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Abstract

Background: The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate
organization is the consequence of unique molecular identity of each cell gradually established by precise
spatiotemporal gene expression control during development. Currently, studies on the molecular-structural
association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular
differentiation and structural development.

Results: In this article, we aim at a global, data-driven study of the relationship between gene expressions and
neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map
the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local
structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression
space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with
neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent
with neuroanatomy than those in the original space.

Conclusions: Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction
and visual exploration facilitate the study of this relationship.

Background
The brain consists of an enormous number of cells orga-
nized into structures [1,2]. The structured organization of
cells is the key to the functional efficiency of the brain
[3-6]. Hence, a natural first step toward understanding the
brain function would be to address basic research ques-
tions at the structure level. How cells are organized into
structures [7,8]? What are the functions of structures [9]?
How the structures are connected to each other [10,11]?
However, a fundamental difficulty of understanding brain
functions at the structure level lies in that there is no
universally agreed division of cells into structures [12].
From a developmental perspective, the delicate orga-

nization of brain into structures is the consequence of
stringent spatiotemporal patterning controlled by the
molecular signals during development. In this process,
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cells at different spatial locations read different morpho-
genetic positional signals produced by the graded distri-
bution of signaling molecules. These signals control the
expression of a relatively small set of transcription factors,
which in turn regulate the expression of a larger number of
genes. This sequential cascade of expression control ulti-
mately leads to cell differentiation and the emergence of
connections and functional properties [13]. The discov-
ery that certain marker genes are expressed in regionally
restricted patterns in the developing brain has either led
to the introduction of new structural boundaries or made
it possible to re-define existing boundaries at a higher
resolution [14]. Currently, studies on the molecular-
structural associations are beginning to reveal how the
spatiotemporal gene expression patterns are related to cel-
lular differentiation and structural development [15-18].
In this article, we study the relationship between brain

anatomy and spatiotemporal gene expression patterns
in the developing mouse brain. This global study of
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developing neuroanatomy is made possible by the high-
resolution, three-dimensional (3-D) gene expression pat-
terns provided by the Allen Brain Atlas (ABA) [19-22].
As part of the ABA, the Allen Developing Mouse Brain
Atlas provides spatiotemporal in situ hybridization (ISH)
gene expression pattern images across four embryonic
and three postnatal developmental ages [21,22], yield-
ing effectively a four-dimensional brain atlas. To establish
a common coordinate framework for analyzing the ISH
data, the ISH image series are aligned to the Allen Devel-
oping Mouse Brain Reference Atlas. This enables the
global, computational study of the spatiotemporal gene
expression patterns of many genes and comparison of the
results with developmental anatomy.
To enable visual explorations of the gene expression

patterns and correlate the results with classically defined
neuroanatomy, we first map the high-dimensional, voxel-
level gene expression data to low-dimensional space in
which data visualization can be readily achieved. Numer-
ous multivariate analysis methods can be used for this
purpose. However, traditional methods either retain the
global structures or the local structures in computing the
mapping, producing results that are not satisfactory. To
preserve both the local and the global structures in the
spatial gene expression space, we employ a recent method
known as the t-distributed stochastic neighbor embed-
ding (t-SNE) [23] for mapping the high-dimensional data.
This method is able to capture the local similarities in
the high-dimensional space, while retaining the global
structures as much as possible.
We map the high-dimensional gene expression data to

2-D space using t-SNE and visualize the reduced data
at multiple levels of the Allen Developing Mouse Brain
Reference Atlas ontology, which was created based on
the “prosomeric model” [24-26]. This models proposes
that the neural tube is divided into grid-like pattern of
longitudinal and transverse regions. Our results show
that the brain anatomy is largely preserved in the low-
dimensional gene expression space at multiple levels. To

provide a quantitative comparison of the relationship
between gene expression patterns and neuroanatomy, we
cluster the brain voxels into groups based on gene expres-
sion data in the original high-dimensional space and in the
dimensionality-reduced space. Our results show that the
clustering results in the low-dimensional space are more
consistent with developmental anatomy than those in the
original high-dimensional space.

