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Abstract Optimization algorithms based on convex sepa-
rable approximations for optimal structural design often use
reciprocal-like approximations in a dual setting; CONLIN
and the method of moving asymptotes (MMA) are well-
known examples of such sequential convex programming
(SCP) algorithms. We have previously demonstrated that
replacement of these nonlinear (reciprocal) approximations
by their own second order Taylor series expansion provides
a powerful new algorithmic option within the SCP class of
algorithms. This note shows that the quadratic treatment
of the original nonlinear approximations also enables the
restatement of the SCP as a series of Lagrange-Newton
QP subproblems. This results in a diagonal trust-region
SQP type of algorithm, in which the second order diag-
onal terms are estimated from the nonlinear (reciprocal)
intervening variables, rather than from historic information
using an exact or a quasi-Newton Hessian approach. The QP
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formulation seems particularly attractive for problems with
far more constraints than variables (when pure dual meth-
ods are at a disadvantage), or when both the number of
design variables and the number of (active) constraints is
very large.
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1 Introduction

Gradient-based optimization algorithms that rely on non-
linear but convex separable approximation functions have
proven to be very effective for large-scale structural opti-
mization. Well-known examples are the convex lineariza-
tion (CONLIN) algorithm (Fleury and Braibant 1986)
and it’s generalization, the method of moving asymptotes
(MMA) (Svanberg 1987, 2002). These algorithms—and
some related variants, e.g. see Borrval and Petersson (2001),
Bruyneel et al. (2002) and Zillober et al. (2004)—are also
known as sequential convex programming (SCP) methods
(Fleury 1993; Zillober et al. 2004; Duysinx et al. 2009).

The aforementioned SCP algorithms are all based on
reciprocal or reciprocal-like approximations. They generate
a series of convex separable nonlinear programming (NLP)
subproblems. The derivation of the reciprocal-like approx-
imations typically starts from the substitution of recipro-
cal intervening variables into a first-order (linear) Taylor
series expansion, which is subsequently convexified, and
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possibly enhanced using historic information. The resulting
approximations provide for reasonably accurate subprob-
lem approximations, while separability and convexity of
the objective and constraint function approximations allows
for the development of efficient solution approaches for
the approximate subproblems. In many of the cited refer-
ences, the dual formulation of Falk is used (Falk 1967;
Fleury 1979), but other efficient subproblem solvers have
also been proposed, see e.g. Zillober (2001) and Zillober
et al. (2004).

In the spirit of the early efforts by Schmit and Farshi
(1974), the last decades have seen the development of a
variety of separable and non-separable local approxima-
tions based on intervening variables for use in sequen-
tial approximate optimization (SAO), e.g. see Haftka and
Gürdal (1991), Barthelemy and Haftka (1993), Vanderplaats
(1993), Groenwold et al. (2007) and Kim and Choi (2008).
The intervening variables yield approximations that are non-
linear and possibly non-convex in terms of the original or
direct variables. The resulting subproblems are typically
solved in their primal form by means of an appropriate
mathematical programming algorithm. Even though the
subproblem may be separable, either the non-convexity or
the inability to arrive at an analytical primal-dual relation
may hinder the utilization of the dual formulation. This
partly explains why these often highly accurate nonlinear
approximations are not as widely used in large-scale struc-
tural optimization as the reciprocal type of approximations.

Recently, we have reported that SAO based on the
replacement of approximations using specific nonlin-
ear intervening variables by their own convex diagonal
quadratic Taylor series expansions, may perform equally
well, or sometimes even better, than the original (con-
vex) nonlinear approximations. In Groenwold and Etman
(2010b), we have demonstrated that the diagonal quadratic
approximation to the reciprocal and exponential approxi-
mate objective functions can successfully be used in topol-
ogy optimization. We have generalized this observation
even further in Groenwold et al. (2010), where diagonal
quadratic approximations to arbitrary nonlinear approxi-
mate objective and constraint functions were constructed;
the resulting subproblems are convexified (when necessary),
and cast into the dual statement. This gives an SCP type of
algorithm which uses diagonal quadratic instead of recipro-
cal type of approximations. However, these truly quadratic
approximations behave reciprocal-like. In addition, the form
of the dual subproblem does not depend on which non-
linear approximations or intervening variables are selected
for quadratic treatment: all the approximated approxima-
tions can be used simultaneously in a single dual statement.
In Groenwold et al. (2010), diagonal quadratic replace-

ments for the reciprocal, exponential, CONLIN, MMA,
and TANA (Xu and Grandhi 1998) approximations were
presented. We have described this approach with the term
“approximated-approximations”.

