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Abstract
This paper deals mainly with the structural properties of positive reachability and
stability. We focus our attention on positive discrete-time systems and analyze the
behavior of these systems subject to some perturbation. The effects of permutation
and similar transformations are discussed in order to determine the structure of the
perturbation such that the closed-loop system is positively reachable and stable.
Finally, the results are applied to Leslie’s population model. The structure of the
perturbation is shown such that the properties of the original system remain and an
explicit expression of its set of positively reachable populations is given.
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1 Introduction
Systems of difference equations with nonnegative coefficients are used as models in many
fields in which the variables are subject to nonnegative restrictions. Examples of such ap-
plications can be found in [–]. One of the main aims in the study of real processes is to
analyze if the system satisfies the stability property. However, often important properties
such as stability and reachability are undetectable. Thus, it is important to know if the pro-
cess disturbances can be attenuated by a feedback or if a trajectory will or will not reach
a desired state using nonnegative controls. In [] some results related to these topics are
given.
Usually the system can be subject to disturbances. It is important to know what con-

ditions must satisfy these disturbances in order to preserve the structure and properties
that characterize our system. In this paper we consider a positive linear discrete-time sys-
tem, stable and positively reachable. We propose the problem of determining what kind
of perturbations can be used so that the closed-loop system maintains stability and pos-
itive reachability. Some results on the structure of the disturbances are given. Motivated
by the application of the obtained results in some real processes, we focus on the case
where the state matrix has a companion structure. In particular, we study the Leslie pop-
ulationmodel and we give the conditions for the system to be positively reachable, and we
characterize the collection of perturbations under which the model remains stable.
The rest of the paper is organized as follows. Section  presents some results on stability

of perturbed positive systems. In Section , we analyze the collection of disturbances in or-
der for the closed-loop system to keep stability and also be positively reachable. Section 
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gives a real application that illustrates the results provided in the paper. Finally, some final
conclusions are given.
Before proceeding, we introduce some notation, definitions, and basic results.We recall,

see [], that a matrix M is called nonnegative if all its entries are nonnegative and it is
denoted by M ≥ O. A matrix M is an M-matrix if M = sI –A, where A ≥ O and s ≥ ρ(A),
where ρ(·) denotes the spectral radius of a matrix, that is, the maximum modulus of its
eigenvalues.
The stability of a matrix M is equivalent to the condition ρ(M) < . From the literature

this property is also referred to as Schur stable matrix or convergent matrix. In [] a char-
acterization of this property for nonnegativematrices is given. Thus, a nonnegativematrix
M is stable if and only if (I –M)– ≥ O. Finally, the norm ‖M‖ is the maximum absolute
column sum ofM.

2 Stability of perturbed positive systems
Consider an invariant discrete-time system

x(k + ) = Ax(k), k ≥ ,

where the vector x(k) ∈R
n and A is a nonnegative matrix, that is, A≥O.

Consider that the system is asymptotically stable, that is, ρ(A) < , and let � ≥ O be
a perturbation matrix. We can prove that the perturbed system is asymptotically stable,
ρ(A +�) < , if and only if ρ(�(I –A)–) < . This is established as follows.

Proposition  Let A≥O be with ρ(A) <  and � ≥O. The following assertions are equiv-
alent:
(a) �(I – (A +�))– ≥O.
(b) ρ(�(I –A)–) < .
(c) ρ(A +�) < .

Proof Since ρ(A) < , H =�(I –A)– ≥O.
(a) ⇒ (b) As H ≥ O, r = ρ(H) is an eigenvalue of H with a nonnegative eigenvector v.

From Hv = rv and noting that �(I – (A + �))– = H(I – H)– we get �(I – (A + �))–v =
r

–r v≥ . Thus  – ρ(H) > .
(b) ⇒ (c) If ρ(�(I – A)–) < , then I – (A + �) = (I – �(I – A)–)(I – A) is an invert-

ible M-matrix whose inverse matrix is nonnegative, and I – A and I – �(I – A)– are
M-matrices. Then ρ(A +�) < .
(c) ⇒ (a) It is straightforward since ρ(A +�) <  and � ≥O. �

When the matrix A has a companion structure, under similarity, we can take the entries
of A of the upper diagonal equal to ,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a  · · · 
a  · · · 
...

