RRepjn)
is indicated, after adjustment for a confounder W that is measured
with different degrees of measurement error (Simulated change-
in-estimate cutoff for Type | error <0.05 = 0.06 %)

Noise-to- Proportion of RReplw (adjusted for confounder W)
signal ratio® %e;;\‘t; ;V:?)TSS ) Average 95 % Confidence Interval
0.10 100 0.99 0.97-1.01
0.25 100 0.98 0.96-1.00
0.50 91 0.96 0.94-0.98
0.55° 78 0.95 0.94-0.97
0.60 56 0.95 0.93-0.97
1.0 0 091 0.90-0.92
10° 0 0.83 0.83-0.83

“ratio of variance of measurement error relative to variance of confounder

Pin practice, it is not possible to have such precise knowledge about the
extent of measurement error, so any calculation of this sort is necessarily
approximate and is meant as a guideline for selection of suitable method to
measure a confounder, but we can say that error variance should be closer to
0.5 than to 0.6

“empirically determined to correspond to error in confounder hypothesized to
exist in the data (F,ps) and resulting in failure to control cofounding effect of
RRep|robs = 0.83 for exposure to mercury

confounder in a finite sample. A simple evaluation of
correlation between exposure and potential covariate
achieved nearly perfect power. We emphasize that this is
finite-sample problem that arises due to chance correl-
ation, induced by the fact that X and Z are both related
to Y, inducing a chance X-Z association via Y that had a
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tangible impact (i.e. on the order of simulated CIE cutoff)
on estimate of effect of X on Y upon inclusion of Z in a
regression model. This phenomenon disappeared when
sample size was boosted and worsened in finite samples
with large values of 5 (details available on request). Even
if Z is not identified as structural confounder, there is a
good reason to include it in the final estimate to remove
as much as possible confounding from the estimate of
effect of X, however, in doing so, the understanding of
problem under study is increased by gaining evidence for
chance versus structural confounding by Z.

In practice, epidemiologists that use DAG to identify
confounders try to distinguish between several plausible
DAGs: this lies at the heart of confounder identification
problem. However, all assumptions about plausible DAGs
made by investigators can be wrong such that any choice
among alternative causal structures does not reflect the
true state of nature. Our work does not address such situ-
ation but it would be important to consider such a possi-
bility in any truly improved approach to selection of
confounder identification method; we believe that this is
possible via simulations in a specific setting and allude to
this in presentation of empirical example elaborated in
this paper.

Given the complexity of factors that influence selection
of confounder identification approach and tools even in
our relatively simple settings, a practical approach is to
customize simulations to reflect uncertainties about causal
structures and imperfections of data when making such
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Fig. 9 Anticipated estimates of the exposure-outcome association in the motivating example (see text for details) after adjustment for a miss-measured
confounder when there is not a true exposure-outcome association. The unadjusted RR gpjrops is 0.83 (ie. confounded; indicated by the arrow), noise-to-
signal ratio is 1 and all effects of confounder are expected to be not statistically significant (p >0.05); 10,000 simulations
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choices instead of reply on any a priori advice. Previous
simulation studies showed that a priori advices such as
significance criteria and 10 % CIE may lead to wrong deci-
sion of confounder adjustment when the exposure vari-
able is error prone [21]. While a simulation-derived CIE
criterion would change for every data situation, our study
indicates that using simulations to inform model selection
is both feasible and desirable during the study-planning
stage, using information that most investigators possess:
the knowledge of quality of instruments measuring expos-
ure and confounders, as well as plausible strengths of the
associations. It must be emphasized that we propose a
solution to a problem that is sensitive to each specific
application and, as such, our method is guaranteed to out-
perform any general advice such as 10 % CIE, unless, by
chance, simulation-based CIE are identical to 10 %, in
which case our method will have identical performance
relative to the general advice.

Interpretations of findings from analysis of simulated
studies

Despite complexities of patters of our results, they seem
to exhibit several general tendencies. As the strength of
confounding increases, the chance of identifying con-
founder, when present, also grows across constellations
of measurement error, type of outcome and sample size,
implying that all confounder identification strategies
tend to perform better in picking up stronger effects.
Most of our findings were consistent across different
outcome types.

With respect to precision of the exposure-outcome
association as measured by RMSE, there appear to two
competing phenomena. As measurement error of the
exposure increases, under the postulated classical meas-
urement error model, for all regression coefficients to be
attenuated towards null [7], such that whether an esti-
mate is corrected for confounder or not would make
little difference to its attenuated value that tends towards
the null and a poorly-measured confounder would do
little to remove true confounding in regression model.
This would have the net effect of the RMSE to become in-
dependent of the strength of confounding or confounder-
identification strategy. This is also indeed the case of real
data example with confounder (fish consumption) very
poorly measured. On the other hand, when measurement
error is moderate (i.e. not so strong as to push estimate of
the effect of exposure nearly to the null and to make any
adjustment inconsequential to its magnitude), RMSE tends
to decrease with superior confounder-identification strat-
egy, i.e. correctly specifying the outcome model has tan-
gible benefits. Unsurprisingly, RMSE is smaller for weaker
confounding where there are fewer penalties for failing to
adjust for confounder. These influence of RMSE create a
rotation in RMSE versus the strength of confounding
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curves such that it may appear that RMSE declines with
the strength of confounding with the rise of measurement
errors, whereas in fact all we witness is the tendency for
RMSE to become independent of measurement begin to
dominate the tendency for RMSE to be larger when con-
founding is stronger.

