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Abstract We consider the effects of non-universalities
among sfermion generations in models of Pure Gravity Medi-
ation (PGM). In PGM models and in many models with
strongly stabilized moduli, the gravitino mass may be O(100)
TeV, whereas gaugino masses, generated through anomalies
at one loop, remain relatively light O(1) TeV. In models with
scalar mass universality, input scalar masses are generally
very heavy (m0 � m3/2), resulting in a mass spectrum resem-
bling that in split supersymmetry. However, if one adopts a
no-scale or partial no-scale structure for the Kähler manifold,
sfermion masses may vanish at the tree level. It is usually
assumed that the leading order anomaly mediated contribu-
tion to scalar masses appears at two loops. However, there
are at least two possible sources for one-loop scalar masses.
These may arise if Pauli–Villars fields are introduced as mes-
sengers of supersymmetry breaking. We consider the conse-
quences of a spectrum in which the scalar masses associ-
ated with the third generation are heavy (order m3/2) with
one-loop scalar masses for the first two generations. A sim-
ilar spectrum is expected to arise in GUT models based on
E7/SO(10) where the first two generations of scalars act as
pseudo-Nambu–Goldstone bosons. Explicit breaking of this
symmetry by the gauge couplings then generates one-loop
masses for the first two generations. In particular, we show
that it may be possible to reconcile the gμ − 2 discrepancy
with potentially observable scalars and gauginos at the LHC.

1 Introduction

Although the mass of the recently discovered Higgs boson
[1,2] is light enough that it can be accommodated in super-
symmetry, it is near the upper limit of simple models like
the CMSSM [3–13]. This large Higgs mass and the lack of
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evidence for supersymmetric particles at the LHC [14–17]
have put severe constraints on the simplest models of super-
symmetry [18–40] including the CMSSM.

Since both the LHC constraints on the superpartners and
the observed Higgs mass favor heavier sfermion masses [14–
17], it could be that nature does indeed have a mass splitting
among the supersymmetric particles as is the case in split
supersymmetry [41–45], pure gravity mediation (PGM) [46–
51], and models with strongly stabilized moduli [52–58]. In
models of PGM [46,47], sfermions get a tree-level mass, as
in the CMSSM, while gauginos get a one-loop mass from
anomaly mediation [59]. Recently, we showed that mod-
els based on Pure Gravity Mediation, with [50] and with-
out [51] scalar mass universality, could explain virtually all
experimental constraints with electroweak symmetry break-
ing generated radiatively. In the case of full scalar mass uni-
versality, the theory can be described in terms of two free
parameters, the gravitino mass, m3/2 and tan β the ratio of
the Higgs vacuum expectation values. However, these mod-
els placed a rather strict constraint on tan β = 1.7–2.5. The
Higgs mass constraint then restricted the gravitino mass to
the range m3/2 = 300–1,500 TeV. If the Higgs soft masses
are allowed to be non-universal, tan β is only restricted by
perturbativity of the Yukawa couplings and m3/2 can be as
low as 80 TeV. However, even for a gravitino mass this light
all sfermions masses are much larger than the weak scale.

If all sleptons have mass of order 80 TeV or more, there
is little hope of explaining the discrepancy in the anomalous
magnetic moment of the muon [65–67] or sfermion detec-
tion at the LHC. As was recently shown in [68], sleptons
need to be lighter than about 2 TeV if there is to be any
hope of explaining (g − 2)μ. The LHC reach varies greatly
depending on the masses of the first two generation squark
masses. If squarks are lighter than 2 TeV, the LHC reach on
the gluino can be as high as about 4 TeV [69]. To get sfermion
masses this light in PGM, there must be additional sources
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of non-universalities in the sfermion boundary masses. Since
large stop masses are important in explaining the Higgs mass
[70–77], it will be advantageous to take tree-level masses of
order m3/2 for the stops. Furthermore, if the Higgs bilinear
mass term, μ, is much larger than the stau mass, as is often
the case in PGM, the stau tends to be tachyonic [68]. This
problem can also be evaded by having a tree-level stau mass.
These arguments suggests that the third generation should
have tree-level masses, while the first and second generations
boundary masses should be suppressed. Phenomenologically
viable models can also be found for suppressed third gener-
ation masses, however, they tend to be qualitatively similar
to the PGM models discussed in [50,51].

A possibly more compelling reason to discuss light first
and second generation sfermion masses is the hierarchy in
the Yukawa couplings. If the first two generations are pseudo-
Nambu–Goldstone multiplets (pNG) of some broken global
symmetry [78], this would naturally suppress the sfermion
masses. Since the Yukawa couplings are an explicit breaking
of the global symmetry, the Yukawa couplings of the pNG
would also be suppressed. A similar suppression of the first
and second generation sfermion masses can be realize from
a no-scale-like geometry for the Kähler potential [79,80].
This geometry can arise from a brane separation where on
one brane we have the SUSY breaking fields as well as the
Higgs boson and third generation fields and on the other we
have the first and second generations fields. In both of these
scenarios the Yukawa coupling hierarchies are linked to the
sfermion mass hierarchies1

Generating hierarchically small soft masses for the first
two generations is not so problematic. However, because
the gauginos are small in comparison to the third generation
masses, the RG running of the first two generations will give
tachyonic masses for the simplest of models. These tachy-
onic masses can be evaded if sfermion masses of the first
two generations are generated at one loop. In the case of
no-scale-like boundary conditions this can be accomplished
if the Pauli–Villars fields, which regularize the low-scale
theory, interact with supersymmetry breaking generating a
one-loop soft masses [83,84]. The Pauli–Villars fields act as
the messengers of supersymmetry breaking. In the case of
E7/SO(10) [51], the preons act as messengers generating
a similar one-loop mass much like the Pauli–Villars fields.
Thus, it is possible that we can construct a spectrum in which
mũ,c̃ ∼ mg̃ � mt̃ ∼ m3/2, where mũ,c̃,t̃ refer to the three
generations of sfermion masses, and mg̃ refers to gaugino
masses. As we will see, this type of mass hierarchy is capable
of simultaneously explaining the Higgs mass and the devia-
tion in (g − 2)μ.

1 Sfermion mass hierarchies of this type were previously considered
in [81,82].

In Sect. 2, we will discuss our model of PGM which will
allow for light first and second generation sfermions. We also
describe the mechanism for generating one-loop anomaly
mediated masses for the first two generation sfermions. As
we will see, due to our ignorance of the precise mecha-
nism for transmitting supersymmetry breaking, we inevitably
have three new parameters associated with the one-loop
masses correlated with the three low energy gauge groups. In
Sect. 3, we derive results with light first and second genera-
tion sfermions in the context standard grand unified theories
in which there is an assumed relation between the new param-
eters, and in Sect. 4 we discuss the impact of these models
on the value of deviation in the anomalous magnetic moment
of the muon, �aμ. In Sect. 5, we will discuss alternate grand
unified scenarios where the anomalous magnetic moment of
the muon can be more easily explained. Lastly, in Sect. 6 we
will conclude.

2 PGM and more non-universalities

The back bone of our discussion will be the pure gravity
mediated models discussed in [50,51] with a Kähler potential

K = yi y∗
i + K (H) + K (Z) + ln |W |2, (1)

where the Kähler potential for the Polonyi-like modulus, Z ,
which is responsible for supersymmetry breaking, contains
a stabilizing term [85,86],

K (Z) = Z Z∗
(

1 − Z Z∗

�2

)
, (2)

and the Kähler term for the Higgs fields contains a Giudice–
Masiero-like term [50,87–90],

K (H) = |H1|2 + |H2|2 + cH (H1 H2 + c.c), (3)

and the yi represent the other MSSM fields. We also assume
that the superpotential is separable between the matter fields
and hidden sector fields:

W = W (Z) + W (SM), (4)

where W (SM) contains all Standard Model (SM) contribu-
tions to the superpotential. Furthermore, we assume a simple
Polonyi form for W (Z) [91],

W (Z) = m̃2(Z + ν), (5)

It has recently been shown that strongly stabilized models
of this type are free from any of the cosmological problems
normally associated with moduli or gravitinos if � � 3 ×
10−4 [92].

