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1. INTRODUCTION

With the general availability of 3D digitizers, scanners and
the technology innovation in 3D graphics and computa-
tional equipment, large collections of 3D graphical mod-
els can be readily built up for different applications [1],
that is, in CAD/CAM, games design, computer anima-
tions, manufacturing, and molecular biology. For exam-
ple, a high number of new 3D structures of molecules
have been stored in the worldwide repository Protein Data
Bank (PDB) [2], where the number of the 3D molec-
ular structure data increases rapidly, currently exceeding
24 000. For such large databases, the method whereby 3D
models are sought merits careful consideration. The sim-
ple and efficient query-by-content approach has, up to now,
been almost universally adopted in the literature. Any such
method, however, must first deal with the proper posi-
tioning of the 3D models. The two prevalent in the lit-
erature methods for the solution to this problem seek ei-
ther:

(i) pose normalization: models are first placed into a
canonical coordinate frame (normalizing for transla-
tion, scaling, and rotation), then, the best measure

of similarity is found comparing the extracted feature
vectors; or

(ii) descriptor invariance: models are described in a trans-
formation invariant manner, so that any transforma-
tion of a model will be described in the same way, and
the best measure of similarity is obtained at any trans-
formation.

1.1. Background and relatedwork

1.1.1. Pose normalization

Most of the existing methods for 3D content-based search
and retrieval of 3D models are applied following their place-
ment into a canonical coordinate frame.

In [3] a fast querying-by-3D-model approach is pre-
sented, where the descriptors are chosen so as to mimic the
basic criteria that humans use for the same purpose. More
specifically, the specific descriptors that are extracted from
the input model are the geometrical characteristics of the 3D
objects included in the VRML such as the angles and edges
that describe the outline of the model. Ohbuchi et al [4]
employ shape histograms that are discretely parameterized

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81849905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 EURASIP Journal on Advances in Signal Processing

along the principal axes of inertia of the model. The three
shape histograms used are the moment of inertia about the
axis, the average distance from the surface to the axis, and
the variance of the distance from the surface to the axis. Os-
ada et al. [5, 6] introduce and compare shape distributions,
which measure properties based on distance, angle, area, and
volumemeasurements between random surface points. They
evaluate the similarity between the objects using ametric that
measures distances between distributions.

In [7] an approach that measures the similarity among
3D models by visual similarity is proposed. The main idea
is that if two 3D models are similar, they also look similar
from all viewing angles. Thus, one hundred projections of
an object are encoded both by Zernike moments and Fourier
descriptors as characteristic features to be used for retrieval
purposes.

In [8, 9] the authors present a method where the descrip-
tor vector is obtained by forming a complex function on the
sphere. Then, the fast Fourier transform (FFT) is applied on
the sphere and Fourier coefficients for spherical harmonics
are obtained. The absolute values of the coefficients form the
descriptor vector.

In [10] a 3D search and retrieval method based on the
generalized radon transform (GRT) is proposed. Two forms
of the GRT are implemented: (a) the radial integration trans-
form (RIT), which integrates the 3D model’s information on
lines passing through its center of mass and contains all the
radial information of the model, and (b) the spherical inte-
gration transform (SIT), which integrates the 3Dmodel’s in-
formation on the surfaces of concentric spheres and contains
all the spherical information of the model. Additionally, an
approach for reducing the dimension of the descriptor vec-
tors is proposed, providing a more compact representation
(EnRIT), which makes the procedure for the comparison of
two models very efficient.

The aforementioned methods are applied following
model normalization. In general, models are normalized by
using the center of mass for translation, the root of the av-
erage square radius for scaling, and the principal axes for
rotation. While the methods for translation and scale nor-
malization are robust for object matching [11], rotation nor-
malization via PCA-alignment is not considered robust for
many matching applications. This is due to the fact that
PCA-alignment is performed by solving for the eigenvalues
of the covariance matrix. This matrix captures only second-
order model information, and the assumption when using
PCA is that the alignment of higher frequency information
is strongly correlated with the alignment of the second or-
der components [12]. Further, PCA lacks any information
about the direction (orientation) of each axis and finally, if
the eigenvalues are equal, no unique set of principal axes can
be extracted.

1.1.2. Descriptor invariance

Relatively few approaches for 3D-model retrieval have been
reported in which pose estimation is unnecessary. Topology
matching [13] is an interesting and intricate such technique,
based on matching graph representations of 3D-objects.

However, the method is suitable only for certain types of
models.

The MPEG-7 shape spectrum descriptor [14] is defined
as the histogram of the shape index, calculated over the entire
surface of a 3D object. The shape index gives the angular co-
ordinate of a polar representation of the principal curvature
vector, and it is implicitly invariant with respect to rotation,
translation and scaling.