Methods
Allen developing mouse brain atlas
The Allen Developing Mouse Brain Atlas (the Atlas)
contains spatiotemporal in situ hybridization (ISH) gene
expression data across multiple stages of mouse brain
development [19,21]. The primary data consist of 3-D,
cellular resolution ISH expression patterns of approxi-
mately 2000 genes in sagittal plane across four embryonic
(E11.5, E13.5, E15.5, and E18.5) and three early postnatal
ages (P4, P14, and P28). The ISH image series are pro-
cessed by an informatics pipeline at the Allen Institute
for Brain Science [27]. To establish a common coordi-
nate framework for analyzing the ISH data, the ISH image
series are aligned to the Reference Atlas in 3-D space.
After the ISH image series are mapped to the reference
space, a gridding module is applied to divide the 3-D ref-
erence space into regular grid. The resolution of the data
grids varies with age and are shown in Table 1 along with
the sizes of each dimension. For each grid voxel, an expres-
sion energy value is extracted. All downstream analysis
functions provided by the Allen Brain Atlas, such as the
anatomic search, gene search, and temporal search, are
based on the expression energy. Our analysis in this work
is also based on the grid-level expression energy.
The Reference Atlas ontology was created based on the

prosomeric model, which proposes that the developing
brain is divided along the transversal and longitudinal
boundaries, giving rise to a grid-like pattern (Figure 1).
The ontology was designed to capture the progressive
development and regionalization of the nervous system.

Table 1 The sizes of the 3-D grid data arrays at seven developmental ages

Age
Grid resolution x-dimension size y-dimension size z-dimension size

(in micron) (anterior-to-posterior) (superior-to-inferior) (left-to-right)

E11.5 80 70 75 40

E13.5 100 89 109 69

E15.5 120 94 132 65

E18.5 140 67 43 40

P4 160 77 43 50

P14 200 68 40 50

P28 200 73 41 53

The 3-D reference space is in PIR orientation where x axis corresponds to anterior-to-posterior, y axis corresponds to superior-to-inferior, and z axis corresponds to
left-to-right.
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Figure 1 Illustration of the prosomeric model on which the Allen Developing Mouse Brain Reference Atlas is based. This figure shows the
grid-like pattern corresponding to the Reference Atlas ontology levels up to 5. The figure is reproduced from Figure 3 in [28] with permission.

An ontological term at each level has multiple child terms
at the next level, reflecting the subdivision of the corre-
sponding structure into multiple substructures. By this
construction, the Reference Atlas ontology forms a 13-
level hierarchy in which the root corresponds to the undi-
vided neural plate. The ontology was colorized so that
anatomically and developmentally related structures are
coded with similar colors. The ontology from Level 0 to
Level 5 is shown in Figures 2 and 3.

Dimensionality reduction and visualization
Dimensionality reduction is the procedure of mapping
high-dimensional data points to low-dimensional space
by optimizing certain criterion. Such techniques facilitate
visual exploration of the high-dimensional data when they
are mapped to 2-D or 3-D space. Traditional techniques
for dimensionality reduction include linear method such
as principal component analysis (PCA), multidimensional
scaling (MDS), and nonlinear approaches such as local
linear embedding (LLE) [29,30]. These techniques either
capture the global structure of the original data or try to
retain the local structure within the neighborhood of each
data point.
In order to capture both the local structure and the

global structure such as the presence of clusters, a class
of methods, known as the stochastic neighbor embed-
ding (SNE), have been developed [31]. To simplify the
optimization and overcome the so-called “crowding prob-
lem”, SNE is extended to t-distributed SNE (t-SNE) in
[23]. Given n high-dimensional data points {xi}ni=1 where
xi ∈ R

d, t-SNE computes n low-dimensional data points
{yi}ni=1, known as map points, by trying to preserve the
pairwise similarities in the high-dimensional space. To
this end, t-SNE computes an n × n similarity matrix in
both the original data space and in the low-dimensional

space. The similarity matrix in the high-dimensional
space is obtained based on symmetrized Gaussian con-
ditional distributions, while that in the low-dimensional
space is computed from Student t-distributions. The map
points are learned by minimizing the Kullback-Leibler
(KL) divergence between the probability distributions in
the original data space and the embedding space. To map
our ISH gene expression data, xi represents the high-
dimensional gene expression vector of the ith voxel, and
yi represents its representation in the low-dimensional
space.
In the high-dimensional space, we define the similarity

of data point xj to data point xi as the conditional prob-
ability pj|i, which captures the probability that xi chooses
to have xj as its neighbor when neighbors are selected in
proportion to their probability density under a Gaussian
distribution centered at xi. Formally, the conditional prob-
abilities pj|i and pi|j are defined as

pj|i =
exp

(
− ∣∣∣∣xi − xj

∣∣∣∣2 /2σ 2
i

)
∑

k �=i exp
(− ||xk − xi||2 /2σ 2

i
) , (1)

pi|j =
exp

(
− ∣∣∣∣xj − xi

∣∣∣∣2 /2σ 2
j

)