For this Kähler potential, the MSSM scalar fields will have
an input mass m f̃ = m3/2 at the universality scale which
we associate with the Grand Unified Theory (GUT) scale.
In the absence of a non-trivial gauge kinetic function, the
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gaugino masses are generated from anomalies and will have
loop suppressed masses given by

Mi = bi
g2

i

16π2 m3/2, (6)

where the bi are the coefficients of the beta function. The
tree-level contribution to the A-terms are quite small, A0 ∼
(�2/M2

P )m3/2 [58]. The leading order contribution to the A-
terms are the one-loop anomaly mediated contributions and
are effectively zero.

For the universal case discussed above, tan β is restricted
to the range 1.7–2.5, which forces m3/2 � 300 TeV in order
to get a sufficiently large Higgs mass [50]. However, if we
take non-universal Higgs boundary masses [51], tan β is only
constrained by the weaker restrictions of perturbativity of
the Yukawa couplings. Non-universality is easily achieved
by adding non-minimal couplings of the Higgs fields to the
modulus, Z . For example,

K (H) =
(

1 + a
Z Z∗

M2
P

)
H1 H∗

1 +
(

1 + b
Z Z∗

M2
P

)

× H2 H∗
2 + (cH H1 H2 + h.c.) (7)

will generate Higgs soft masses which depend on the cou-
plings a and b [51]

m2
1 = (1 − 3a)m2

3/2; m2
2 = (1 − 3b)m2

3/2. (8)

In this case, the lower bound on m3/2 is due to the wino
mass [93] placing a lower bound of about m3/2 � 80 TeV.

The RG running in these models is rather simple. Since
the gaugino masses are small, they do not affect the RG run-
ning of the sfermion masses. Because only the third gener-
ation Yukawa couplings are large, only the third generation
masses will run at one loop. However, the variations of the
third generation masses from RG running preserves O(m3/2)

masses for the third generation. If all the sfermion masses are
O(m3/2), they cannot be seen at the LHC and will be of no aid
in explaining the discrepancy in (g − 2)μ. To make things
worse, if all scalar masses are universal at the GUT scale,
their masses need to be or order 300 TeV to get a suitably
large Higgs mass. Only by breaking the universality of the
Higgs soft masses can this constraint on tan β be weakened.
The lower bound on the scalar masses can then be as low as
80 TeV, with this lower bound coming from the constraints
on the wino mass. But even sfermion masses of order 80 TeV
cannot explain (g − 2)μ or be detected at the LHC.

To have anything other than the vanilla gauginos signals at
accelerators for these models, at least some of the scalars need
to be light and thus additional non-universalities are needed
beyond the Higgs soft masses. As is well known [59–64], in
the absence of a large tree-level scalar mass, scalar masses
are present at least at the two-loop level. However, as we
discuss in more detail below, it is possible that scalar masses

also arise at one loop. Indeed one can imagine a no-scale
construction where all scalar masses vanish at the tree level
as in no-scale supergravity [79,80]. The Kähler potential can
be written as

K = −3 ln

(
1 − 1

3

[
K (Z) + K (H) + yi y∗

i

])
+ ln |W |2,

(9)

where K (H) is given by Eq. (3). If all sfermion masses vanish
at the tree level and receive one-loop contributions, it will
be difficult to generate a Higgs mass as large as 125 GeV
for generic parameters unless m3/2 � 150 TeV. Since the
sfermions are still rather heavy, this model will be qualita-
tively the same as PGM.

Instead, the approach we take below is to suppress only the
masses of the first and second generation sfermion masses.
Here, we discuss two ways of suppressing scalar masses of
the first two generation sfermions. The first is to take a similar
no-scale-like Kähler potential of the form

K = y(3)
i y∗(3)

i − 3 ln

(
1 − 1

3

[
K (Z) + y(1,2)

i y∗(1,2)
i

])

+K (H) + ln |W |2, (10)

where y(1,2)
i are first and second generation fields in the

MSSM and y(3)
i are the third generation fields. Although

this Kähler potential is capable of suppressing the sfermion
masses, it will be advantageous to also take non-universal
Higgs masses coming from a Kähler potential of the form
given in Eq. (7). For this model, the bulk of the features of
PGM remain but in addition we have very light sfermion
masses for the first two generations which are now generated
by anomalies.

The other possibility for suppressing the first and second
generation sfermion masses is to associate these fields with
the pNG of the global symmetry E7/SO(10). However, in
this case the gauge and Yukawa couplings act as an explicit
breaking of this symmetry. As we will see below, this is actu-
ally an advantage. The gauge and Yukawa couplings break
the symmetry and one-loop masses are generated.

In an actual no-scale-like model, the sfermion masses
would be generated from the one-loop gaugino mass con-
tributions to the RG equations. However, this no-scale-like
running is broken by the presence of a heavy third generation.
This breaking of the no-scale structure has a drastic effect on
the spectrum and as we will see, we will need to find an
additional source of mass for the first and second generation
sfermions.

2.1 General features of the renormalization group running

In this section we will discuss the bulk features of the running
of the first and second generation sfermion masses. As usual,
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we can take the third generation dominance approximation
and will neglect the Yukawa couplings of the first two genera-
tions (see Appendix A on the SUSY FCNC contributions). In
this approximation, the only one-loop contribution to the first
two generation sfermion mass running comes from gaugino
masses and

S = 1

2
Tr
(

Y m2
)

, (11)

where Y is the hypercharge and m2 represents the sfermion
masses of the particles charged under hypercharge. Since
this contains contributions from the third generation, it will
generally be the dominant contribution to the running of the
first two generations. The change in the sfermions masses
from S can be easily determined because it has a rather simple
RG equation,

dSY

dt
= g2

Y

8π2

∑
i

(
Yi

2

)2

SY , (12)

with solution,

SY (Q) = SY (Q0)
g2

Y (Q)

g2
Y (Q0)

. (13)

After integrating the RG, this contribution to the sfermion
masses is of order O(m3/2). This is much too large and would
typically lead to tachyonic sfermion masses. However, if
sfermion masses are universal or determined by gauge inter-
actions, SY (Q0) = 0 and so it remains zero at one loop for the
entire running.2 SY (Q0) = 0 is unchanged for non-universal
Higgs masses as long as m2

1 = m2
2, as in the NUHM1 [94–

96]. Since we are considering a combination of these models,
we have SY (Q0) = 0 and SY does not play a significant role
in the RG running, though it is included in our analysis below.

As stated above, the other one-loop contribution to the
RG running of the first two generation is proportional to the
gaugino masses squared. Since the gaugino masses are loop
suppressed relative to m3/2, their effective contribution to the
RG running is of order

m2
3/2

(16π2)3 , (14)

effectively a three-loop contribution much too small to be
important. Thus, the two-loop contributions which are pro-
portional to third generation masses will have a much more
important effect on the masses of the first and second gener-
ation sfermions.