In [15] a web-based 3D search system is developed that
indexes a large repository of computer graphics models col-
lected from the web supports queries based on 3D sketches,
2D sketches, 3D models, and/or text keywords. For the
shape-based queries, a new matching algorithm was devel-
oped that uses spherical harmonics to compute discriminat-
ing similarity measures without requiring model alignment.
In [12] a tool for transforming rotation-dependent spheri-
cal and voxel shape descriptors into rotation invariant ones
is presented. The key idea of this approach is to describe a
spherical function in terms of the amount of energy it con-
tains at different frequencies. The results indicate that the ap-
plication of the spherical harmonic representation improves
the performance of most of the descriptors.

Novotni and Klein presented the 3D “Zernike” moments
in [16]. These are computed as a projection of the func-
tion defining the object onto a set of orthonormal functions
within the unit ball; their work was an extension of the 3D
Zernike polynomials, which were introduced by Canterakis
[17]. From these, Canterakis has derived affine invariant fea-
tures of 3D objects represented by a volumetric function.

In [18], a 3D shape descriptor was proposed, which is in-
variant to rotations of 90 degrees around the coordinate axes.
This restricted rotation invariance is attained by a very coarse
shape representation computed by clustering point clouds.
Since the normalization step is omitted, if an object is ro-
tated around an axis by a different angle (e.g., by 45 degrees),
the feature vector alters significantly.

In this paper a novel framework of rotation invariant de-
scriptors is constructed without the use of rotation normal-
ization. An efficient 3Dmodel search and retrieval method is
then proposed. This is an extension of the 2D image search
technique where the “trace transform” is computed by trac-
ing an image (2D function) with straight lines along which
certain functionals of the image are calculated [19].

The “spherical trace transform,” proposed in this paper,
consists of tracing the volume of a 3D model with

(i) radius segments,
(ii) 2D planes, tangential to concentric spheres.

Then using three sets of functionals with specific proper-
ties, completely rotation invariant descriptor vectors are pro-
duced.

The paper is organized as follows. In Section 2 the
proposed framework with the mathematical background is
given. Section 3 presents in detail the proposed descriptor ex-
traction method. In Section 4 the matching algorithms used
are described. Experimental results evaluating the proposed
method and comparing it with other methods are presented
in Section 5. Finally, conclusions are drawn in Section 6.
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Figure 1: The spherical trace transform.

2. THE SPHERICAL TRACE TRANSFORM

Let M be a 3D model and f (x) the binary volumetric func-
tion ofM, where x = [x, y, z]T , and

f (x) =
⎧
⎨

⎩

1 when x lies within the 3D model’s volume,

0 otherwise.
(1)

Let us define planeΠ(η, ρ) = {x | xT ·η = ρ} to be tangential
to the sphere Sρ with radius ρ and center at the origin, at the
point (η, ρ), where η = [cosφ sin θ, sinφ sin θ, cos θ] is the
unit vector inR3, and ρ a real positive number (Figure 1(a)).
Additionally, let us define radius segment Λ(η, ρ) = {x |
x/|x| = η, ρ ≤ |x| < ρ + Δρ}, where Δρ is the length of
the radius segment (Figure 1(b)).

The intersection of Π(η, ρ) with f (x) produces a 2D

function f̂ (a, b), (a, b ∈ Π(η, ρ)∩ f (x)), which is then sam-

pled and its discrete form f̂ (i, j), (i, j ∈ N ) is produced.
Similarly, the intersection ofΛ(η, ρ) with f (x) produces a 1D
function f̌ (c) (c ∈ Λ(η, ρ)∩ f (x)) which is also sampled and
its discrete form f̌ (i), (i ∈ N ) is produced. These two forms

of data, f̂ (i, j) and f̌ (i), will serve as input in the sequel.
The “spherical trace transform,” proposed in this paper

can be expressed using the general formulas

gs(T ;F;h) = T
(
F
(
h(·))),

ga(T ;A;F;h) = T
(
A
(
F
(
h(·)))),

(2)

where

h(·) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f̂ (i, j), assuming representation using 2D planes

f̌ (i),
assuming representation using

radius segments
(3)

and F(η, ρ) denotes an “initial functional,” which can be ap-

plied to each f̂ (i, j) or f̌ (i), that is, F(η, ρ) = F( f̂ (i, j)) or
F(η, ρ) = F( f̌ (i)). The set of F(η, ρ) is treated either as a col-
lection of spherical functions {Fρ(η)}ρ parameterized by ρ,
or as a collection of radial functions {Fη(ρ)}η parameterized
by η.

In the first case, a set of “spherical functionals” T(ρ) is
applied to each Fρ(η), producing a descriptor vector gs(T) =
T(Fρ(η)).