... · · · ...
an–  · · · 
an  · · · 

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. ()

This matrix satisfies |I –A| =  –
∑n

j= aj.
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If the entries {ai ≥ , i = , . . . ,n} are perturbed, ai + δi with δi ≥ , i = , . . . ,n, the new
perturbed matrix A +�, with

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δ  · · · 
δ  · · · 
...

... · · · ...
δn–  · · · 
δn  · · · 

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, ()

satisfies the following result.

Proposition  Consider matrix A as () and matrix � ≥ O as (), then A + � is asymp-
totically stable if and only if ‖�‖ <  – ‖A‖.

Proof From the structure of matrices A and � we check

ρ
(
�(I –A)–

)
=

∑n
j= δj

|I –A| .

Hence, A + � is asymptotically stable if and only if
∑n

j= δj <  –
∑n

j= aj, that is, ‖�‖ <
 – ‖A‖. �

Note that, if δi = , i = , . . . ,n, then A+� is not asymptotically stable. By definition of A
and �, we can check that the matrix �(I – (A+�))– is not a nonnegative matrix since all
its entries are equal to –

(n–)+a+···+an < . FromProposition , ρ(A+�)≥ , thenA+� is not
asymptotically stable. On the other hand, the characterization of Proposition  suggests
that the parameters of the perturbation must satisfy  ≤ δi < , i = , . . . ,n.

3 Stability and positive reachability of perturbed positive systems
Now we fix our attention to a positive discrete-time control system,

x(k + ) = Ax(k) + Bu(k), k ≥ ,

where the state vector x(k) ∈ R
n, the control vector u(k) ∈ R

m with m ≤ n, and A and B
are nonnegative matrices, that is, A,B ≥ O. This system is denoted by (A,B) ≥ O and it is
a positive system since for all nonnegative initial states x() ≥  and for all nonnegative
control or input sequences {u(j)} ≥ , j ≥ , the trajectory of the system is nonnegative.
Using a nonnegative feedback u(k) = �x(k), � ≥ O, the closed-loop system is given by

the state matrix A + B�. If the initial system is asymptotically stable, ρ(A) < , we want
to obtain the conditions on � in order to ensure that the new closed-loop system is also
asymptotically stable. In particular, if � = δS ≥ O where S = (ImO) from Proposition  we
can ensure that A+B� is asymptotically stable if and only if δ < 

R with R = ρ(BS(I –A)–).
In several applications it will be important to reach a given state using an adequate con-

trol sequence. For example, some control functions are studied for linear discrete de-
lay systems in [, ]. By definition, (A,B) is reachable if for every final state xf ∈ R

n

there exists a finite input sequence transferring the initial state to xf . This property is
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known as reachability property and it is characterized by the range of reachability ma-
trix R(A,B) = (B AB · · · An–B). Thus, (A,B) is reachable if and only if the matrix R(A,B)
has full rank. The set of all reachable states is the subspace generated by the independent
linear columns of R(A,B). When the system is reachable this subspace is the space R

n.
But when the nonnegative restrictions are imposed new features arise and we have the
concept of positive reachability property. The interest in this property is motivated by the
large number of fields (bioengineering, economic modeling, biology, and behavioral sci-
ence) in which it is always necessary that the inputs u are also nonnegative. Thus, the
system (A,B) ≥O is positively reachable if for every final state xf ∈R

n
+ there exists a finite

nonnegative input sequence transferring the initial state to xf .
This property was studied in [, ]. Some results given in these works establish that

this property holds if and only if the reachability matrix contains amonomial submatrix of
order n. Recall that amonomial vector is a (nonzero)multiple of some canonical basis vec-
tor, and a monomial matrix M is a matrix whose columns are distinct monomial vectors
and can be decomposed as M = DP where D is a diagonal matrix and P is a permutation
matrix. In this case, the set of all positively reachable nonnegative states is the cone gen-
erated by the independent monomial columns of R(A,B). When the system is positively
reachable this cone is Rn