∑
k �=j exp

(
− ∣∣∣∣xk − xj

∣∣∣∣2 /2σ 2
j

) , (2)

where σ 2
i denotes the variance of the Gaussian distribu-

tion centered at xi. The variance for each data point is
tuned separately based on a fixed perplexity specified by
the user. The perplexity can be interpreted as a smooth
measure of the effective number of neighbors, and it has
been shown that the performance of t-SNE is robust to
changes in the perplexity [23]. The recommended range
for perplexity value is 5 to 50, and the default value of 30 is
used in the experiments. Note that pj|i �= pi|j, and pi|i = 0
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Figure 2 The Allen Developing Mouse Brain Reference Atlas ontology hierarchy through level 5. Each ontological term corresponds to a
node in the hierarchy, labeled by the abbreviation followed by the level number inside a parenthesis. The nodes are color-coded as in the original
atlas in Figure 1. The transverse segments lie at level 3, and they are combined with the longitudinal zones at level 5 to generate the grid-like
pattern. We up-propagate the voxel annotations to levels 1, 3, and 5, respectively, in our experiments in order to study the gene expressions in the
grid-like longitudinal and transversal domains.

for all i, since only pairwise similarities are of interests.
Then the pairwise similarities in the high-dimensional
space are symmetrized as

pij = pj|i + pi|j
2

. (3)

The original SNE method employs Gaussian distri-
butions to derive the pairwise similarities in the low-
dimensional space. This, however, leads to the crowding

problem [23]. To overcome this limitation, the distances
in the low-dimensional space are converted into prob-
abilities using a heavy-tailed Student t-distribution in
t-SNE as

qij =
(
1 + ∣∣∣∣yi − yj

∣∣∣∣2)−1

∑
k �=�

(
1 + ∣∣∣∣yk − y�

∣∣∣∣2)−1 . (4)
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Figure 3 The list of terms in the Allen Developing Mouse Brain Reference Atlas ontology levels 1, 3, and 5.We show the level, abbreviation,
and structure name of each brain structure in the ontology in a box that is colored as in the Reference Atlas.

To learn the map points {yi}ni=1, t-SNEminimizes the KL
divergence between the probability distribution P and Q
in the high-dimensional and low-dimensional spaces as

min
Q

KL(P||Q) =
∑
i

∑
j
pij log

pij
qij

. (5)

Because KL divergence is not symmetric, different types
of mismatches contribute differently to the overall cost.
Specifically, a large cost will be induced if distant map
points are used to represent nearby original data points,
while a small cost is incurred if distant original data
points are mapped to nearby map points. This indicates
that t-SNE is able to preserve the local structure of the

high-dimensional data points. It has been shown that
the objective function of t-SNE is particularly straight-
forward to optimize in comparison to the original SNE
objective.
The original algorithm in [23] for computing the low-

dimensional map points has a time and space complexity
of O(n2), where n is the number of data points. In [32],
a more efficient algorithm, known as the Barnes-Hut-
SNE, is developed, and it has O(n log n) time and O(n)

space complexity. This enables the application of t-SNE
to the large-scale Allen Developing Mouse Brain Atlas
data. The implementations of t-SNE can be found at
http://homepage.tudelft.nl/19j49/t-SNE.html.

http://homepage.tudelft.nl/19j49/t-SNE.html
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Clustering
To study the relationship between spatial gene expres-
sion patterns and classical neuroanatomy in the adult
mouse brain, Bohland et al. [33] use the Allen Mouse
Brain Atlas data [20,34] and apply principal component
analysis (PCA) to reduce the data dimensionality before
the k-means algorithm is used to cluster the brain voxels
into groups. To visualize the spatial gene expression pat-
terns, they alsomap the high-dimensional gene expression
data to 3-D space using PCA and visualize the data using
scatter plots.
Following [33], we apply the k-means clustering algo-

rithms to group brain voxels into clusters based on
the gene expression data in both the original high-
dimensional space and the dimensionality-reduced space.
Since the results of the k-means algorithm depend on
the initial cluster centers that are randomly selected, we
repeat this algorithm 10 times and use the results with the
smallest within-cluster sum of squares error. The number
of clusters in k-means is set to be equal to the number
of brain structures at each particular ontology level. We
reduce the high-dimensional gene expression data to 2-D
and 10-D spaces using t-SNE and PCA and then apply the
k-means algorithm to cluster the voxels based on these
low-dimensional representations. We then quantitatively
compare the consistency between voxel clusters and the
neuroanatomy at multiple levels in the Reference Atlas
developmental ontology.
We employ four performance measures, including the