Since the tree-level sfermion masses of the first two gen-
erations are suppressed, terms in the beta functions pro-
portional to them will not be important. Only contributions
involving third generation masses are significant. Generation

2 This relationships is broken at two loops. However the effect of SY
still tends to be sub-dominant in this case.

mixing in the RG running is through loops of D-terms, i.e.
RG terms coming from 〈(Da Da)2〉 or 〈Da Da( f̃i f j fk)

2〉,
which give terms like those in Eqs. (38)–(41). The rough
sizes of these contributions to the RG running of the first two
generations are

O(1)
g4

i

(16π2)2 m2
3/2 and O(1)

g2
1 y2

i

(16π2)2 m2
3/2, (15)

where gi are the gauge couplings and yi are the Yukawa cou-
plings. Their exact form can be found in Appendix B. As can
be seen there, the RG running from a two-loop contribution
in the beta function will diminish the sfermion mass by an
amount of order

O(1)
m2

3/2

(16π2)
, (16)

if we are running down from the GUT scale. Clearly, a one-
loop boundary mass is need to offset the RG contribution to
the mass and the two-loop anomaly mediated contribution is
insufficient.

2.2 Generating one-loop sfermion masses

In this section, we address the generation of one-loop masses
for the sfermions. Since string theory is a renormalizable
theory, it should provide some mechanism to renormalize
itself. The renormalization for the gauge interactions can be
parameterized by adjoint Pauli–Villars (PV) fields. Because
string theory gives us no indication of how these PV fields
interact with the hidden sector, we cannot say how strongly
they feel supersymmetry breaking. If the PV fields do in fact
interact with the hidden sector they would act as messengers
of supersymmetry breaking. As was shown in [83,84], this
gives a one-loop contribution which is proportional to the
gauge interactions and Yukawa couplings. In Appendix D,
we give a toy model showing how these one-loop masses
are generated in the flat supersymmetric limit. Since there
is no way of knowing how the PV fields interact with the
hidden sector, the masses of the sfermions are effectively
free parameters. However, we make the assumption that the
PV fields corresponding to each generation interact with the
hidden sector identically. We find this a reasonable assump-
tion since gauge symmetries in general do not distinguish
between generations.

Another possibility is to consider a global E7/SO(10),
which has two generations that are pNG. To have exact
Nambu–Goldstone bosons (NGB), the gauge and Yukawa
couplings need to be zero. By introducing explicit breaking
to the E7/SO(10) in the form of gauge and Yukawa cou-
plings, the masses of the NGB are lifted. These mass correc-
tions should be at the one-loop order. This can be understood
by noting that when the gauge interactions are turned on,
they will generate one-loop corrections to the Kähler poten-
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tial. This one-loop correction deforms the Kähler potential of
E7/S(10) breaking the cancelation needed to give massless
fields. Since this breaking is at the one-loop order, we expect
the sfermion masses to be generated at the one-loop order.
As before, we get one-loop masses for the first and second
generation sfermions. To calculate these masses exactly we
need the details of the underlying QCD-like theory at the
preon level. However, we know they are at the one-loop level
and proportional to the gauge and Yukawa couplings.

2.3 Parameterization

To parameterize our lack of knowledge about the Planck scale
dynamics or preon model, we will define

γi = 1

8π2 g2
i C(r), (17)

where gi is the gauge coupling and C(r) is the quadratic
Casimir invariant.3 The soft mass for a given sfermion is
then given by

m2
f̃

=
∑

i

ciγi m
2
3/2, (18)

where we have made the assumption that the ci are generation
independent. Including these parameters, our full list of free
parameters is

m3/2 tan β m1 = m2 c1 c2 c2. (19)

The boundary masses for the first two generations then
take the form

m2
f̃i
(QGUT) =

∑
j

C j (ri )c j
g2

j

8π2 m2
3/2, (20)

where c j is defined above and C j (ri ) is the quadratic Casimir
invariant for f̃i from the gauge group j .

3 Simple unification

We are now in a position to examine the simplest realization
of this model, namely with c1 = c2 = c3. This relationship
among the ci is what would be expected if the grand uni-
fied theory stemmed from a simple SU(5). In this case the
PV fields will stem from complete multiplets of the SU(5)

gauge group. If SU(5) is broken in a generic fashion, we get
c1 = c2 = c3. In models like these, the lightest sfermion is
a squark. Because the gauge couplings are universal at the
GUT scale, where we apply our boundary masses, the squarks

3 The Casimir invariant is important because we have adjoint fields
interacting with fundamental fields in the superpotential. This will lead
to a Casimir invariant when we form loops from these interactions as
can be seen in [83,84].

are only slightly heavier than the sleptons. However, the RG
running of the squarks is much stronger since g3 � g1 at
the weak scale. This leads to the lightest sfermion being the
down squark as we explain below.

It is also important to note that non-universal Higgs soft
masses are advantageous. If m2

1,2 ∼ m2
3/2, we have m3/2 �

300 TeV [50] and even one-loop sfermion masses will remain
out of reach for the LHC since generically mq̃ would still
be rather heavy. Not only would taking non-universal Higgs
masses allow us to choose smaller m3/2, it also has an impor-
tant effect on the running. The non-universalities in the Higgs
masses become important, because S ′ (listed in Appendix B)
depends on the Higgs soft masses. If the Higgs soft masses
are universal, S ′ is suppressed and it has little affect on the
running of the sfermion masses. Because universality is not
an option, we have a significant contribution to the sfermion
mass running from S ′. This running splits the squark masses.

For the simplified model we consider here, the down
squark is the lightest sfermion because it has the largest pos-
itive hypercharge. With non-universal Higgs masses, S ′ is
large and deflects the mass of Q, d down and u up. Since the
hypercharge of d is larger than that of Q, the down squark is
the lightest. A plot of the mass spectra for these models can
be seen in Fig. 1 which shows the sfermion mass contours
in the m1 = m2, cU plane, where cU = c1 = c2 = c3 is the
universal coefficient of the one-loop input soft masses. The
line type identifications are given in the caption. The shaded
regions correspond to theoretically excluded regions for the
following reasons: the upper left corner is exclude because
m2

A < 0, the lower region is excluded because scalar down is
tachyonic. Notice that the down squark mass gets small near
this boundary and the mass squared evolves very quickly as
the boundary is approached, rapidly turning negative. The
shaded region on the right is excluded because μ2 < 0. As
can be seen in these figures, the down squark (green dashed
curves) is the lightest sfermion. A sample spectrum for a
point from Fig. 1 can be seen in Appendix C, labeled point
E in the table.

To see the effect of changing m3/2 we display, in Fig. 1,
two values of m3/2, m3/2 = 120 TeV (left) and m3/2 =
150 TeV (right) for tan β = 5, the latter is chosen to get an
acceptable Higgs mass. The sign for m1 = m2 refers to the
sign of m2. As can be seen from the figures, the region with
small down squark masses is shrinking and so it becomes
increasingly more difficult to get a small mass for the down
squark as m3/2 becomes larger. Once m3/2 � 100 TeV, some
degree of fine tuning is need to get sfermion masses less
than about 2 TeV. The reason for this can be understood by
examining the beta function. As was discussed earlier, the
leading order contribution to the beta function arises at two
loops and is proportional to gauge couplings. Since the third
generation masses run very little, the beta function for the
first two generations remains fairly constant and are of order
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Fig. 1 Here we show the contour plots of the sfermion masses of the
first and second generation masses in the m1 = m2 versus cU plane for
(left) m3/2 = 120 TeV and (right) m3/2 = 150 TeV and tan β = 5.
The line types are as follows: left-handed squarks (yellow solid); right-

handed scalar up (light blue dashed); right-handed scalar down (light
green dotted); left-handed sleptons (red dot-dashed); and right-handed
sleptons (blue double-dot-dashed). The masses are in TeV

βm2
f̃

∼ O(1)
g2

i

(16π2)2 m2
3/2 ∼ (2 TeV)2

( m3/2

100 TeV

)2
. (21)

Once the sfermion masses become similar in size to the
beta function, the sfermion mass will be quickly driven to
zero.4 Thus, even if we adjust the boundary mass of the
sfermions, it will be difficult to get a sfermion mass smaller
than the size of the beta function.