+.
It is widely known that two systems are similar if we can obtain one from the other by a

change of base, x(k) = Tx̂(k). Thus, system (A,B) is similar to system (Â, B̂) if there exists
a nonsingular matrix T such that Â = T–AT and B̂ = T–B.
The general reachability property is preserved under similarity transformations, how-

ever, two similar positive systems are not necessarily both positively reachable. Then the
concept of positive similar is introduced in the following way. Two positive systems (A,B)
and (Â, B̂) are positively similar if there exists a square nonnegative monomial matrix M
satisfying Â =M–AM and B̂ =M–B. In [] it is established that the positive reachability
property is transferred under positive similarity.
Moreover, in [] the authors gave a positive reachability canonical form. This canonical

form has an upper triangular block structure where the diagonal blocks are formed by
cyclic, nilpotent, and companion submatrices. Using this canonical structure we consider
the pair (A,B)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A � · · · �

O A · · · �

...
... · · · ...

O O · · · �

O O · · · Ah

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B

B
...

Bh–

Bh

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

()

with Aj ∈ R
nj×nj
+ companion matrix as () whose entries of the first column are {aji, i =

, . . . ,nj}, Bj ∈ R
nj×h
+ has all entries zero except the entry of position (nj,h – j + ) denoted

by bj, for all j = , . . . ,h and
∑h

j= nj = n. Moreover, � ≥O only can have nonzero entries in
the first column. This system is positively reachable since it satisfies the structure of the
canonical form and it is easy to prove that the reachability matrix contains a monomial
matrix of order n.
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From now on, without loss of generality we assume that the initial time is zero, because
otherwise we just need to perform a change of variables first to transfer the initial state to
zero.
Returning to the initial approach we want to study the invariance of both properties,

stability and positive reachability, when the system is subjected to perturbations.

Proposition  Let A,B ≥ O be given as in (). Consider the perturbation matrix � =
(� · · · �h) being �j = δjSj ≥ O and Sj ∈ R

h×nj
+ has all entries zero except the entry of

position (h – j + ,nj) which is equal to , j = , . . . ,h. Then:
(a) The perturbed system (A + B�,B) is also positively reachable from zero.
(b) If the system (A,B) is asymptotically stable the perturbed system (A + B�,B) is

asymptotically stable if and only if δj <
–‖Aj‖

bj
, j = , . . . ,h.

Proof
(a) To prove the positive reachability of the new system (A + B�), we construct its

reachability matrix and it is easy to check that it has a monomial matrix of size n×n.
(b) By the structure of A, B, and � we have

ρ
(
B�(I –A)–

)
= max

≤j≤n
ρ
(
Bj�j(I –Aj)–

)
= max

≤j≤n

bjδj
|I –Aj| .

By Proposition  we find that the new system (A+B�) is asymptotically stable if and
only if δj <

–‖Aj‖
bj

, for all j = , . . . ,h. �

4 Application to Leslie’s populationmodel
Leslie’s model is a discrete, age-structuredmodel of population growth. It is used tomodel
the changes in a population of organisms over a period of time. It is widely used in pop-
ulation ecology and demography to determine the growth of a population, as well as the
age distribution within the population over time. There are a lot of studies on this model.
To obtain more information on some applications from population matrix models in eco-
logical and evolutionary studies see [] and the references therein.
The Leslie model combines births and deaths in a single model and it is based on these

hypotheses: (i) The age x is a variable starting from  and subdivided into n discrete age
classes of size h. The age class i corresponds to the ensemble of individuals whose ages
satisfy (i – )h ≤ x < ih, i = , . . . ,n. (ii) Time is a discrete variable denoted by k and the
time-step is equal to the duration of each age class. That is, from k to k +  all individuals
go from class i to i + .
If we denote by x(k) the number of individuals in each age class at time k and by u(k)

the measure of immigration or stocking rate, then Leslie’s model is given by

x(k + ) = Āx(k) + B̄u(k),

where Ā represents the n× n Leslie matrix and B̄ represents the number of individuals of
age i entering the system per unit of control,

Ā =

⎛
⎜⎜⎜⎜⎝
f f · · · fn
s 

. . .
...

sn– 

⎞
⎟⎟⎟⎟⎠ , B̄ =

⎛
⎜⎜⎜⎜⎝
b

...