In the second case, a set of “actinic functionals” A(η)
is applied to each Fη(ρ), producing the A(η) = A(Fη(ρ)).
Then, the T functionals are applied to A(η), generating an-
other descriptor vector ga(T) = T(A(η)).

Let us now examine the conditions that must be satisfied
by the functionals in order to produce rotation invariant de-
scriptor vectors. Under a 3D object rotation governed by a
3D rotation matrix R, the points η will be rotated:

η′ = R · η, (4)

therefore

F(η′, ρ) = F(R · η, ρ) (5)
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Figure 2: Rotation of f (x) rotates F(η, ρ), without rotating the corresponding f (i, j) (upper left image). Thus, F(η2, ρ1) = F(η′2, ρ1).
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Figure 3: Rotation of f (x) rotates f̂ (i, j) (upper left image) without causing a rotation of the point (η1, ρ1).

and thus, rotation invariant T functionals must be applied,
so that T(F(η′, ρ)) = T(F(η, ρ)) (Figure 2).

In the specific case where the points η lie on the axis of

rotation the corresponding f̂ (i, j) will be rotated (Figure 3),
that is,

f̂ ′(i, j) = f̂ (i′, j′) (6)

and thus, 2D rotation invariant functionals must be applied,

so that F( f̂ ′(i, j)) = F( f̂ (i′, j′)). Therefore, a general solu-
tion is given using 2D rotation invariant functionals F and
rotation invariant spherical functionals T , producing com-
pletely rotation invariant descriptor vectors.

The functionals which satisfy the above-stated condi-
tions, as initial, actinic, and spherical, will be briefly dis-
cussed in the following section.

The advantage of this approach is threefold: firstly, the
rotation normalization which hampers the performance of

the descriptors in most 3D search approaches, is avoided.
Secondly, the possibility of constructing a large number of
descriptor vectors is presented. Indeed, the recognition of
3D objects is facilitated when a large number of features are
present and in fact, the more classes must be distinguished,
the more features may be necessary. The proposed method
permits the construction of a large number of invariant fea-
tures by defining a sufficient number of F, A, and T func-
tionals. Thirdly, the use of the T functionals leads to the def-
inition of descriptor vectors with low dimensionality since
each T functional produces a single number per concentric
sphere. Thus, a compact representation of the descriptor vec-
tors is achieved, which in turn simplifies the comparison be-
tween two models.

Another advantage of the proposed method is that it
overcomes the problem analyzed in [12, Section 5.2] that face
all the existing algorithms that use a rotation invariant trans-
formation applied on concentric spheres. When independent
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rotations are applied on an object at specific radius, an object
of totally different shape will be produced. Because of the in-
tegration over all shells of the same radius, all these methods
will produce identical descriptors for these totally different
objects. The proposed method will not be affected of such a
transformation, since in the case of decomposing the object’s
volume in 2D planes, the planes will contain information of
the object in different radius. Moreover, the actinic function-
als will be applied on the results from the previous step, that
all share the same angular position, thus information on the
different spheres will be combined. These two facts will as-
sure that objects, of totally different shape, produced from
transformations of independent rotations on an object, will
not produce identical descriptors.

In the following a brief description of the functionals that
were selected will be given.

2.1. Initial functionals F

2.1.1. The “mutated” radial integration transform (RIT)

Let Λ(η, ρ) = {x | x/|x| = η, ρ ≤ |x| < ρ + Δρ} be a radius
segment (Figure 1(b)). Let also f̌t(i) be the discrete function,
which is derived from f̌t(c). f̌t(c) is produced from the in-
tersection of f (x) with the Λ(ηt, ρt) which begins from the
point (ηt, ρt) and ends at the point (ηt , ρt + Δρ). Then, the
“mutated” radial integration transform RIT(η, ρ) [10] is de-
fined as:

RIT
(
ηt , ρt

) =
N−1∑

i=0
f̌t(i), (7)

where t = 1, . . . ,NR, NR is the total number of radius seg-
ments, and N is the total number of sampled points on each
line segment.

2.1.2. 1D Fourier transform

The 1D discrete Fourier transform of f̌t(i) is calculated, pro-
ducing the vectors DFt(k), where t = 1, . . . ,NR,NR is the total
number of radius segments, and k = 0, . . . ,N − 1, N is the
total number of sampled points on each radius segment. The
vectors contain only the first K harmonic amplitudes. As a
result, the 1D DFT generates K different initial functionals.