In Fig. 2, we plot the mass contours for m3/2 versus cU . As
in Fig. 1, the lower region in the figure is excluded because
the scalar down is tachyonic. As can be seen in this figure
it is rather difficult to get the scalar down to be lighter than
2 TeV as m3/2 increases. In Fig. 2b, we have also plotted the
gluino mass as well as the ratio of the down squark mass to
the gluino mass, rdg . Examining rdg in Fig. 2b, we see that the
down squark is smaller than the gluino only for regions close
to the lower boundary. These regions correspond to regions
where the beta function for the down squark is similar in
size to the down squark. This is why this region is somewhat
small. Along this edge we see that the down squark is less
than 2.5 TeV only if m3/2 � 130 TeV. This corresponds to
a gluino mass of about 3 TeV. By optimizing the parameters
we can get down squarks below 2.5 TeV for a gluino mass of
about 3.3 TeV. Regardless, this corresponds to an increased

4 In this regime, the typical approximation of setting m f̃ = 0 in the
beta functions once m f̃ < Q, where Q is the RG scale, is invalid. In the
figures, we assume that we can extrapolate between regions where we
can safely integrate out the sfermions to the region where the sfermions
become tachyonic, knowing that all possible sfermion masses should
be traversed.

reach in the gluino mass and some interesting prospect for
detection at the LHC.

4 (g − 2) of the muon

One of the persistent problems facing the SM is the deviation
of the SM prediction for (g − 2)μ with respect to the experi-
mental value. The current deviation in the muon anomalous
magnetic moment is [65–67]

�aμ = (aμ)exp − (aμ)SM = (26.1 ± 8.1) × 10−10. (22)

As the LHC has pushed the scale of new physics to higher
and higher scales, it is becoming increasingly hard to find
explanations for this deviation. In fact, there are few models
of supersymmetry which predict a large enough �aμ.

In the mass insertion approximation, the supersymmet-
ric contributions to the anomalous magnetic moment of the
muon take the form5

�aμ = m2
μ tan βμ

[
g2

1 M1 F1(M1, mμ̃L , mμ̃R )

+ g2
i Mi Fi

12(Mi , μ, mμ̃L , mm̃ R )+g2
2 M2 F2(M2, μ, m ν̃ )

]
,

(23)

where mμ̃L ,R are smuon soft masses, and m ν̃ are sneutrino
soft masses. For spectra with all SUSY breaking masses and

5 In Eq. (23), F1 is related to �aN1
μ , F23 is related to �aN (2−4)

μ , and

F2 is related to �aC
μ of [97].
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Fig. 2 We show contours of the sfermion masses in the m3/2 versus cU plane. The contours are as in Fig. 1. On the right, the solid red line shows
the gluino mass contour and the dashed blue line shows the ratio rdg = md̃/mg̃ . The masses are in TeV

the Higgs bilinear term of similar size, the anomalous mag-
netic moment of the muon is roughly [97]

�aμ � 1

32π2 g2
2 tan β

mμ

m2
SUSY

� 2 × 10−9
(

260 GeV

mSUSY

)2 ( tan β

10

)
. (24)

with the largest contribution coming from F2. This gives a
rough estimate of the size of the Higgs bilinear and slepton
masses needed to explain �aμ. In general it is not easy to
get sleptons this light while still getting squark masses larger
than the LHC constraints. For this reason it is rather difficult
to explain �aμ in SUSY unless one splits the masses of the
first two generations from that of the third [98].

In PGM, this problem is exacerbated since sfermion
masses are pushed to even higher mass scales. Since the size
of μ is related to the stop masses, μ is also rather large.
If, however, the masses of the first two generations are sup-
pressed, �aμ may increase substantially. Because μ is rela-
tively unaffected by this, F1 and Fi

12 are still suppressed,

Fi
12 ∼ F2 ∼ 1

μ2m2
μ̃

. (25)

With F1 independent of μ, it has no residual suppression
and we have

�aμ = m2
μ tan βμg2

1 M1 F1(Mi , mμ̃L , mμ̃R ). (26)

Since this contribution to �aμ is proportional to μ, it will
grow linearly with μ. To show this important μ dependence,
we have plotted �aμ with respect to μ in Fig. 3 for the sample
spectrum M1 = 720 GeV, M2 = 230 GeV, mμ̃L = 660 GeV,

10-12

10-11

10-10

10-9

10-8

103 104 105

Δaμ

Δaμ

μ (GeV)

g1
2 M1 μ tanβ mμ

2 F1

total

gi
2 Mi μ tanβ mμ

2 Fi
12

g2
2 M2 μ tan β mμ

2 F2
2x10-9

Fig. 3 μ dependence of the various contributions to �aμ

and mμ̃R = 840 GeV and tan β = 25. With this rather large
hierarchy between the first two generation sfermion masses
and Higgs bilinear mass, it is possible to explain �aμ in PGM
like models for μ ∼ m3/2 � 25 TeV, even if the smuon
masses are larger than 600 GeV. Figure 3 also shows the
extrapolation between nearly degenerate masses and a hier-
archically larger μ. In the region of degenerate masses, the
Fi

12 contribution dominates. For μ increasing, the F1 quickly
becomes the dominant contribution to (g−2)μ, as we naively
argued above.

With heavy third generation masses and light first two gen-
eration masses, we also evade another possibly problematic
constraint, tachyonic staus. In PGM, the mixing of the left and
right sfermions is proportional to μmτ . Since the tau mass
is non-trivial, the Higgs bilinear mass cannot be too much
larger than the diagonal soft masses of the stau. Because
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the third generation masses are also large in the models we
are considering, this constraint is irrelevant. There is a much
weaker constraint coming from having positive masses for
the smuons. However, the muon is much lighter and so these
constraints are much weaker. This much weaker constraint
will allow us to push the value of μ up enough in order to
explain �aμ.

5 Less simple unification

Because of the difficulty in obtaining small sfermion masses
in the first two generations with universal constants, cU , we
next look at models where c1 
= c2 
= c3. This equates to con-
sidering a non-standard breaking of SU(5) or no gauge cou-
pling unification. One possibility for a non-standard breaking
of SU(5) is to take the product unification SU(5) × U (2) or
SU(5) × U (3) [99–101]. In these models, there are three ci .
Since the gauge fields of the standard model do not come
solely from the SU(5) but are mixtures of the SU(5) gauge
field and the additional gauge fields, the PV fields that reg-
ulate the low scale gauge fields will be mixed leading to
independent ci . The advantage of considering three ci is the
possibility of light sleptons which can explain the deviation
in (g −2)μ. Below, we will consider several different scenar-
ios. Initially, we will scan over generic values of the ci to see
what the parameter space looks like. Then we will focus on
some specific and unique examples which have some inter-
esting results.

5.1 Generic coefficients

In this section, we examine the parameter space for the ci . As
we will see below, the slepton masses are strongly influenced
by the Higgs soft masses, m2

1,2. For large and negative values

of m2
1,2, the two-loop gauge running from SU(2) and U (1)

are reduced. Since the slepton RG running is independent
of SU(3), these will be the dominant contributions to the
running making weak scale sleptons easier to realize.