normalized mutual information (NMI), adjusted rand
index (ARI), purity, and S-index, to evaluate the consis-
tency between clustering results and developmental neu-
roanatomy. The first three measures have been commonly
used in the clustering community as external criteria for
evaluating clustering results [35], and the ARI and S-index
have been used for comparing different brain parcella-
tion schemes [12]. We treat the voxel annotations as their
class labels and compare them with the clustering results.
In computing purity, each cluster is assigned to the most
frequent class in the cluster, and then the final measure
is the proportion of correctly assigned samples. One dis-
advantage of purity is that it cannot trade off the quality
of the clustering against the number of clusters [35]. This
limitation can be overcome by the NMI, which measures
the amount of (normalized) information by which our
knowledge about the classes increases when we are given
the clustering results. The ARI computes the normalized
fraction of all possible pairs of voxels that (1) have the
same class label and are assigned to the same cluster or
(2) have different class labels and are assigned to different
clusters. The S-index was specifically designed to compare
different brain parcellations, and it “penalizes” class-to-
cluster relationships that are overlapping, but that are not
pure subset relationships [12]. Different measures capture

different aspects of class-to-cluster consistency, and thus
the trend of performance by different measures might not
always be the same.

Results and discussion
We retrieve the ISH expression energy grid data, the Ref-
erence Atlas ontology and annotation data for all seven
developmental ages from the Allen Brain Atlas API [36].
We remove voxels in the spinal cord for all developmen-
tal ages, as our primary goal is to study the brain gene
expression and anatomy. We also remove voxels that are
annotated to a level less than Level 5, since we are inter-
ested in studying the relationship between the spatial gene
expression patterns and the transversal and longitudinal
grid-like domains that correspond to Level 5 annotations
in the Reference Atlas ontology. In the current release of
the data (October, 2012), most of the annotations have
been worked down to levels between 5 and 8; hence only
a small number of voxels were removed in this step. After
this step, all voxels are annotated with structures at levels
between 5 and 12. To study the developing mouse brain
anatomy at multiple levels of granularity, we propagate the
annotation of each voxel up to Level 5, Level 3, and Level
1, resulting in three annotated structures for each voxel
that correspond to ancestor-child relations in the Refer-
ence Atlas ontology. The statistics of the data sets that are
used in this work are shown in Table 2. The input data to
the t-SNE method for each developmental stage is a data
matrix of size n × d, where n is the number of voxels, and
d is the number of genes.

Data visualization at multiple ontology levels
To visually explore the relationship between spatial gene
expression patterns and brain neuroanatomy, we project
the high-dimensional, voxel-level gene expression vectors
onto 2-D space using t-SNE and PCA. In PCA, the data
matrices are centered by subtracting the mean. To investi-
gate this relationship at multiple levels of the ontology, we
display each projected data point using its Level 1, Level
3, and Level 5 annotations, where the structure abbrevi-
ation is used as the marker that is color-coded according
to its Reference Atlas ontology color. The full names of
structures can be found in Figure 3. We show the results
generated by t-SNE and PCA using Level 1, Level 3, and
Level 5 annotations in Figures 4 and 5 for ages E11.5 and

Table 2 Statistics of the Allen DevelopingMouse Brain
Atlas data sets that are used in this work

Age E11.5 E13.5 E15.5 E18.5 P4 P14 P28

# of genes 1948 1948 1930 1946 1918 1906 1944

# of voxels 5021 9541 11694 11928 21682 24313 27991

The data sets span seven developmental ages, and the number of genes and the
number of voxels are reported.
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Figure 4 Visualization of the Allen Developing Mouse Brain Atlas data for age E11.5 after projecting to 2-D space using t-SNE (left
column) and PCA (right column) at multiple levels of the ontology. The three rows correspond to Levels 1, 3, and 5. Each point corresponds to
a brain voxel, which is displayed using the structure abbreviation and color of its Reference Atlas annotation. The structure abbreviations can be
seen by zooming into each figure, and the structure name can be found in Figure 3.
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Figure 5 Visualization of the Allen Developing Mouse Brain Atlas data for age P28 after projecting to 2-D space using t-SNE (left column)
and PCA (right column) at multiple levels of the ontology. The three rows correspond to Levels 1, 3, and 5. Each point corresponds to a brain
voxel, which is displayed using the structure abbreviation and color of its Reference Atlas annotation. Results for other ages are shown in the
Additional file 1.
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P28, respectively. The complete set of visualization results
for all other ages are included in the Additional file 1.
We observe that t-SNE is better at visualizing the