2.1.3. The 3D Radon transform

Let Π(η, ρ) = {x | xT · η = ρ} be a plane (Figure 1(a)). Let
also f̂t(i, j) be the discrete function, which is derived from

f̂t(a, b). The function f̂t(a, b) is produced from the intersec-
tion of f (x) with Π(ηt , ρt), which is tangential to the sphere
with radius ρt at the point (ηt , ρt). Then, the 3D radon trans-
form R(η, ρ) is defined as

R
(
ηt , ρt

) =
N−1∑

i=0

N−1∑

j=0
f̂t(i, j), (8)

where t = 1, . . . ,NR, NR is the total number of planes (≡
total number of radius segments), andN×N are the sampled
points on each plane.

2.1.4. The Polar-Fourier transform

The discrete Fourier transform (DFT) is computed for each

f̂t(i, j), producing the vectors FTt(k,m), where k,m = 0, . . . ,
N − 1 and t = 1, . . . ,NR. Considering the first K ×M har-

monic amplitudes for each f̂t(i, j), the polar-DFT generates
K ×M different initial functionals.

2.1.5. Humoments

Moment invariants have become a classical tool for 2D ob-
ject recognition. They were firstly introduced by Hu [20],
who employed the results of the theory of algebraic invari-
ants [21] and derived the seven well-knownHumoments, φi,
i = 1, . . . , 7, which are invariant to the rotation of 2D objects.

They are calculated for each f̂t(i, j) with spatial dimension
N × N , producing the vectors HUt

i , where i = 1, . . . , 7 and
t = 1, . . . ,NR.

2.1.6. Zernikemoments

Zernike moments are defined over a set of complex polyno-
mials which forms a complete orthogonal set over the unit
disk and are rotation invariant. The Zernike moments Zkm

[22], where k ∈ N+, m ≤ k, are calculated for each f̂t(i, j)
with spatial dimension N ×N , producing the vectors Zkm

t .

2.1.7. Krawtchoukmoments

Krawtchouk moments are a set of moments formed by using
Krawtchouk polynomials as the basis function set. Follow-
ing the analysis in [23] and some specifications mentioned

in [24], they were computed for each f̂t(i, j) producing the
vectors Kkm

t .

2.1.8. The 2D Polar wavelet transform

The 2D wavelet transform includes the convolution of the
two-dimensional function f̂t(i, j) with a pair of QMF filters,
followed by downsampling by a factor of two. In order to

produce rotation invariant features, f̂t(i, j) should be trans-
formed to the polar coordinate system, resulting in the Polar
wavelet transform [25]. In the first level of decomposition,
four different subbands are produced. The rotation invari-
ant functionals WTkm

t are derived by computing an energy
signature for each subband (k,m = 0, 1). In this paper, the
Daubechies D6 wavelet [26] was chosen as an appropriate
pair of filters.

Each of the aforementioned F functionals produces a
value (in case of RIT and Radon), or more values (in all
other cases), per plane or per radius segment. The entire set
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of values for each initial functional F generates a function
F(η, ρ) whose domain consists of concentric spheres.

2.2. Actinic functionalsA

The F(η, ρ) produced as above is now treated as a collection
of radial functions Fη(ρ) by restricting at different η. Then,
the following set of “actinic functionals” Ai(η), i = 1, . . . , 4,
is applied to each Fη(ρt):

(1) A1(η) = DF(Fη(ρt)) = DF
η
k(ρt),

(2) A2(η) = max{Fη(ρt)},
(3) A3(η) = max{Fη(ρt)} −min{Fη(ρt)},
(4) A4(η) =

∑Nr
t=1 |F′η(ρt)|,

where F′ is the derivative of F, t = 1, . . . ,Nr are sample points
on each η, and Nr is their total number.

2.3. Spherical functionals T

The set of functionals T , which is applied to each Fρ(η) and
Ai(η), in order to produce the descriptor vector, includes

(1) T1(ω) = max{ω(η j)}, j = 1, . . . ,Ns,

(2) T2(ω) =
∑Ns

j=1 |ω′(η j)|,
(3) T3(ω) =

∑Ns
j=1 ω(η j),

(4) T4(ω) = max{ω(η j)} −min{ω(η j)}, j = 1, . . . ,Ns,
(5) the amplitudes of the first L harmonics of the spheri-

cal Fourier transform (SFT), applied on ω(η j), which
are also called as the “rotationally invariant shape de-
scriptors” Al [27]. In the proposed method, for each l,
l = 1, . . . ,L, the corresponding Al is a spherical func-
tional T ,

where ω(ηj) = Fρ(ηj) or ω(ηj) = Ai(ηj), ω′ its derivative,
and Ns = NR/Nc, where Nc is the total number of concentric
spheres.

In our case,

ω(η) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RITρ(η),

DF
ρ
k(η),

Rρ(η),

FT
ρ
km(η),

HU
ρ
k(η),

Z
ρ
km(η),

K
ρ
km(η),

WT
ρ
km(η),

A(η).

(9)

Concluding this section, it should be noted that the total
number of spherical functionals T used is L+4 for each con-
centric sphere.