In this note, we convey the observation that the
approximated-approximations approach also allows for the
development of an SCP method that consists of series of of
diagonal QP subproblems, in the spirit of the well-known
SQP algorithms.

SQP methods construct Hessian matrices using second-
order derivative information of the Lagrangian function,
often through an approximate quasi-Newton updating
scheme such as BFGS or SR1, e.g. see Nocedal and Wright
(2006), and many others. The storage and update of the
Hessian matrix may become burdensome for large-scale
structural optimization problems with very many design
variables, such as those encountered in topology opti-
mization. (Note that BFGS updates, etc. result in dense
matrices, even if the original problem is sparse. While
the dense matrices need not be stored in limited memory
implementations, the computational effort required for the
matrix-vector multiplications is significant.) For this reason,
Fleury (1989) proposed an SQP method that uses diagonal
Hessian information only. He developed methods to effi-
ciently calculate the diagonal second order derivatives in a
finite element environment.

Our approximated-approximations approach also allows
for the estimation of diagonal Hessian information with-
out using historic information or exact Hessian information.
The diagonal curvature estimates follow directly from the
selected intervening variables. For reciprocal intervening
variables, this means that at every given iteration point,
only function value and gradient information evaluated at
the current iterate is required, similar to existing gradient-
based SCP methods. Various (two- or multipoint) extensions
to this are of course possible, but not discussed herein
for the sake of brevity. A related but different approach
was presented by Fleury (2009), who used an inner loop
of QP subproblems generated using second order Taylor
series to solve each nonlinear intervening-variables based
approximate subproblem generated by the outer loop.

This note is arranged as follows. Section 2 presents
the optimization problem statement, and Section 3 sum-
marizes selected aspects of importance for SQP methods
in mathematical programming. Subsequently, we present
the basic concepts of SAO methods commonly used in
structural optimization in Section 4, with a focus on SCP
algorithms. In Section 5, we develop a first-order SCP algo-
rithm based on diagonal QP subproblems. Numerical results
are offered in Section 6, followed by selected conclusions in
Section 7.
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2 Optimization problem statement

We consider the nonlinear inequality constrained (struc-
tural) optimization problem

min
x

f0(x),

subject to f j (x) ≤ 0, j = 1, . . . , m,

x ∈ C ⊆ Rn,

with C = {x | x̌i ≤ xi ≤ x̂i , i = 1, . . . , n}, (1)

where f0(x) is a real valued scalar objective function, and
the f j (x) are m inequality constraint functions. x̌i and x̂i

respectively indicate lower and upper bounds of continuous
real variable xi . The functions f j (x), j = 0, 1, . . . , m are
assumed to be (at least) once continuously differentiable. Of
particular importance here is that we assume that the eval-
uation of (part of) the f j (x), j = 0, 1, . . . , m, requires an
expensive numerical analysis, for instance a finite element
structural analysis. We furthermore assume that gradients
∂ f j/∂xi can be efficiently and accurately be calculated, see
e.g. van Keulen et al. (2005).

Herein, we are in particular interested in solving the
large scale variant of problem (1), with a large number
of design variables and constraints. We consider algo-
rithms based on gradient-based approximations for which
the approximation functions f̃ {k}

j developed at iterate x{k}

satisfy (at least) the first-order conditions f̃ {k}
j (x{k}) =

f j (x{k}), and ∂ f̃ {k}
j /∂xi (x{k}) = ∂ f {k}

j /∂xi (x{k}), e.g. see
Alexandrov et al. (1998). We distinguish between two
classes of algorithms: general purpose mathematical pro-
gramming approaches, and the domain specific SCP
approaches based on convex separable approximations.
General purpose nonlinear programming algorithms aim to
robustly and efficiently solve optimization problem (1), irre-
spective of the origin of the optimization problem. SCP
approaches on the other hand use specialized (e.g. recipro-
cal type) approximation models motivated by (engineering)
knowledge about the application at hand.