high-dimensional gene expression data than PCA. Specif-
ically, we can observe that, at all developmental ages,
the three major brain structures at Level 1 (forebrain,
midbrain, and hindbrain) are very well separated. The
results by t-SNE preserve the brain anatomy more faith-
fully than those by PCA at this level. The second rows
of Figures 4 and 5 show the results by t-SNE and PCA
displayed using the Level 3 annotations, which identify
the major transversal segments. We can observe that
both the global and local brain structures at this level
are largely preserved in the dimensionality-reduced gene
expression data space. The third rows of Figures 4 and 5
show the scatter plots of reduced data displayed using
the Level 5 annotations, which identify the four longi-
tudinal zones in addition to the transversal segments.
We can observe that within each of the transversal seg-
ments, voxels belong to the same longitudinal zones
are usually placed close to each other. However, vox-
els in the same longitudinal zone but belong to different
transversal segments are not necessarily placed at nearby
locations.
We can observe from Figures 4 and 5 that t-SNE is

able to map high-dimensional data to 2-D space in which
the neuroanatomy can be largely recovered. For example,
in Figures 4 and 5 the overall organization of the three
brain structures at Level 1 are largely preserved, where
the midbrain voxels are placed between the forebrain and
hindbrain voxels. These results indicate that t-SNE is able
to preserve both the local and the global structures of the
data simultaneously. In addition, the shapes of the struc-
tures are also preserved to some extent. For example, it
is known that the midbrain is a wedge-shaped structure
due to the sharp flexion of the neuraxis in this region [37].
We can see from Figures 4 and 5 that this is largely pre-
served in most plots. This is especially clear from plot for
the developmental age E11.5. This is presumably due to
the much larger number of voxels in late ages (Table 2),
which prevent some global structures from being fully
incorporated.
At Level 3 shown in Figures 4 and 5, the transversal

segment structures are also largely preserved. In partic-
ular, p1 voxels are almost always close to the midbrain
voxels, while p3 voxels are usually on the secondary pros-
encephalon side. m1 voxels are mostly placed closely with
p1 voxels, while m2 voxels are nearby with hindbrain
voxels. In the hindbrain, prepontine hindbrain voxels
(including is, r1, and r2) are mostly close to midbrain vox-
els; medullary hindbrain voxels (including r7, r8, r9, r10,
and r11) are placed on the far side; pontine hindbrain
(r3 and r4) and pontomedullary hindbrain (r5 and r6)
voxels are somewhere in between. We also observe that

the global brain structures are less well preserved at late
developmental ages. This might be due to the increasingly
larger number of brain voxels at late ages, which makes it
increasingly difficult to preserve both the global and the
local structures. In this case, t-SNE tends to focus more on
retaining the local structure due to the asymmetric nature
of the KL divergence.

Clustering and comparison with neuroanatomy
Since our visual explorations have shown that the brain
anatomy is largely preserved in the dimensionality-
reduced space, we expect that grouping of voxels into
clusters based on the low-dimensional representations
might lead to voxel clusters that are more consistent
with neuroanatomy than those obtained from the origi-
nal high-dimensional representations. We use t-SNE and
PCA to reduce the data to 2-D and 10-D spaces and
then apply the k-means clustering algorithm to group the
low-dimensional representations. We employ four per-
formance measures to evaluate the consistency between
clustering results and neuroanatomy. The results at devel-
opmental ontology levels 1, 3, and 5, respectively, are
reported in Tables 3, 4, and 5.
We can observe from Table 3 that the results from

low-dimensional representations computed by t-SNE are
much more consistent with neuroanatomy than those
from the original representations at Level 1. On average,
the performance measured by NMI and S-index has been
more than doubled, and that by adjusted rand index has
been increased from 0.0985 to 0.3855. On the other hand,
the results from PCA-reduced data are similar to those
by the original data. This is consistent with the visualiza-
tion results that PCA-reduced data fail to separate voxels
from different brain structures clearly at this level. We
also observe that the results of PCA are similar to those
by the original data for measures NMI, ARI, and purity.
For S-index, these two sets of results are not similar. This
might indicate that S-indexmeasures class-to-cluster con-
sistency in a different way than other measures. As has
been mentioned in Section “Clustering”, S-index penal-
izes class-to-cluster relationships that are overlapping, but
that are not pure subset relationships [12]. The other three
measures are not specifically designed to capture such
relationship.
At Levels 3 and 5, we can observe from Tables 4 and 5

that, on average, the clustering results based on the t-SNE
reduced data are more consistent with the neuroanatomy
than those by the original data. In addition, the t-SNE
results are more consistent with the neuroanatomy than
those by PCA for measures NMI, ARI, and purity. The
PCA-reduced data give better performance than the orig-
inal and the t-SNE reduced data for measure S-index. This
again indicates that S-index measures consistency in a dif-
ferent way compared with the other three measures. We
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Table 3 Comparison of clustering results with the Reference Atlas annotations at developmental ontology Level 1