With these relations in mind, we examine m3/2 = 80
TeV, m1 = m2 = −80 TeV, and tan β = 7 and scan over
the ci . m3/2 = 80 TeV is needed to get a sufficiently large
wino mass and tan β = 7 is chosen so the Higgs mass is
sufficiently light. As mentioned above, m1 = m2 = −80
TeV is chosen to reduce the beta functions of the sleptons
making it easier to realize weak scale sleptons. We then scan
over the ci with the results found in the top two panels of
Fig. 4. As can be seen in these figures, the correction to
(g − 2)μ is large enough to account for the experimental
discrepancy, but it does require somewhat special values for
the ci . In each figure, we distinguish between cases for which
one (or both) of the Higgs squared masses is negative at the
GUT scale, m2

i + μ2 < 0, for which there are potential

cosmological problems [102] and those which are always
safe since the Higgs squared masses are both always positive.

To better understand the parameter space, we give some
additional plots. In bottom left of Fig. 4, we plot the average
slepton mass, ml̃ = (meL = meR )/2, with respect to �aμ.
As can be seen in these plots, the average slepton mass is
rather heavy even for points that can explain g − 2. This is
due to a large μ. The other two important parameters for
constraining these models, the wino mass (for clarity, mχ/2
is plotted) and Higgs mass, are also plotted with respect to the
average slepton mass in the bottom right figure. The wino and
Higgs mass are fairly independent of the slepton masses. On
the other hand, �aμ is very sensitive to the average slepton
mass. Note that, while the Higgs masses shown are somewhat
high, we expect that there is a roughly 2 GeV uncertainty in
the calculation of its mass (cf. [50].

To portray the sensitivity of the RG running on the Higgs
soft masses, we show similar plots for m1 = m2 = 0.
These plots can be seen in Fig. 5. There are several impor-
tant things to note. First, the sleptons tend to have simi-
lar sizes since this is predominantly set by m3/2. However,
the lighter slepton masses arise for ci , which are tuned to
a greater degree. Another important difference is a large
decrease in the wino mass. This is due to a significant change
in m A and μ. Because the threshold corrections to the wino
depend strongly on both μ and m A, the wino mass is much
lighter for m1 = m2 = 0. This is an additional reason why
m1 = m2 = −80 TeV is advantageous. For m1 = m2 = 0,
we would need to take a larger value of m3/2 making it more
difficult to get weak scale sleptons.

5.2 General coefficients with light squarks

Next, we examine some special values of the ci , which might
be interesting. In particular, we first allow c3 to vary so that
we obtain light first and second generation squarks. Although
it may seem this has no affect on g−2, it will have some rather
important and unexpected effects. In Fig. 6, we examine the
Higgs mass for different but fixed values of c1,2 and vary c3,
which we will parameterize by the left-handed squark mass,
m Q̃ .

In this figure, we see that as soon as m Q̃ � 5 TeV, the
Higgs masses begins to decrease, although naively, it would
be expected that the Higgs mass is independent of the mass
of first two generation squarks. This behavior is important
for explaining the deviation in (g − 2)μ, because it allows
us to push up the value of tan β and still have a sufficiently
small Higgs mass. The Higgs mass is sensitive to the first two
generation squark masses through alterations in the running
of the gauge and Yukawa couplings. When the first, second,
and third generation sfermion masses are similar there are
effectively two regions of RG running, above and below the
sfermion mass scale. However, if the first and second gen-
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Fig. 4 The change in the anomalous magnetic moment of the muon,
�aμ, with respect to c1 (top left), c2 (top right), and average slep-
ton mass, ml̃ ≡ (meL + meR )/2 (bottom left) for m1/2 = 80 TeV,
m1 = m2 = −80 TeV, and tan β = 7. The dotted line corresponds to
the 2σ lower limit of �aμ. The red +’s have m2

1+μ2 < 0 or m2
2+μ2 < 0

and the green ×’s have m2
1,2 + μ2 > 0. The bottom right panel shows

the change in the mχ0 /2 (green ×’s) and the Higgs mass (red +’s) with
respect to the average slepton mass. All four panels are based on the
same data

erations are sufficiently separated from the third generation,
there is a third region that emerges. In this third region, the
beta function for SU(2) nearly vanishes. This leads to rather
large deviations in the gauge couplings for the scale where
the third generation decouples. This deviation in the cou-
pling leads to a significant change in the Higgs mass. As it
turns out, we can get a light enough Higgs mass even for
large tan β. Because of this newly found freedom in tan β,
we can further enhance �aμ in the region where the squark
masses are light by taking tan β large. This enhancement
of �aμ for regions with light squark masses can be seen
in Fig. 7. For a sample spectrum of points from Figs. 6
and 7, see the columns labeled A and B in the table in
Appendix C.

Since the gauge couplings are deflected by the alteration
of the beta functions from light first and second generation
sfermions, we will also see changes in the masses of the gaug-
inos. These changes are fairly mild as can be seen in Fig. 8,
although the scaling on the axis makes it appear somewhat
drastic. For completeness, we also plot the slepton masses
versus the anomalous magnetic moment. This is shown in
Fig. 9.

5.3 General coefficients plus

Finally, we consider some models which can relax the con-
straint on the wino mass. Since it is this constraint which
is responsible for pushing up the gravitino mass, relaxing
this constraint will drastically reduce the fine tuning needed
to get light sleptons. There are actually two simple ways to
evade the wino mass constraint: increase its mass for a given
gravitino mass or change the decay width of the wino. Both
of these mechanisms require dark matter to come from some
source other than the lightest supersymmetric particle (LSP).
However, since the constraints on wino dark matter are get-
ting ever more stringent [103,104], it is worth examining the
case where the wino is not the dominant source of dark mat-
ter. One interesting possibility is to assume that dark matter
arises from a PQ-like theory. The fields responsible for PQ
symmetry breaking then act as messenger for the gauginos
[105] enhancing the gaugino masses for a given value of the
gravitino mass. Another option is to allow R-parity violation.
This relaxes the constraint on the wino by increasing its decay
width. In PGM, the LSP is a neutral wino and the charged
wino is about 160 MeV heavier. Because these particles are
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Fig. 5 Same as Fig. 4 except with m1 = m2 = 0
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Fig. 6 Here we plot the Higgs mass versus the mass of the left-handed
squark mass of the first two generations for (left) tan β = 7 and (right)
tan β = 35. The red +’s are for c1 = 0.7 and c2 = 0.05. The green
×’s are for c1 = 0.75 and c2 = 0.05. The blue stars are for c1 = 0.7

and c2 = 0.1. The magenta boxes are for c1 = 0.75 and c2 = 0.1. The
cyan filled boxes are for c1 = 0.7 and c2 = 0.2. The gray circles are
for c1 = 0.7 and c2 = 0.2. The horizontal dashed line corresponds to
the 2 σ lower limit on �aμ

nearly degenerate there is a strong phase space suppression of
the decay. If R-parity-violating interactions are included, the
charged wino can decay directly to standard model particles
alleviating the phase space suppression.6

Because of the additional features of these models, a much
lighter gravitino mass is allowed. In this case, the two-loop

6 To evade baryon asymmetry washout, some model building is needed.
See the review in [106].

beta functions are much smaller and we can easily get a large
enough correction to (g − 2)μ to explain the experimental
discrepancy. Since m3/2 is much smaller, we are free to take
large tan β. Here, we will take c1 = c2 = 1/2, c3 = 2,
m3/2 = 30 TeV, and tan β = 35 and scan over m1 = m2.
We repeat this exercise for c1 = c2 = 3/4. The results of
these scans can be seen in Fig. 10. To see a sample spectrum
of points from Fig. 10, see the columns labeled C and D
in the table in Appendix C. As can be seen from the lower
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Fig. 8 Here we plot the change in the neutralino mass, mχ0 , with
respect to the left-handed squark mass. The red +’s are for c1 = 0.7 and
c2 = 0.05 with tan β = 35. The green ×’s are likewise for tan β = 7.
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Fig. 9 Here we plot the change in the anomalous magnetic moment with respect to the average slepton masses for (left) tan β = 7 and (right)
tan β = 35. The symbols used are identical to that in Fig. 6

panel of Fig. 10, the anomalous magnetic moment of the
muon can be sufficiently enhanced with out tuning the c1, c2.
Since the only parameters that are changing in these figures
are the Higgs boundary masses, the Higgs mass is relatively
unchanged and about 127 GeV.