3. DESCRIPTOR EXTRACTION PROCEDURE

3.1. Preprocessing

A 3D modelM is generally described by a 3D mesh. Let R×
R×R be the size of the smallest cube bounding the mesh. The
bounding cube is partitioned in (2 · N)3 equal cube shaped
voxels ui with centers vi = [xi, yi, zi], where i = 1, . . . , (2·N)3.
The size of each voxel is (R/(2 ·N))3. Let U be the set of all
voxels inside the bounding cube and U1 ⊆ U , be the set of
all voxels belonging to the bounding cube and lying inside

M. Then, the discrete binary volume function f̃ (vi) of M, is
defined as

f̃
(
vi
) =

⎧
⎨

⎩

1 when ui ∈ U1,

0 otherwise.
(10)

In order to achieve translation invariance, the center of
mass of the model is first calculated. Then, the model is
translated so that the center of mass coincides with the center
of the bounding cube. Translation invariance follows.

To achieve scaling invariance, the maximum distance
dmax between the center of mass and the most distant voxel,
where f̃ (vi) = 1, is calculated. Then, the translated f̃ (vi) is
scaled so that dmax = 1. At this point, scaling invariance is
also accomplished.

A coarser mesh is then constructed by combining every
eight neighboring voxels ui, to form a bigger voxel νk with
centers νk, k = 1 . . . ,N3. The discrete integer volume func-

tion f̃ (νk) ofM is defined as

f̃
(
νk
) =

8∑

n=1
f̃
(
vn
)
: un ∈ νk. (11)

Thus, the domain of f̃ (νk) is [0, . . . , 8]. The procedure

described in Section 2 is then applied to the function f̃ (νk)

instead of the function f (x). Specifically, f̃ (νk) is assumed to
intersect with planes. Each plane is tangential to the sphere

with radius ρ at the point B. Further, f̃ (νk) is assumed to
intersect with radius segments.

In order to avoid possible sampling errors caused using
the lines of latitude and longitude (since they are too much
concentrated towards the poles), each concentric sphere is
simulated by an icosahedron where each of the 20 main tri-
angles is iteratively subdivided into q equal parts to form
sub-triangles. The vertices of the subtriangles are the sam-
pled points Bt. Their total number Ns, for each concentric
sphere (icosahedron) Cs, with radius ρs, s = 1, . . . ,Nc, where
Nc is the total number of concentric spheres, is easily seen to
be

Ns = 10 · q2 + 2. (12)

3.2. Descriptor extraction

Each function f̂t(a, b), t = 1, . . . ,Ns, is quantized into N ×
N samples and its discrete form f̂t(i, j) is produced. The
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domain of f̂t(i, j) is [0, . . . , 8]. Similarly, each function f̂t(c)
is quantized intoN samples and its discrete form f̌t(i) is pro-
duced. The domain of f̌t(i) is [0, . . . , 8].

Then, the procedure described in Section 2 is followed
for each functional F, producing the descriptor vectors
gs(T) = T(Fρt (ηt)) = D1F(l1), and ga(T) = T(A(ηt)) =
D2F(l2), where l1 = 1, . . . , (L + 4) · Nc, l2 = 1, . . . , (L + 4) · 4
and L is the total number of spherical harmonics. The in-
tegrated descriptor vector is DF(l) = [D1F(l1),D2F(l2)]T ,
where l = 1, . . . , {(L + 4) ·Nc + (L + 4) · 4}.

The same procedure is followed for all F functionals,
producing the descriptor vectors DRIT(l), DDFk (l), DR(l),
DHUk (l), DFTkm(l), DZkm(l), DKkm(l), and DWTkm(l).

Our experiments presented in the sequel were performed
using the values NR = 2562, Nc = 20, L = 26, K = 8, and
N = 64.

4. MATCHING ALGORITHM

Let A, B be two 3D models. Let also DA(k) = [DA1(k1),
DA2(k2)]T , DB(k) = [DB1(k1),DB2(k2)]T be two descriptor
vectors of the same kind D(k). The model descriptors are
compared in pairs using their L1-distance:

D1similarity =

√
√
√
√
√

(L+4)·Nc∑

k1=1

∣
∣DA1(k1)−DB1(k1)

∣
∣,

D2similarity =

√
√
√
√
√

(L+4)·4∑

k2=1

∣
∣DA2(k2)−DB2(k2)

∣
∣.