Measures Clustering E11.5 E13.5 E15.5 E18.5 P4 P14 P28 Average

NMI

k-means 0.2045 0.1200 0.1622 0.1969 0.1257 0.1395 0.1871 0.1623

PCA2 0.2076 0.1047 0.1651 0.1959 0.1252 0.1436 0.1931 0.1622

PCA10 0.2034 0.1181 0.1602 0.1956 0.1257 0.1399 0.1866 0.1614

t-SNE2 0.4781 0.6038 0.5022 0.1927 0.3186 0.3387 0.3833 0.4025

t-SNE10 0.5650 0.7770 0.5385 0.2417 0.3294 0.4090 0.3206 0.4544

S-index

k-means 0.2874 0.1271 0.1457 0.2644 0.2136 0.2067 0.1687 0.2019

PCA2 0.2891 0.0959 0.2114 0.4320 0.1337 0.2082 0.1170 0.2125

PCA10 0.2840 0.1482 0.1468 0.2628 0.2123 0.1468 0.1537 0.1935

t-SNE2 0.4153 0.6151 0.5265 0.1138 0.5025 0.3578 0.2957 0.4038

t-SNE10 0.5008 0.8106 0.3719 0.1171 0.7396 0.6931 0.4038 0.5196

ARI

k-means 0.2044 0.0944 0.0976 0.1423 0.0303 0.0251 0.0950 0.0985

PCA2 0.2210 0.1007 0.0949 0.1411 0.0308 0.0330 0.1012 0.1032

PCA10 0.2057 0.0934 0.0959 0.1415 0.0313 0.0257 0.0950 0.0984

t-SNE2 0.4601 0.6197 0.4210 0.1442 0.2124 0.2611 0.2961 0.3450

t-SNE10 0.5876 0.8101 0.4539 0.2282 0.1119 0.3427 0.1643 0.3855

Purity

k-means 0.6359 0.6124 0.6668 0.6885 0.7128 0.7038 0.7204 0.6772

PCA2 0.6469 0.6069 0.6639 0.6877 0.7128 0.7038 0.7218 0.6777

PCA10 0.6365 0.6117 0.6654 0.6878 0.7128 0.7038 0.7191 0.6767

t-SNE2 0.7554 0.8342 0.8304 0.6743 0.8084 0.8446 0.8567 0.8006

t-SNE10 0.8054 0.9216 0.8037 0.6571 0.7503 0.8748 0.7881 0.8001

“k-means” denotes applications of the k-means to the original high-dimensional gene expression data; “PCA2” and “PCA10” denote applications of k-means to PCA
reduced data, where the first 2 and 10 principal components are used, respectively; “t-SNE2” and “t-SNE10” denote applications of k-means to data reduced to 2 and 10
dimensions, respectively, by t-SNE. Four different measures, including normalized mutual information (NMI), S-index, adjusted rand index (ARI), and purity, are used to
compare the clustering results to the reference atlas annotations.

can conclude from the above results that, although t-SNE
gives better visualization results than PCA at all levels, the
clustering results based on PCA-reduced data could yield
higher consistency with the neuroanatomy than those
based on t-SNE for certain measure. These results are
consistent with the results reported in [33].

Dimensionality reduction by t-SNE and PCA
We observe that t-SNE gives the best results in terms
of preserving both the local and the global structures
in the high-dimensional gene expression space in com-
parison with PCA. We also observe that when the data
sets are very large, such as those in late developmental
ages of the Allen Developing Mouse Brain Atlas, pre-
serving both the local and the global structures might
be very hard or even impossible. In these cases, t-SNE
tries to preserve local structures at the price of losing
some global structures. This tradeoff is achieved by giving
different costs to different types of errors in comput-
ing the mapping. In particular, because KL divergence
is not symmetric, different types of mismatches con-
tribute differently to the overall cost. A large cost will
be induced if distant map points are used to represent

nearby original data points. This large cost will ensure
that the local structures are faithfully preserved. In con-
trast, a relatively small cost is incurred if distant original
data points are mapped to nearby map points. Hence, a
small cost will be incurred if the global structures are not
preserved accurately. This asymmetric property makes
t-SNE especially useful in reducing and visualizing large-
scale brain data sets in comparison to other traditional
techniques, which preserve either the global or the local
structures.