Lastly, we plot the mass spectra and anomalous magnetic
moment of the muon with respect to c1 = c2, with c3 = 2,
m3/2 = 30 TeV, m1 = m2 = 0, and tan β = 35. In Fig. 11,
we see that by varying c1, c2, we can easily get an anomalous
magnetic moment consistent with experiment.
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Fig. 10 In the top left and top right panels we show the mass spectra
with respect to m1 = m2 for m3/2 = 30 TeV, c3 = 2, tan β = 35, and
c1 = c2 = 0.5 and c1 = c2 = 0.75, respectively. The red + is for the
left-handed slepton. The green ×’s are for the right-handed sleptons.
The blue star is for the left-handed squarks. The magenta box is for

the right-handed up squark. The cyan filled box is for the right-handed
down squark. The yellow circle is for μ/10. In the lower panel, we
have plotted aμ for the same sets of parameters. The red +’s are for
c1 = c2 = 0.5 and the green ×’s are for c1 = c2 = 0.75
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Fig. 11 In the left panel, we show the mass spectra for m3/2 = 30 TeV, c3 = 2, tan β = 35, and m1 = m2 = 0. The symbols are as in Fig. 10. In
the right panel, we have plotted �aμ for the same set of parameters

6 Conclusions

The recent discovery of the Higgs boson has placed rather
severe constraints on simple models like the CMSSM. To get
a reasonable Higgs mass (mh > 124 GeV) in the CMSSM,
supersymmetry breaking mass parameters must be pushed to
order 1 TeV, resulting in squark and gluino masses of order

2 TeV. If, however, there is a hierarchy between the sfermion
masses and gaugino masses, such as in split supersymmetry,
PGM, and strong moduli stabilization, the observed Higgs
mass can easily be accommodated. Furthermore, models
such as PGM can be made consistent with radiative elec-
troweak symmetry breaking for a limited range in tan β. In
addition, models with strongly stabilized moduli tend to have
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a much simpler cosmology, avoiding the problems of excess
entropy production and/or gravitino production [92]. Indeed,
for quite some time cosmological model building has sug-
gested this hierarchy.

Although simple models like PGM have many advantages,
there are some drawbacks to heavy sfermions. If the squarks
are heavy, detection at the LHC may be rather difficult. Fur-
thermore, the deviation in (g − 2)μ has little hope of being
explained, in this case. Since both of these experimental dif-
ficulties hinge on the masses of the first two generations,
while the Higgs mass depends primarily on the third genera-
tion masses, there may be hope of simultaneously getting all
of these nice features. In fact, if the first and second genera-
tion masses are generated at one loop, with respect to m3/2,
while the third generation masses remain at tree level, both of
these difficulties can be resolved. In these scenarios, the down
squark can be pushed below the gluino mass increasing the
reach of the LHC for standard SU(5)-based models. These
models also allow the sfermions to be light while keeping μ

of order m3/2. If the theory stems from product unification
or has no unification at all, (g − 2)μ can be explained, even
for sleptons of order 1 TeV.

A nice and simple way to generate these one-loop masses
is through anomaly-like contributions. If the regulated theory
has Pauli–Villars fields which interact with the hidden sec-
tor, the theory will have one-loop masses generated by the
gauge and Yukawa couplings [83,84]. The interactions of the
Pauli–Villars fields with the hidden sector may be a natural
part of string theory and by merely including this additional
interaction at the Planck scale, we obtain one-loop masses.
Since we are quite ignorant about what the universe is like at
the Planck scale, this is an acceptable assumption.

Lastly, we comment on the testable signatures of these
models. One unique type of spectrum that can come from the
type PGM we considered is a down squark that is lighter than
the gluino. This unique spectra would result in an extended
reach for the LHC and HLHC and would be fairly indicative
of these types of models. If this form of PGM explains the
deviation in the experimental value of (g − 2)μ, we also
expect that the wino should be seen at the ILC. Otherwise, the
sleptons would be too heavy to give a significant contribution
to (g−2)μ. Although these signatures are not necessary, they
would be highly suggestive of this type of PGM model.
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Appendix A: Off-diagonal sfermion squared masses

In the split family scenarios, the model generically induces
FCNC processes through the flavor structure of the Yukawa
coupling (see e.g. Ref. [107]). In our model, however, the
FCNC contributions are suppressed, since the soft masses in
the first two generations are mainly generated by the one-
loop anomaly mediated contributions and, hence, are very
close to each other.

In the soft mass diagonalized basis, the mass terms and
the supersymmetric Yukawa interaction terms are given by

L � m2
f̃ 0

(| f̃1|2 + | f̃2|2) + m2
f̃ 3

| f̃3|2,
W = ūi

R Y u
i j Q j

L Hu + d̄i
R Y d

i j Q j
L Hu + ēi

R Y e
i j L j

L Hu . (27)

In this basis, we expect

|Y u,d,e
i j | � |Y u,d,e

33 |, (i 
= 3 or j 
= 3). (28)

when we assume that the sfermion mass hierarchies are
linked to the Yukawa coupling hierarchies. It should be noted
that the left–right mixing soft masses are safely neglected
since they are suppressed by the Higgs expectation value
and by the small Yukawa couplings.

First, let us discuss the flavor mixing effects in the first two
generations at the tree level. For that purpose, it is convenient
to rotate the above scalar mass diagonal basis into the so-
called super-CKM basis by

ui
L = Ui j

u ũL j , di
L = Ui j

d d̃L j ,

ūi
R = V i j

u ˜̄u R j , d̄i
R = V i j

d
˜̄d R j ,

(29)

where the supersymmetric Yukawa couplings are diagonal-
ized,

V T
u Y uUu = Y u

diag, V T
d Y dUd = Y d

diag. (30)

The CKM matrix is given by VCKM = U †
u Ud . In this basis,

the soft squared masses have off-diagonal elements,

m2
f̃ i j

= m2
f̃ 0

δi j + X∗
3i X3 j (m

2
f̃ 3

− m2
f̃ 0

), (31)

and similarly
(

m2
f̃ i j

)−1=
(

m2
f̃ 0

)−1
δi j +X∗

3i X3 j ((m
2
f̃ 3

)−1−(m2
f̃ 0

)−1),

(32)

where X = Uu, Ud , V ∗
u , V ∗

d . The mixing angles, X31, X32,
are expected to be of O(λ3) and O(λ2) with the Wolfenstein
parameter λ � 0.2, respectively. Therefore, from the above
expression of m−2

i j , we see that the flavor mixing parameter
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in the first two generations is of the order of |X31 X32| at the
tree level and hence is highly suppressed.