The RMSE has to be interpreted with cautions, as it is
a combination of squared bias and standard error of the
causal effect estimate. In logistic regression (1 =2,000)
with the largest examined measurement errors, 10 %
CIE criteria leads to the smallest RMSE for strong con-
founding but it is essential to note that this is based almost
exclusively on unadjusted estimates because confounder
was almost never included in the final model (Fig. 3). We
hypothesized that this phenomenon is due to the fact that
with a poorly-measured exposure we expect the estimated
causal effect would be zero (i.e., an RR of 1). The low RMSE
in this case is the result of tight clustering of unadjusted
attenuated estimates around wrong value of the effect esti-
mate, a phenomenon that was previously described in the-
oretical work [14] that leads to over-confidence in wrong
estimates in presence of measurement error. Another ten-
dency that is acting on the observed RMSE is due to the
fact that when exposure-confounder correlation increases,
the standard errors of the maximum likelihood estimate of
adjusted causal effect also increases, leading to the increase
of RMSE.

We present two types of simulated CIE criteria: designed
to control either type I or II errors. When the cutoff values
of the two criteria are similar, we are in the fortunate situ-
ation where both types of error are controlled to the de-
sired degree. In the synthetic examples that we evaluated,
there appears to be little difference in RMSE for the two
simulation-based CIE approaches. The two approaches di-
verged in success in confounder identification per se, but
both outperformed significance testing and fixed cutoff of
10 % CIE.

Depression-mercury-fish consumption example

The real data analysis of the NHANES data illustrated
how researchers can make use of our framework to
choose the most appropriate measurement tools that
maintain a balance between the error of causal effect
estimation and the total cost induced. By applying our
framework, information about the degree of accuracy,
validity, or measurement error one needs to achieve in
order to obtain a less biased estimate of the causal rela-
tionship. For instance, our simulation result informs us
that a noise-to-signal ratio of 0.5 or smaller for the
variable fish consumption is desirable when we wish to
estimate the causal relationship between total blood
mercury and depression. In planning such an analysis,
in the planning stage researchers should avoid using
measurement tools that are only weakly correlated with
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the true nutrient intake, for example food-frequency
questionnaire [10].

The real data analysis is founded on the assumption
that here is no reason for exposure to mercury to be
protective of risk of depression and therefore cofounding
by fish consumption, known to be protective, is sus-
pected. Of course one can assume that there is a small
positive effect of mercury that is reversed by stronger
negative confounding by fish consumption. One can re-
peat our simulations in such a way that mercury would
have a causal risk factor, e.g. by weakening correlation of
mercury with fish consumption or assuming weaker bene-
ficial effect of fish consumption on the outcome. We did
not explore this possibility in order to limit future consid-
erations of plausible continuation of work in this setting
as discussed in [18].

Limitations

A major limitation of our study is that we considered a
limited number of scenarios. If the assumptions of our
simulations were violated, for example if the model is
mis-specified, or if the errors do not follow normal dis-
tribution, the conclusions will be altered. Ideally, readers
interested in implementing our approach should con-
sider the validity of these assumptions and implement
necessary modification to our R code. Another limitation
is that the associations between exposure, confounder,
and outcome maybe unknown. We believe it is possible
(and desirable) to conduct analyses while acknowledging
partial knowledge about causal structures, measurement
error and exposure misclassification (e.g. using Bayesian
framework [14, 22]): this may prove to be a promising
extension to our work.

Another limitation is that we did not evaluate our frame-
work under multiple confounders but this can be done in
practice by slight modification of our R code. On the other
hand, conceptually, one confounder may stand for multiple
confounders that do not cancel each other out (e.g. see [8]),
so our approach with one confounder should retain some
generalizability.

One can argue that when measurement error is present,
suitable analytical approach, for example regression cali-
bration [23, 24] or simulation and extrapolation (SIMEX
[25]), should be applied to remove its influence from infer-
ence before engaging in the discussion of suitable con-
founder identification strategy. This is certainly a sensible
approach and the one that, to the extent possible, should
be advocated. However, we wish to point out that meas-
urement error correction is not routinely practiced by epi-
demiologists [26] and until such time that this changes, it
is still relevant to consider how the historically and cur-
rently acceptable analytical strategies for model-building
perform in practice.
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Conclusions

The impact of measurement error in a putative con-
founder on the selection of a correct disease model and
testing of presence of confounding can be complex and
difficult to predict in general. However, targeted investiga-
tions into how well one has to measure the confounder
and how to interpret data contaminated by residual con-
founding are possible. They can inform and motivate work
on better efforts to quantify risk factors and can help
gauge the added value of such work. If an investigator
plans to use regression methods to control for confound-
ing and to empirically select among all plausible con-
founders the subset that can be evaluated with the data
they are advised to determine what CIE criteria are most
suitable in their situation [5]. While use of causal diagrams
is certainly helpful in guarding against most egregious
mistakes in model specification, causal diagrams may be
incorrect or the putative confounder may have so much
measurement error as to be entirely useless for adjustment
purposes. Likewise, statistical considerations alone do not
guaranteed selection of correct model. Therefore, one has
to triangulate confounding using all available knowledge
and tools [15].

We conclude by emphasizing that no a prior criterion
developed for a specific application is guaranteed to be
suitable for confounder identification in general. The
customization of model-building strategies and study de-
signs through simulations that consider the likely imper-
fections in the data would constitute an important
improvement on some of the currently prevailing prac-
tices in confounder identification and evaluation.
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