Longitudinal zones versus transversal segments
In developmental neuroanatomy, two primary models
have been proposed to explain the neural plate and
tube regionalization based on gene expression and mor-
phological information [13]. These are the topographic
“columnar” model [38], and the topological “segmen-
tal” model known as the “prosomeric model” [24-26,39].
Recent experimental data have shown that the pro-
someric model is more consistent with morphological
and molecular evidences. This leads to the adoption of
this model in the Allen Developing Mouse Brain Ref-
erence Atlas. The columnar model mainly focuses on
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Table 4 Comparison of clustering results with the Reference Atlas annotations at developmental ontology Level 3

Measures Clustering E11.5 E13.5 E15.5 E18.5 P4 P14 P28 Average

NMI

k-means 0.4173 0.3754 0.3882 0.3620 0.3633 0.3480 0.3455 0.3714

PCA2 0.2545 0.1508 0.1777 0.2344 0.2101 0.2631 0.2718 0.2232

PCA10 0.3831 0.3305 0.3310 0.3045 0.3315 0.3094 0.3247 0.3307

t-SNE2 0.5337 0.4947 0.5097 0.3977 0.3556 0.3481 0.3637 0.4290

t-SNE10 0.5469 0.5202 0.5065 0.4382 0.4420 0.3484 0.3947 0.4567

S-index

k-means 0.5820 0.5751 0.5605 0.5815 0.5889 0.6838 0.5839 0.5937

PCA2 0.6524 0.6869 0.6206 0.6413 0.6399 0.6790 0.6283 0.6498

PCA10 0.6065 0.6547 0.6270 0.6050 0.6278 0.6982 0.6113 0.6329

t-SNE2 0.4729 0.5132 0.5387 0.5256 0.5889 0.6736 0.6383 0.5645

t-SNE10 0.4724 0.4941 0.5736 0.5968 0.5566 0.6653 0.5673 0.5609

ARI

k-means 0.1756 0.1516 0.1341 0.1242 0.0609 0.0571 0.0634 0.1096

PCA2 0.0849 0.0235 0.0066 0.0327 0.0190 0.0386 0.0499 0.0364

PCA10 0.1839 0.1175 0.0980 0.0700 0.0581 0.0388 0.0531 0.0885

t-SNE2 0.2654 0.1967 0.1670 0.1021 0.0823 0.0779 0.0788 0.1386

t-SNE10 0.2699 0.2123 0.1521 0.1195 0.0902 0.0847 0.0965 0.1464

Purity

k-means 0.3854 0.5233 0.6028 0.6135 0.6853 0.7253 0.7090 0.6064

PCA2 0.3127 0.3825 0.4584 0.5190 0.6056 0.6594 0.6473 0.5121

PCA10 0.3918 0.4835 0.5596 0.5560 0.6708 0.6856 0.6892 0.5766

t-SNE2 0.4774 0.5824 0.6772 0.6082 0.6795 0.7072 0.7121 0.6349

t-SNE10 0.4895 0.6081 0.6473 0.6392 0.7305 0.7306 0.7342 0.6542

See the footnote of Table 3 for detailed explanations.

Table 5 Comparison of clustering results with the Reference Atlas annotations at developmental ontology Level 5