Next, let us discuss the flavor-violating effects from the
RGEs. In a general flavor basis, the flavor dependent part of
the RGEs of the soft masses are given by7

d

dt
m2

Q i j = 1

16π2

[
(m2

Q ik + 2m2
Hu

δik)Y
u†
k
 Y u


j

+(m2
Q ik + 2m2

Hd
δik)Y

d†
k
 Y d


j + (Y u†
ik Y u

k
+
Y d†

ik Y d
k
)m

2
Q 
j + 2Y u†

ik m2
ū k
Y u


j + 2Y d†
ik m2

d̄ k

Y d


j

]
, (33)

d

dt
m2

u i j = 1

16π2

[
(2m2

ū ik + 4m2
Hu

δik)Y
u†
k
 Y u


j

+2Y u†
ik Y u

k
m2
ū 
j + 4Y u†

ik m2
Q k
Y u


j

]
, (34)

d

dt
m2

d̄ i j
= 1

16π2

[
(2m2

d̄ ik
+ 4m2

Hd
δik)Y

d†
k
 Y d


j

+2Y d†
ik Y d

k
m2
d̄ 
j

+ 4Y d†
ik m2

Q k
Y d

j

]
. (35)

In the super-CKM basis, by neglecting the Yukawa cou-
plings in the first two generations, the above RGEs are
reduced to

d

dt
m2

Q i j

� 1

16π2

⎛
⎜⎝

0 0 y2
t m2

Q13
0 0 y2

t m2
Q23

y2
t m2

Q31 y2
t m2

Q32 2y2
t (m2

Hu
+ m2

Q̃3
+ m2

ũ3)

⎞
⎟⎠ ,

d

dt
m2

ū i j

� 1

16π2

⎛
⎜⎝

0 0 2y2
t m2

u13
0 0 2y2

t m2
u23

2y2
t m2

u31 2y2
t m2

u32 4y2
t (m2

Hu
+ m2

Q̃3
+ m2

ũ3)

⎞
⎟⎠ ,

d

dt
m2

d̄ i j

� 1

16π2

⎛
⎜⎝

0 0 2y2
b m2

d13
0 0 2y2

b m2
d23

2y2
b m2

d31 2y2
b m2

d32 4y2
b (m2

Hd
+ m2

Q̃3
+ m2

d̃3
)

⎞
⎟⎠ ,

Therefore, the soft squared mass matrices in Eq. (31)
receive flavor-violating radiative corrections.

By taking the inverse of the radiatively corrected soft mass
squared at the low energy scale, we immediately find the
radiatively induced flavor mixing parameters

7 Flavor independent RGE contributions are absorbed in the m2
f̃ 0

and

m2
f̃ 3

and hence do not lead to an additional flavor mixing to the tree-level

effects.

(δd
12)L L ∼ y2

t |X32 X31|
16π2

⎛
⎝m2

f̃ 3

m2
f̃ 0

⎞
⎠ log

Minput

m f̃ 3

� 10−3
(

X32 X31

10−5

)( m f̃ 3

100 TeV

)2
(

3 TeV

m f̃ 0

)2

, (36)

(δd
12)R R ∼ y2

b |X32 X31|
16π2

⎛
⎝m2

f̃ 3

m2
f̃ 0

⎞
⎠ log

Minput

m f̃ 3

� 10−4
(

X32 X31

10−5

)( m f̃ 3

100 TeV

)2
(

3 TeV

m f̃ 0

)2

, (37)

at leading order. Here, we have estimated the radiative cor-
rections in the leading log approximation. We have also
used yb � 0.2 assuming tan β � 10. As a result, the
RGE induced FCNC contributions are also consistent with
the constraints from the K0–K̄0 mixing (�mK and ε);
((δd

12)L L(δd
12)R R)1/2 � 10−3(md̃/3 TeV) and (δd

12)L L �
10−2(md̃/3 TeV) [108].

Appendix B: Important contributions to the beta function

The important contributions to the RG running of the
sfermion masses come from loops of D terms and so are
proportional to gauge couplings. The pure gauge contribu-
tions are [109]

�β
gY

m2
f̃

= Y 2

3

g4
Y

(16π2)2

[
3(m2

2 + m2
1)

+ Tr
(

m2
Q + 3m2

L + 8m2
u + 2m2

d + 6m2
e

)]
(38)

�β
g2

m2
f̃

= 3g4
2

(16π2)2

[
m2

2 + m2
1 + Tr

(
3m2

Q + m2
L

)]
(39)

�β
g3

m2
f̃

= 16

3

g4
3

(16π2)2 Tr
[
2m2

Q + m2
u + m2

d

]
. (40)

The fourth and final important contribution comes from
adding a loop to the one-loop D term diagrams of hyper-
charge. This contribution is [109]

S ′ = Tr
[
−(3m2

1 + m2
Q)Y †

u Yu + 4Y †
u m2

uYu

+ (3m2
2 − m2

Q)Y †
d Yd − 2Y †

d m2
dYd

+(m2
1 + m2


)Y
†
e Ye − 2Y †

e m2
eYe

]
+
[

3

2
g2

2 + 3

10
g2

1

]

×
{

m2
2−m2

1−Tr(m2

)
}
+
[

8

3
g2

3 + 3

2
g2

2 + 1

30
g2

1

]
Tr(m2

Q)

−
[

16

3
g2

3 + 16

15
g2

1

]
Tr(m2

u) +
[

8

3
g2

3 + 2

15
g2

1

]
Tr(m2

d)

+6

5
g2

1Tr(m2
e), (41)
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and contributes to the running of the sfermion masses as

�βS ′
m2

f̃

= 2Y
g2

1

(16π2)2 S ′, (42)

where g2
Y = (3/5)g2

1.
Here we give a naive estimate of the size of these contribu-

tions to the sfermion masses if we assume the third generation
masses dominate. We will also assume that the third genera-
tion masses do not run. Although this is not true, it does give
us a good order of magnitude estimate for the size of these
contributions. Since the Higgs soft mass running complicates
our approximation, we will focus on the SU(3) contribution.
In this approximation, we have

64

3

g4
3

(16π2)2 m2
3/2. (43)

Using the RGE for the gauge couplings we find that this
give

�m2
f̃

= − 2

9π2

(
g2

3(μ) − g2
3(μ0)

)
m2

3/2, (44)

which is of the order of one loop. A similar but slightly less
accurate calculation can be done for each gauge group with
similar results.

Appendix C: Sample points

Here, we display some sample spectra for a variety of the
different models we consider. For points A and B, Figs. 6 and
7 (right) and 6 and 7 (left) respectively, the points in the figure
are identified by c3 = 1.82 corresponding to m Q̃ � 3.9 TeV.
For points C and D, in Fig. 10 (a,b respectively), the input
used is m1 = m2 = 0. Point E in Fig. 1 is specified by
m1 = m2 = 0 and c1 = c2 = c3 = 1.24 (Table 1).