(13)

The overall similarity measure is determined by

Dsimilarity = a1 ·D1similarity + a2 ·D2similarity, (14)

where a1, a2 are descriptor vector percentage factors, which
are calculated as follows. Let us assume that A belongs to a
class C, which contains NC models. Let also Ntotal be the total
number of models contained in the database. Then the factor
a1 is calculated as

a1 =
∑NC

i=1 di
∑Ntotal−NC

j=1 dj

, (15)

where di is the L1-distance of the descriptor vector DA1 of
the model A from the descriptor vector DA1′ of the model A′

which also belongs to C, and dj is the L1-distance of the de-
scriptor vector DA1 of the model A from the descriptor vec-
tor DA1′′ of the model A′′ which does not belong to C. The
combination, small di and big dj , implies that the descrip-
tor vector DA1 is good for the class C, in terms of successful
retrieved results. The percentage factor a2 is calculated simi-
larly taking into account the descriptor vector DA2. Then a1
and a2 are normalized so that 1/a1 + 1/a2 = 100.

Following the above approach, a large number of descrip-
tor vectors can be efficiently used, taking advantage of the
discriminative power of each descriptor vector per different
class.

Experiments have shown that a single descriptor vector
does not outperform all the others, in terms of precision re-
call, in all different classes, thus using the percentage factors
we take advantage of the real discriminative power of each
descriptor vector per each different class. Such an approach
has not been reported so far in this research field.

4.1. Assigningweights to each class

In this section, a procedure for the calculation of weights
characterizing the discriminative power of each descriptor
vector per different class is described.

Let Di( j) = [Di(1), . . . , Di(S)] be a descriptor vector,
where i = 1, . . . ,Ntotal.Ntotal is the total number of 3Dmodels
and S is the total number of descriptors per descriptor vector.
Let also C be a class with descriptor vectors:

MC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D1(1) . . . D1(k) . . . D1(S)

· · ·
Di(1) . . . Di(k) . . . Di(S)

· · ·
DNC (1) . . . DNC (k) . . . DNC (S)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (16)

where NC is the number of 3D models which belongs to class
C.

Then, the feature vectors fC1, . . . , fCk, . . . , fCS are formed,
where C = 1, . . . ,Nclass, fCk=[D1(k) · · ·Di(k) · · ·DNC (k)]T ,
and Nclass is the total number of classes.

For each fCk, the mean

μfCk =
1
NC

NC∑

i=1
Di(k) (17)

and the variance

σ2fCk =
1
NC

NC∑

i=1

(
Di(k)

)2 − (μfCk
)2

(18)

are calculated. The magnitude of each weight WCk depends
on two factors.

(i) The compactness factor W (1): the W (1) factor provides
a measure of the compactness of the fCk feature vector
for the class C. It is calculated by

W (1)
Ck =

σfCk
μfCk

. (19)

The lower the value of W (1)
Ck the higher the weight of

the kth feature vector of Cth class.
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(ii) The dissimilarity factor W (2): the W (2) factor provides
a measure of dissimilarity between the feature vector
fCk of the class C and the corresponding feature vec-

tor fC1k of the class C1. The higher the W (2)
Ck factor

the more dissimilar is the kth feature vector of C class
(fCk) when compared to the kth feature vectors of the
other classes. Specifically, for the kth feature vector of
Cth class, the number MCk of the descriptors Dn(k),
where n ∈ ([1, . . . ,Nclass]−C), which do not belong to
[μfCk −σCk,μfCk +σCk] is calculated, and theW

(2) factor
is evaluated using

W (2)
Ck =

MCk

Ntotal −NC
, (20)

where Ntotal is the total number of 3D models and NC

is the number of models of the Cth class. The final
weights are calculated by

WCk = C1
(
1−W (1)

Ck

)
+ C2W

(2)
Ck , (21)

where C1,C2 ∈ [0, 1] are coefficients and

C1 + C2 = 1. (22)

It is obvious that

0 ≤WCk ≤ 1. (23)

It was experimentally found that best results were ob-
tained for C1 ∈ [0.2, 0.4] and C2 ∈ [0.6, 0.8].

A 2D array of weights is then created, for all models in
database,

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W11 . . . W1k . . . W1S

· · ·
WC1 . . . WCk . . . WCS

· · ·
WNclass1 . . . WNclassk . . . kNclassS

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (24)

whereWCk is the weight of the kth descriptor of theCth class.
The weight matrix will be used to improve the performance
of matching methods. In the following sections, two match-
ingmethods are described, where the contribution of weights
to the final results is noticeable.

4.2. First weight-basedmatching algorithm:
“weightmethod 1” (WM1)

Let Q be a query model and A a model from the database to
be compared withQ. The model descriptors are compared in

pairs using the following formula (L1-distance):

L1 =
√
√
√
√
√

S∑

k=1
WCk

∣
∣DQ(k)−DA(k)

∣
∣, (25)

where DQ(k) is the kth descriptor of the query model Q and
DA(k) is the kth descriptor of the model A that belongs to
class C. In this method, both DQ(k) and DA(k) descriptors
are assigned the weightWCk of class C.