⎞
⎟⎟⎟⎟⎠ , ()
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where the entries of the first row of the matrix Ā are given by the fertility, fi, and the sub-
diagonal is given by the survival, si; and there are zeros elsewhere []. The fertility and
survival rates are generally referred to as vital rates. The entry b represents the fertility
from an extern input [].
The eigenstructure of the matrix Ā gives much information on the model. Thus, the

dominant eigenvalue λ determines the population growth in the long run. The other eigen-
values determine the transient dynamics of the population. When λ =  the population is
stationary, when λ >  there is an over-population, and when λ <  the population de-
creases. On the other hand, the right eigenvectors include the stable age distribution and
the left eigenvectors include the reproductive value [].
In addition, the pair (Ā, B̄) is similar to the pair (A,B) via the diagonal matrix S =

diag(, s, ss, . . . , s · · · sn–) where A = S–ĀS and B = S–B̄. This process is represented
by the following discrete-time system:

x(k + ) = Ax(k) + Bu(k)

with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a · · · an– an
 · · ·  
... · · · ...

...
 · · ·  
 · · ·  

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎝
b

...


⎞
⎟⎟⎟⎟⎠ , ()

where a = f, aj = fj
∏j–

i= si, j = , . . . ,n.
Since A and B are nonnegative matrices we have a positive system. In addition, the sys-

tem is reachable since the reachability matrix R(A,B) has full rank but the problem is that
we cannot ensure that the used control is nonnegative. That is, we cannot assert that
we can achieve a certain population from nonnegative controls. Maybe some nonnega-
tive states can be reached by means of nonnegative inputs but not all because the system
is not positively reachable, since R(A,B) does not contain a monomial submatrix of or-
der n. To analyze this problem we will use the results of the above sections. First, we give
some comments about the transformations that allow us to obtain the system of inter-
est.
We define Tz = (I –N) and T = PTz where P is the antidiagonal permutation matrix,

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

 a · · · an– an–
  · · · an– an–
...

... · · · ...
...

  · · ·  a
  · · ·  

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. ()

Since N is a nilpotent matrix, ρ(N) <  and Tz is an invertible M-matrix with T–
z =∑n–

i= Ni. Thus, T–
z and T– are nonnegative matrices.

The set of positively reachable states is given in the following result.
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Proposition  The set of the population states which can be obtained in Leslie’s population
model from a nonnegative control sequence is the cone

X =
〈
T–
z e, . . . ,T–

z en
〉
, ()

where ei is the ith canonical vector and Tz = I –N with N as ().

Proof First, we observe that the system (A,B) given in () is similar to the system (Â, B̂)
where

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a  · · · 
a  · · · 
...

... · · · ...
an–  · · · 
an  · · · 

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, B̂ =

⎛
⎜⎜⎜⎜⎝


...
b

⎞
⎟⎟⎟⎟⎠ ()

by means of the transformation matrix T with T = PTz where P is the antidiagonal per-
mutation matrix.
As the reachability matrix of this system (Â, B̂) contains a monomial submatrix of order

n, the system is positively reachable. Hence, we can ensure that for all nonnegative state x̂
there exists a nonnegative sequence of control u = (u(n – ) · · · u() u())T ≥O such that

R(B̂, Â)u = x̂.

Then R(B,A)u = T–x̂. So, x is reachable by means of a nonnegative control sequence if
and only if Tx is nonnegative.
Summarizing the previous comments, in the system (A,B) a state x is reachable bymeans

of a nonnegative control sequence if and only if there exists x̂ ≥  such that x = T–x̂.
Thus, the set of positively reachable states is the image of the application T– restricted
to Rn

+. From Tz = I –N and Tz ≥ O we see that {T–ej, j = , . . . ,n} are independent linear
nonnegative vectors and they generate the cone of the reachable states by a nonnegative
control sequence

X =
{
x ∈Rn/∃x̂ ∈Rn

+,x = T–x̂
}

=
〈
T–e, . . . ,T–en

〉
=

〈
T–
z e, . . . ,T–

z en
〉
. �

Note that using the expression of matrix T–
z =

∑n–
i= Ni we can write

X =

〈
e, (I +N)e, . . . ,

i–∑
j=

Njei, . . . ,
n–∑
j=

Njen

〉
. ()