Table 1 Some sample spectra
for the difference scenarios we
consider

Points A and B are sample
spectra from the left and right
panels of Fig. 6. Points C and D
are sample spectra from the top
left and right panels of Fig. 10.
Point E is a sample spectrum
from the left panel of Fig. 1. The
input masses are in TeV and the
output masses are in GeV

A B C D E

m3/2 80 80 30 30 120

m1 = m2 −80 −80 0 0 0

tan β 35 7 35 35 5

c1 0.75 0.75 0.5 0.75 1.24

c2 0.05 0.05 0.5 0.75 1.24

c3 1.82 1.82 2 2 1.24

mχ0
1

259 242 95 96 309

mχ0
2

758 760 283 285 1142

mχ0
3

87839 83844 21727 21768 84544

mχ0
4

−87839 −83844 −21727 −21786 −84544

mχ+
1

259 242 95 96 309

mχ+
2

87839 83844 21728 21769 84545

mg̃ 2085 2033 837 838 2723

mũ R 5809 6082 2388 2469 6685

mũL 3919 3920 2210 2454 7935

md̃R
4739 4696 2207 2228 2447

md̃L
3919 3921 2212 2456 7936

mt̃1 72939 72532 23912 23888 94485

mt̃2 75404 76096 26153 26136 107671

mb̃1
75411 76102 26165 26148 107721

mb̃2
77822 79536 28228 28217 119393

mẽR 2624 1730 386 1007 6050

mẽL 362 1317 640 1298 8241

m ν̃e 353 1314 635 1296 8240

m τ̃1 77433 79827 27983 27980 119757

m τ̃2 78732 79929 28994 28992 119822

m ν̃τ
78732 79929 28994 29882 119821

m A 19989 34197 15285 15304 87935

mh 127 126 127 127 128

μ 78039 80939 19471 19508 80826

(g − 2)μ 2.4 × 10−9 2.4 × 10−10 9.3 × 10−9 6.4 × 10−10 1.2 × 10−12
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Appendix D: Toy model with one-loop masses

Here, we provide a simple example of PV renormalization.
This will be more of a sketch then a detailed calculation
since we will not discuss the ηi which will multiply each of
the loops and are important for the cancelation of infinities.
These factors are needed to get the exact coefficients of the
one-loop masses. However, since this is not important to our
considerations we will not address this issue and mostly focus
on the diagrams themselves. We will also use a supergraph
mass insertion method, which is perfectly justified since we
assume the supersymmetric masses are much larger than the
SUSY breaking masses. We will start with the model

K = Q†eV Q, (45)

where the Q are matter fields, and V represents the gauge
fields. We take no superpotential for the physical fields. The
Kälher potential for the PV fields is

KPV=Q′†eV Q′ + Q̄′†eV Q̄′+Tr(�†eV �)+Tr(�̄†eV �̄),

(46)

and superpotential

WPV = μ
(
Q′ Q̄′ + ��̄

)+ gi
√

2Q̄′T a�a Q, (47)

with � = �aT a and the same for �̄. Now we calculate the
one-loop wave function renormalization and the PV one-loop
contribution that renormalizes it. The important graphs can
be seen in Fig. 12 which is in supergraph notation. We have
also suppressed the covariant derivatives. To be clear, we will
include an x for mass insertions in the graphs when we are
referring to super propagators of the type 〈��̄〉 and no x
when we mean the propagators of the type 〈�†�〉.

If we calculate these graphs, we find a total contribution
of

�K = 2g2
i C(r)

∫
dθ4 d4 p

(2π)4 Q†(−p, θ̄ )Q(p, θ)

×
(

B0

(
p2, m2

Q, 0
)

− B0

(
p2, μ, μ

))
, (48)

where

B0

(
p2, m2

1, m2
2

)
= i

∫
d4k

(2π)4

1

k2 − m2
1

1

(p − k)2 − m2
2

(49)

Examining �K , we see that this integral is indeed finite
as long as μ is finite. Since we do not care about the details
of this renormalization we will just leave it at that. Next we
need to include SUSY breaking. Looking at the graphs in
Fig. 12, we can get some insight into how the PV fields can
act as messengers. First, we comment on our calculation of
the one-loop mass for Q. In the example we are consider-
ing, Q̄′ is one of the field running in the loop which renor-
malizes the gauge interactions. If Q̄′ feels SUSY breaking
differently than Q, the PV renormalization scheme would
not work because there would be uncanceled infinities. The
field Q′, on the other hand, never shows up in the one-loop
supergraph. Because of this fact, the theory can be renormal-
ized, no matter how Q′ feels supersymmetry breaking. To
show this, we will calculate two more graphs. To incorporate
SUSY breaking, we will modify the Kähler potential to read

KPV = (1 + θ4m2
Q̃′)Q′†eV Q′ + (1 + θ4m2

˜̄Q′)Q̄′†eV Q̄′

+(1 + θ4m2
�̃′)Tr(�†eV �) + (1 + θ4m2

˜̄�′)Tr(�̄†eV �̄)

(50)

Using these corrections to the Kähler potential as interac-
tions in our graphs we get the additional diagrams found in
Fig. 13, which are again supergraphs.

With a mass insertion of m2
˜̄Q′ , there is an additional con-

tribution to one-loop renormalization of the Q of

�K = 2g2
i C(r)m2

˜̄Q′

∫
dθ4 d4 p

(2π)4 Q†(−p, θ̄ )Q(p, θ)

×
(

C1

(
p2, μ2, μ2, μ2

))
(51)

where

C1

(
p2, m2

1, m2
2, m2

3

)

= i
∫

d4k

(2π)4

1

k2 − m2
1

k2

k2 − m2
2

1

(p − k)2 − m2
3

(52)

As can be seen from power counting, this is logarithmi-
cally divergent. Now, if Q had a SUSY breaking mass of
m2

˜̄Q′ , we would get another diagram from the physical fields

which would cancel this contribution. Clearly, we need these
masses to be equal or our PV regularization does not work.

Fig. 12 The Feynman
diagrams for renormalizing
Yang–Mills theory at one loop

(a) (b)
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Fig. 13 The Feynman
diagrams which could give mass
at one-loop. (left) This diagram
is only allowed if the physical
field also has the same soft
mass. (right). This diagram
gives a finite contribution and is
always allowed

(a) (b)

Since we are considering the mass of the physical fields to
be zero, this type of diagram will not appear. However, if we
include a mass insertion of m2

Q̃′ things are different. Here, we

need to change the propagators in the loop from 〈Q̄† Q〉 to
〈Q Q̄〉〈Q′† Q̄′†〉m2

Q̃′θ
4. Doing this we get a mass contribution

�K = 2g2
i C(r)m2

Q̃′

∫
dθ4 d4 p

(2π)4 Q†(−p, θ̄ )θ4 Q(p, θ)

×
(

C0

(
p2, μ2, μ2, μ2

))
(53)

where

C0

(
p2, m2

1, m2
2, m2

3

)

= i
∫

d4k

(2π)4

1

k2 − m2
1

m1m2

k2 − m2
2

1

(p − k)2 − m2
3

(54)

C1(p2, μ2, μ2, μ2) is finite even in the limit μ → ∞ and
can easily be evaluated giving

�K = 2g2
i C(r)

m2
Q̃′

16π2

∫
dθ4 d4 p

(2π)4 Q†(−p, θ̄ )θ4 Q(p, θ).

(55)

There is an identical diagram with a mass insertion in the
�a line, giving the same result as m2

˜̄Q′ → m2
�̃

. Summing

these contributions to the mass of Q we find

m2
Q̃

= g2
i C(r)

m2
˜̄Q′ + m2

�̃

8π2 . (56)

This means we get a one-loop SUSY breaking soft mass,
no matter what the messenger scale is. Also, this is the exact
one-loop contribution. Any additional insertions of the soft
mass in the diagram will lead to corrections of order m2

f̃
/μ2,

which vanish when we take μ → ∞. This is good since the
PV fields mass should be taken to infinity in the end. Also,
since the supersymmetric mass is much larger than the SUSY
breaking masses for the PV fields, the sign of the soft mass
does not need to be positive. This means that the one-loop
mass can be positive or negative. This simple toy model gives
results which are consistent with those found in [83,84].

Although we have applied this calculation to PV fields,
it does have broader implications. For example, if the PV

fields were take as just additional GUT scale fields, they
would still generate one-loop masses if they interacted with
hidden sector. Therefore, we can generate one-loop masses
from physical fields at any scale using this type of setup.
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