3 Sequential quadratic programming

Recently, Gould et al. (2005) reviewed mathematical
programming methods for large-scale nonlinear optimiza-
tion. Two established classes of algorithms are sequen-
tial quadratic programming (SQP) methods and interior-
point methods. SQP methods generate steps by solving
a sequence of quadratic subproblems. Interior point algo-
rithms avoid the combinatorial difficulty of finding the

active inequality constraints for every subproblem by trans-
forming the original problem into an equality constrained
barrier problem. Refer to Nocedal and Wright (2006) for
an extensive introduction and overview of mathematical
programming methods for (large-scale) numerical optimiza-
tion. In this section, we briefly summarize some aspects of
Sequential Quadratic Programming needed to develop our
approach.

3.1 Line search versus trust region SQP

There are two fundamental strategies to move from some
current iteration point x{k} to a new iterate x{k+1}, namely
line search strategies and trust region strategies. In line
search SQP methods, a quadratic programming approxi-
mation subproblem is constructed at x{k}. The solution to
this QP subproblem provides the line search direction. The
new iterate is subsequently obtained by an (inexact) one-
dimensional minimization of some merit function which
balances the competing goals of reducing the objective func-
tion and satisfying the constraints. In trust region SQP
methods, no line search is carried out, but instead, the QP
subproblem with an additional trust region is solved. The
solution to the QP subproblem with trust region provides
the step to the new iterate, under the condition that it leads
to a sufficient reduction in a merit function. Otherwise, the
subproblem is re-solved with a reduced trust region. Alter-
native mechanisms for step acceptance are filter techniques,
which use ideas from multiobjective optimization to replace
the merit function. In certain cases, subproblems may be
solved in an approximate sense only, rather than exactly.

3.2 Approximation subproblem in SQP

Given the inequality constrained programming problem (1),
the QP subproblem at x{k} is written as

min
s

f0(x{k}) + ∇ f T
0 (x{k})s + 1

2
sT ∇2

xx L(x{k})s

subject to ∇ f T
j (x{k})s + f j (x{k}) ≤ 0, j = 1, . . . , m,

(‖ s ‖∞≤ �{k}), (2)

with s ≡ x−x{k} the trial step, ∇ f j (x{k}) the column vector
with gradients ∂ f j/∂xi evaluated at x{k}, and ∇2

xx L(x{k}) the
Hessian of the Lagrange function

L(x, λ) = f0(x) +
m∑

j=1

λ j f j (x), (3)

evaluated at x{k}. Note that the last equation line in (2) rep-
resents the trust region, which is only included in the trust
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region SQP algorithm. Updates of the Lagrange multipli-
ers follow along with the solution of the QP subproblem or
from least-squares estimation based on the Jacobian matrix
of the active constraints. For large-scale problems it may
be advantageous to follow a sequential equality-constrained
quadratic programming approach (SEQP) where for each
EQP subproblem first an LP subproblem is solved to deter-
mine which inequality constraints are included as equality
constraints. To overcome the possible difficulty of infeasible
subproblems, relaxation procedures are used, which include
the introduction of (elastic) slack variables.

3.3 Hessian approximations

Often it is advantageous to replace the true Hessian of the
Lagrangian by an approximation, which is updated after
each step. This update is based on the change in x and the
change in the gradient of the Lagrange function from itera-
tion k to iteration k +1. Well-known quasi Newton methods
are BFGS or SR1, e.g. see Nocedal and Wright (2006) for
details. Updating the Hessian of the Lagrangian may be
problematic if the Hessian contains negative eigenvalues.
Certain modifications to the original update formulas may
then be necessary, again see Nocedal and Wright (2006). To
avoid explicit storage of the complete Hessian (or inverse
Hessian) limited memory updating can be applied, such as
L-BFGS. A limited number of vectors of length n only are
stored, which represent the approximate Hessian implicitly.

4 Sequential approximate optimization

In the mid-seventies, Schmit an his coworkers (Schmit and
Farshi 1974; Schmit and Miura 1976) argued that appli-
cations of nonlinear programming methods to large struc-
tural design problems could prove cost effective, provided
that suitable approximation concepts were introduced. As
mentioned, key to the approximation concepts approach
is the construction of high quality approximations for the
objective function and constraints by incorporating appli-
cation specific non-linearities through so-called interven-
ing variables, e.g. see Barthelemy and Haftka (1993) and
Vanderplaats (1993). This means that a series of approxi-
mate NLP optimization subproblems are generated, which
are to be solved using a suitable solver. Barthelemy and
Haftka (1993) identified three classes of function approxi-
mations: local, mid-range, and global. Herein, we consider
gradient-based local approximations. We begin by summa-
rizing the main aspects of SAO required for the development
in sections to come. For a more detailed overview we refer
the interested reader to Chapter 6 of the book by Haftka and
Gürdal (1991) and the report by Duysinx et al. (2009).