4.3. Secondweight-basedmatching algorithm:
“weightmethod 2” (WM2)

Let now Ai (i = 1, . . . ,Ntotal) be a model of the database,
where Ntotal is the total number of models in the database.
In this method, the L1-distance between Q and Ai models is
calculated. However, in this case, DQ(k) and DAi

(k) descrip-
tors are not assigned the same weights.

Specifically, for a query Q, Nclass different cases are con-
sidered. For the nth case (n = 1, . . . ,Nclass) it is assumed that
the query Q belongs to class n, so that its DQ(k) descrip-
tor vector is assigned the correspondingWn(k) weight vector
(nth raw of the weight matrix). For each case n, for each pair
of Q and Ai models, the L1-distance is calculated according
to the following formula:

L1in =
√
√
√
√
√

S∑

k=1

∣
∣WnkDQ(k)−WCkDAi(k)

∣
∣, (26)

where n = 1, . . . ,Nclass and i = 1, . . . ,Ntotal. In all Nclass cases,
the model Ai is assigned the sameWC(k) weight vector (Cth
raw of the weight matrix).

The final matching between Q and Ai is achieved by
choosing only one case n (out of Nclass). The query Q is as-
signed the same weights Wn(k) for all L1i distances. The se-
lection of the optimal case n is based on the following proce-
dure.

For each case n, all L1in distances between the query Q
and themodelsAi of the database (i = 1, . . . ,Ntotal) are sorted
in ascending order. In order to evaluate the homogeneity of
the retrieved results at the first positions of the ranking list,
the popular “Gini” index I(n) [28] is used, as a measure of
impurity. The smaller the Gini index, the lower the hetero-
geneity of the retrieved results:

I(n) = 1−
Nclass∑

C=1
p2C , (27)

where pC is the fraction of models retrieved at the first k po-
sitions of the ranking list that belong to class C, divided with
k. Notice that I(n) = 0 if all the retrieved models belong to
the same class. The case n (out of Nclass) with the lowest Gini
impurity index is used for the final matching between Q and
Ai models (26).
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Figure 4: Precision-recall curves diagram using the new database (a) and the Princeton database (b).

If T > 1 lowest impurity indices are encountered, a sec-
ond measure is taken into account.

Let ni = argmin I(n), i = 1, . . . ,T . For each ni, let the
majority of the models retrieved at the first k positions of the
ranking list belong to class Ci. The numberMni of the models
of category Ci, from the first position to the position that a
model of a category other than Ci occurs, is calculated for
each ni. The fractionMni/NCi , where NCi is the total number
of models in class Ci, is the second measure for the selection
of the best value of ni. The value leading to the largest value of
the fraction above is the one selected for the final matching,
that is, ni = argmax{Mni/NCi}.

5. EXPERIMENTAL RESULTS

The proposed method was tested using two different
databases. The first one, formed in Princeton University [29]
consists of 907 3D models classified into 35 main categories.
Most are further classified into subcategories, forming 92 cat-
egories in total. This classification reflects primarily the func-
tion of each object and secondarily its form [30]. The sec-
ond one was compiled from the Internet by us, it consists of
544 3Dmodels from different categories and was also used in
[31]. The VRMLmodels were collected from theWorldWide
Web so as to form 13 more balanced categories: 27 animals,
17 spheroid objects, 64 conventional airplanes, 55 delta air-
planes, 54 helicopters, 48 cars, 12 motorcycles, 10 tubes, 14
couches, 42 chairs, 45 fish, 53 humans, and 103 other mod-
els. This choice reflects primarily the shape of each object
and secondarily its function. The average numbers of vertices
and triangles of the models in the new database are 5080 and
7061, respectively.

To evaluate the proposed method, each 3D model was
used as a query object. Our results were compared with those
of the following methods, which have been reported [29] as

the best-known shape matching methods that produce the
best retrieval results.

(i) Gaussian Euclidean distance transform (GEDT): it is
based on the comparison of a 3D function, whose
value at each point is given by composition of a Gaus-
sian with the Euclidean distance transform of the sur-
face [12].

(ii) Light field descriptor (LFD): uses a representation of
a model as a collection of images rendered from
uniformly sampled positions on a view sphere. The
distance between two descriptors is defined as themin-
imum L1-difference, taken over all rotations and all
pairings of vertices on two dodecahedra [7].

(iii) Radialized spherical extent function (REXT): uses a col-
lection of spherical functions giving the maximal dis-
tance from center of mass as a function of spherical
angle and radius [32].

It is noted that we did not implement the above methods. All
executables were taken from the home pages of the authors
of [7, 12, 32].