Moreover, a specific population x = (x x · · · xn)T can be obtained in Leslie’s population
model from a nonnegative control sequence if and only if xn ≥  and

xn–i ≥
i∑

k=

akxn–i+k , i = , . . . ,n – . ()
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Now, we study Leslie’s model submitted to some kind of perturbations and we analyze
the reachability and stability properties. At this point we should discuss how the structure
of the disturbance is such that the properties of the initial system remain, that is, to be
stable and to have the same set of positively reachable states.
If we want to keep the same set of the reachable states using a nonnegative control se-

quence, then we only can consider perturbations of the kind � = (  · · · δ), with δ ≥ .
Thereby we see that a similar perturbed system, Â + B̂�̂, with Â = TAT–, B̂ = TB and
�̂ = �T–, has a structure as (). Then it is sufficient to apply Proposition  for h =  to
prove that the positive reachability property is preserved. In the sameway as Proposition 
we can establish that the set of positively reachable population is given by ().
To study the stability of the closed-loop perturbed system it is sufficient to analyze the

spectral radius of the matrix Â+ B̂�̂. Applying the item (b) of Proposition  to this matrix
we obtain ρ(A + B�) = ρ(Â + B̂�̂) <  if and only if δ < |I–A|

b .
These results are summarized in the following proposition.

Proposition  Let A,B ≥ O be given as in (). Consider the perturbation matrix � =
(  · · · δ) such that δ ≥ . Then:
(a) The perturbed system (A + B�,B) has the same cone of positively reachable states

from zero than (A,B).
(b) If the system (A,B) is asymptotically stable then the perturbed system (A + B�,B) is

asymptotically stable if and only if δ < |I–A|
b .

The obtained results in this section can be extended to a population with several groups
or types of individuals where the group Gi can also receive births from the rest of the
groupsGj, j > i. Without loss of generality, we can study the results for the case of a species
with two types or groups of individuals G and G so that one of them, the G group, also
provides G group births. Then we see that the process is modeled by a system (Ā, B̄),

Ā =

(
Ā �̄

O Ā

)
, B̄ =

(
B̄

B̄

)
,

where the matrix blocks are defined as in () and �̄ represents the connection between
the two groups. After applying the appropriate transformation S = diag(S,S) where Sj,
j = , , is constructed as the transformation matrix used for system (), the system (Ā, B̄)
is transformed into the system (A,B)

A =

(
A �

O A

)
, B =

(
B

B

)
, ()

where for each j = , , Aj ∈ R
nj×nj
+ is a companion matrix as () whose entries of the first

row are {aji, i = , . . . ,nj}, aj = f j , a
j
l = f jl

∏l–
i= s

j
i, l = , . . . ,nj, where {f ji , i = , . . . ,nj} and {sji, i =

, . . . ,nj–} are the fertility and survival coefficients of the type or group Gj, respectively.
Moreover, Bj ∈R

nj×
+ has all entries zero except the (nj– + , – j)-entry denoted by bj and

n + n = n. Moreover, in this case we consider the matrix � ≥ O has only one nonzero
element in position (,n), given by ϕ

∏n–
i= sji with ϕ the fertility coefficient from the last

age class of the group G going to group G.
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Using the transformation matrix T = diag(T,T) where Tj = P(I –Nj), j = , , we obtain
a system (Â, B̂) as (). Then, applying the results on positive reachability and stability when
the system is submitted to a perturbation, we find that the set X of the population states
of the Leslie population model () which can be reached from zero using a nonnegative
control sequence is the cone

X =X ⊕X,

X =
{(
xT 

)T /x ∈ X̃
}
and X =

{(
 xT

)T /x ∈ X̃
}
, ()

where X̃j, constructed as in (), are X̃j = 〈e, (I+Nj)e, . . . ,
∑nj–

i= Ni
enj〉, whereTj = P(I–Nj),

j = , .
If we consider the perturbation matrix � = (� �) being �j = δjSj ≥ O such that Sj ∈

R
×nj
+ has only one nonzero element in position ( – j,nj) equal to , j = , , then:
(a) The perturbed system (A + B�,B) has the same cone of positively reachable states

from zero as (A,B).
(b) If the system (A,B) is asymptotically stable then the perturbed system (A + B�,B) is

asymptotically stable if and only if δj <
|I–Aj|
bj

, j = , .
To clarify we give the following example.