Measures Clustering E11.5 E13.5 E15.5 E18.5 P4 P14 P28 Average

NMI

k-means 0.5932 0.5264 0.5009 0.4493 0.4210 0.4165 0.3885 0.4708

PCA2 0.3429 0.2243 0.2269 0.2781 0.2390 0.2931 0.2877 0.2703

PCA10 0.5354 0.4481 0.4299 0.4011 0.3815 0.3796 0.3720 0.4211

t-SNE2 0.6267 0.5593 0.5331 0.4932 0.4222 0.4100 0.4228 0.4953

t-SNE10 0.6321 0.5736 0.5279 0.5062 0.4600 0.4089 0.4564 0.5093

S-index

k-means 0.5822 0.6408 0.6675 0.6727 0.7024 0.7380 0.7234 0.6753

PCA2 0.8000 0.8380 0.8329 0.8017 0.8161 0.7819 0.8128 0.8119

PCA10 0.6712 0.7064 0.7288 0.7258 0.7398 0.7506 0.7392 0.7231

t-SNE2 0.5562 0.6257 0.6670 0.6714 0.6901 0.7441 0.7318 0.6695

t-SNE10 0.5603 0.6096 0.6515 0.6685 0.6997 0.7077 0.7112 0.6584

ARI

k-means 0.1380 0.0839 0.0634 0.0467 0.0331 0.0318 0.0272 0.0606

PCA2 0.0428 0.0135 0.0108 0.0211 0.0124 0.0169 0.0214 0.0199

PCA10 0.1132 0.0660 0.0488 0.0384 0.0264 0.0238 0.0252 0.0488

t-SNE2 0.1698 0.0946 0.0675 0.0631 0.0337 0.0316 0.0306 0.0701

t-SNE10 0.1765 0.1087 0.0618 0.0709 0.0448 0.0304 0.0444 0.0768

Purity

k-means 0.4961 0.6097 0.6437 0.6192 0.7062 0.7663 0.7272 0.6526

PCA2 0.2842 0.3640 0.4556 0.5260 0.5929 0.6666 0.6545 0.5063

PCA10 0.4314 0.5330 0.5947 0.6006 0.6882 0.7430 0.7199 0.6158

t-SNE2 0.5346 0.6254 0.6729 0.6515 0.6943 0.7533 0.7465 0.6684

t-SNE10 0.5383 0.6456 0.6711 0.6609 0.7309 0.7480 0.7623 0.6796

See the footnote of Table 3 for detailed explanations.
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dividing the neural plate and tube along the longitudi-
nal dimension, while the segmental model favors divi-
sion into transversal domains. In the prosomeric model
(Figure 1), the developing nervous system is divided into
a grid-like pattern of longitudinal and transversal histo-
genetic domains. Along the longitudinal axis, four zones,
known as the floor plate, basal plate, alar plate, and roof
plate, are specified by DV patterning mechanisms. Along
the transversal axis, the AP patterning signals subdivide
the brain wall into a constant set of segments known as
neuromeres.
To provide in-depth visual exploration of the genetic

neuroanatomy along the longitudinal and transversal
dimensions, we display in Figure 6 the E11.5 and P28 data
sets according to the longitudinal zone that each voxel

belongs to. These results can be compared with the Level
3 visualizations in Figures 4 and 5, which displays the
reduced data according to the transversal segment that
each voxel belongs to. We can observe from the t-SNE
results that voxels from the same longitudinal zones do
not form clear clusters in comparison to the clustering
patterns along the transversal dimension. In general, vox-
els belongs to the alar plate and basal plate form clear
clusters, while those in the roof plate and floor plate tend
to be widely distributed. However, we can observe that
voxels in the roof and alar plates are usually close to each
other, and those in the basal and floor plates tend to form
clusters. This shows that our computational results are
more consistent with the segmental model, which is also
supported by recent experimental evidences.

Figure 6 Visualization of the Allen Developing Mouse Brain Atlas data for ages E11.5 and P28 after projecting to 2-D space using t-SNE
and PCA. Each point corresponds to a brain voxel, which is displayed according to the longitudinal zones (F=floor, B=basal, A=alar, R=roof) it
belongs to. Results for other ages are shown in the Additional file 1.
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Manifold structures in developmental gene expression
We have observed that clustering of the low-dimension
representations generated by t-SNE leads to more consis-
tent results with neuroanatomy than those by the orig-
inal and the PCA-reduced representations. This might
indicate that the original gene expression data lie on a
low-dimensional manifold in the high-dimensional space.
In addition, a general trend that we have observed in
comparing the clustering results with neuroanatomy is
that clustering using the low-dimensional representations
gives very significant performance improvement at Level
1 in comparison to those by the original and the PCA-
reduced representations. This improvement decreases as
we move to Level 3 and Level 5. Such trend is consistent
with our hypothesis that the original gene expression data
lie on a manifold in the high-dimensional space, because
the Level 1 structures are simpler and thus are easier to
capture by low-dimensional representations than those
at Level 3 and Level 5. Hence, embedding of the simple
manifold into low-dimensional space facilitates the faith-
ful characterization of the underlying structures. On the
other hand, reducing relatively complex manifold struc-
tures to low-dimensional space might not lead to better
representations.

Conclusions
We employ global computational analysis to study the
relationship between gene expression patterns and neu-
roanatomy in the developing mouse brain. To enable
visual explorations, we map the high-dimensional ISH
gene expression data to low-dimensional space by pre-
serving both the local and the global structures. This
unsupervised, data-drivenmapping of spatial gene expres-
sion data leads to low-dimensional representations that
can be easily visualized. Our results show that the
developmental neuroanatomy is largely preserved in the
low-dimensional gene expression data space. To provide
quantitative results, we cluster both the original high-
dimensional data and the low-dimensional mapped data
and compare the results with the developmental neu-
roanatomy. Our results show that the clusters in the
low-dimensional space are more consistent with develop-
mental neuroanatomy than those in the high-dimensional
space.
In this work, the data set at each developmental age is

analyzed separately. Since development is a continuous
process, it would be interesting to map and cluster the
data by incorporating temporal smoothness constraints
[40,41]. We will explore time-varying dimensionality
reduction and clustering algorithms in the future. Our
results have shown that, although majority of the vox-
els are mapped to locations that are consistent with their
anatomical annotations, there do exist some exceptions.
We will investigate these cases in the future.

Additional file

Additional file 1: The additional file contains the complete set of
visualization results for developmental ages not shown in the main
texts.
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