The retrieval performance was evaluated in terms of
“precision” and “recall,” where precision is the proportion of
the retrieved models that are relevant to the query and recall
is the proportion of relevant models in the entire database
that are retrieved in the query.

Experimental results have shown that the following de-
scriptor vectors should be selected, for achieving best per-
formance, in the case of multiple descriptor vector ex-
traction: FT = {FT00, FT01, FT10}, HU = {HU0,HU3},
Z = {Z00,Z11,Z20,Z31}, K = {K00,K01,K02,K11}, WT =
{WT00,WT01,WT10,WT11}, and DF = {DF2,DF4}.

Figure 4(a) contains a numerical precision versus recall
comparison with the aforementionedmethods using the new
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Figure 5: Precision-recall curves diagram: some of the best descriptor vector combinations, using the new database (a) and the Princeton
database (b).
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Figure 6: Comparison of the efficiency of the Polar-Fourier-based
descriptor vector against the Zernike moments-based descriptor
vector for a class of the new database.

database. It is clear that the proposed method outperforms
all others using the integrated descriptor vector and calculat-
ing the percentage factors for each descriptor vector. Addi-
tionally, other descriptor vectors produced by Krawtchouk
moments, Zernike moments, the Polar wavelet transform,
the Polar-Fourier transform, and the HU moments out-
perform or are competitive with the other known state-of-
the-art methods. Figure 4(b) illustrates the results using the
Princeton database. In this database, the LFD method pro-
vides the best retrieval precision, and only the descriptor vec-

tors based on the Krawtchouk moments and on the Zernike
moments are competitive.

In Figure 5, some of the best combinations which sig-
nificantly improve the retrieval performance of the pro-
posed method are shown. The retrieval performance is im-
proved due to the fact that a single descriptor vector does
not outperform all the others in all different classes, thus us-
ing the percentage factors (see Section 4) we can take ad-
vantage of the real discriminative power of each descrip-
tor vector per each different class. An example is illus-
trated in Figure 6 where the descriptor vector based on
Polar-Fourier transform is seen to outperform the descrip-
tor vector based on Zernike moments in class “helicopters”
of the new database. However, the overall retrieval perfor-
mance of the descriptor vector based on Zernike moments
is better (Figure 4(a)). Figure 5 illustrates the results ob-
tained using all the descriptor vectors and their percentage
factors. It is clear that the proposed method outperforms
all known methods in both databases. However, this pro-
cedure is time consuming, thus, simpler alternatives such
as the combination Krawtchouk-Zernike, or the combina-
tion Krawtchouk-Hu, can be used instead, with very good re-
sults.

Figure 7 depicts the precision-recall diagram using the
“weight method 1” (WM1) using the new database and the
Princeton database. It is obvious that the retrieval results
were improved significantly. In Figure 8 some of the best
combinations which significantly improve the retrieval per-
formance of the proposed method are shown.

Figure 9 illustrates the precision-recall diagram using the
“weight method 2” (WM2) using the new database and the
Princeton database. The results are impressive, especially for
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Figure 7: Precision-recall curves diagram using the weight method 1 for the new database (a) and for the Princeton database (b).
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Figure 8: Precision-recall curves diagram some of the best descriptor vector combinations, using the weight method 1 for the new database
(a) and for the Princeton database (b)

the new database where all of the proposed descriptor vectors
outperform the others.

In Figure 10 some of the best combinations which sig-
nificantly improve the retrieval performance of the proposed
method are depicted.

Figure 11 illustrates the results of the experiments per-
formed in the new database using different dimensionality
for the RIT-based descriptor vector changing the number L
of the harmonics of the spherical Fourier transform. It is ob-
vious that an increase in precision is observed if the number

of spherical harmonics L increases from L = 21 to L = 26.
However, there was no commensurate modification in preci-
sion for values of L higher than 26, while the time needed for
the extraction of the descriptor vectors as well as for carrying
out the matching procedure increased sharply.

6. CONCLUSIONS

In this paper a novel framework for 3D model search and
retrieval was proposed. A set of functionals is applied to
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Figure 9: Precision-recall curves diagram using the weight method 2 for the new database (a) and for the Princeton database (b).
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Figure 10: Precision-recall curves diagram some of the best descriptor vector combinations, using the weight method 2 for the new database
(a) and for the Princeton database (b).

the volume of the 3D model producing a new domain of
concentric spheres. In this new domain, a new set of func-
tionals is applied, resulting in a completely rotation invari-
ant descriptor vector, which is used for 3D model match-
ing. Further, a novel technique, where weights are assigned to
the descriptors, is introduced, which improves significantly

the retrieval results. Experiments were performed using two
different databases and the results of the proposed method
were compared with those of the best known retrieval meth-
ods in the literature. The results show clearly that the pro-
posed method outperforms all others in terms of precision
recall.
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