Example  Consider a population with two groups or types of individuals where the type
or group G can also receive births from the group G, where each of them has four age
classes with the following fertility f jl , survival s

j
l , and fertility from an extern input bj, with

coefficients

f  = , f  = , f  = ,

s = ., s = ., s = ., b = ,

f  = , f  = , f  = ,

s = ., s = ., s = ., b = ,

and the fertility coefficient from the last age class of the group G to group G is ϕ = .
By the above results, a state is positively reachable if x – An–x is in the cone (). For

instance, if we consider an initial population

x = (   ,  )T

in Leslie’s model (), a population state is positively reachable if there exists a nonnegative
control such that x = An–x + R(A,B)u, or equivalently, if x –An–x is in the cone

X =
{(
xT 

)T /x ∈ X̃
} ⊕ {(

 xT
)T /x ∈ X̃

}
,

X̃ = 〈e, e, .e + e〉,
X̃ = 〈e, e, .e + e〉.

Note that to obtain the cone X we use the conditions given in (). Graphically the cones
X̃ and X̃ would be as in Figure .
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(a) (b)

Figure 1 Positively reachable population from 0 in Leslie’s model (11). (a) Positive reachability cone of
G1: {x ∈ R

3 : x1 ≥ 0.3x3, x3, x2 ≥ 0}. (b) Positive reachability cone of G2: {x ∈ R
3 : x1 ≥ 0.4x3, x3, x2 ≥ 0}.

Using the transformation matrix T we obtain the system (Â, B̂) given by (),

Â =

⎛
⎜⎝

  
.  
.  

⎞
⎟⎠ , Â =

⎛
⎜⎝

  
.  
.  

⎞
⎟⎠ ,

B̂ =

⎛
⎜⎝
 
 
 

⎞
⎟⎠ , B̂ =

⎛
⎜⎝
 
 
 

⎞
⎟⎠ .

In fact this system is positively reachable and the nonnegative sequence control to reach
any state of X can be calculated using this system. If, for example, we want to reach the
population

x = (   ,  ,)T ,

which satisfies x̂ – Âx̂ ≥ , it is sufficient to increase births by means of an input calcu-
lated as

u = R–(B̂, Â)
(
x̂ – Âx̂

)
,

where u = (uT () uT () uT ())T with u(j) = (uT (j) uT (j)), j = , , . Then the desired pop-
ulation is obtained using the control or input of births at step j and each group Gj; see
Table .
Now, we observe that the system (A,B) is asymptotically stable since ρ(A) = . < . If

we consider a perturbation

� =

(
     δ

  δ   

)
,

Table 1 Inputs of births at step j = 0,1, 2 in each group G1 and G2

j G1 G2

0 70 50
1 432 195
2 788 234
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the system (A+B�,B) has the same cone of positively reachable states as (A,B) and taking
δ < |I–A|

b
=  and δ < |I–A|

b
=  we can ensure that the perturbed system (A + B�,B) is

also asymptotically stable. For instance if δ =  and δ =  we have ρ(A + B�) = . < .

5 Conclusions
Discrete-time positive systems are quite frequent in science and engineering.We consider
the problem of determining the structure of a perturbation such that a perturbed positive
discrete-time system has the positive reachability and stability properties. In the general
model, to solve this problem the structure of the positive reachability canonical form intro-
duced in [] and a positive similarity transformation are used. Leslie’s population model
is analyzed. It is a discrete-time positive system, it is reachable, since the reachability ma-
trix R(A,B) has full rank, but it is not positively reachable, since R(A,B) does not contain
a monomial submatrix of order n. The explicit expression of the cone of the population
states is shown which can be obtained in Leslie’s population model from a nonnegative
control sequence. Finally, a numerical example is given to clarify the obtained results.
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