4.1 Series of approximate optimization subproblems

Sequential approximate optimization as a solution strategy
for problem (1) seeks to construct successive approximate
subproblems P[k], k = 1, 2, 3, . . . at successive iteration
points x{k}. That is, we seek suitable (analytical) approxima-
tion functions f̃ j that are inexpensive to evaluate. We write
approximate optimization subproblem P[k] for problem
(1) as:

min
x

f̃ {k}
0 (x)

subject to f̃ {k}
j (x) ≤ 0, j = 1, . . . , m,

x ∈ C {k}

with C = {x | x̌i ≤ xi ≤ x̂i , i = 1, . . . , n} (4)

which has n unknowns, m constraints, and 2n side or bound
constraints.

To guarantee that the sequence of iteration points
approaches the solution x∗, one may cast the SAO method
into a trust region framework (Alexandrov et al. 1998), or
in a framework of variable conservatism (Svanberg 2002).
In the trust region framework, an allowed search domain
is defined around x{k}, and incorporated into closed set C .
That is, for infinity-norm move limits, C becomes:

C {k} = {x | −δ
{k}
i ≤ xi − x {k}

i ≤ δ
{k}
i ,

x̌i ≤ xi ≤ x̂i , i = 1, . . . , n}. (5)

The size of the search subregion may be manipulated to
enforce termination. In the conservatism framework, no
trust region is introduced. Instead, the conservatism of the
objective and constraint function approximations is adjusted
to enforce convergence. In both frameworks, x{k∗} is only
conditionally accepted to become the new iterate x{k+1}. If
x{k∗} is rejected, the subproblem is re-solved with a reduced
trust region, or with increased conservatism. An alternative
framework, which aims to combine the salient features of
trust regions and conservatism, is discussed in Groenwold
and Etman (2010a).

4.2 Intervening variables

For several structural optimization applications, it is known
that intervening variables may yield nonlinear approxima-
tions of significantly better accuracy than the (linear) Taylor
series in the original (direct) variables x. The intervening
variables concept in SAO is best explained by departing
with the first order Taylor series expansion, and expressing
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the Taylor series in terms of intervening variables yi (xi ):

f̃I(y) = f (y{k}) +
n∑

i=1

∂ f {k}

∂yi
(yi − y{k}

i ). (6)

It is typically assumed that yi (xi ) is a continuous and mono-
tonic expression over the interval [yi (x̂i ), yi (x̌i )], to ensure
that the mappings are bijective. For example, reciprocal
intervening variables are expressed as

yi = x−1
i , i = 1, . . . , n. (7)

Substitution into (6) yields (Haftka and Gürdal 1991)

f̃R(x) = f (x{k}) +
n∑

i=1

(
xi − x {k}

i

) x {k}
i

xi

(
∂ f

∂xi

){k}
. (8)

Following this principle, many other intervening variables
have been developed, see the references mentioned in the
introduction section.

4.3 Sequential convex programming algorithms

It is not necessarily advantageous to treat all design vari-
ables with the same intervening variables. A popular hybrid
variant is to treat reciprocally only those design variables
that have a negative gradient value, and select the linear
approximation for the other design variables (Starnes and
Haftka 1979). Fleury and Braibant (1986) approximate the
objective function and all the constraint functions using
this hybrid reciprocal-linear approximation. They show that
the resulting approximate subproblem is convex and sep-
arable and can be efficiently solved by means of the dual
(Falk 1967):

max
λ

min
x∈C

L(x, λ)

s.t. λ j ≥ 0, j = 1, 2, . . . , m,
(9)

where, given primal approximate subproblem (4), the corre-
sponding Lagrange function becomes:

L{k}(x, λ) = f̃ {k}
0 (x) +

m∑

j=1

λ j f̃ {k}
j (x). (10)

Lower and upper bounds x̌i and x̂i are part of convex set
C in (9), and do not introduce Lagrange multipliers. The
dimensionality of the dual problem is therefore determined
by the number of inequality constraints m. Clearly, this is
advantageous if m � n. For the separable reciprocal-linear
approximations, the nested minimization problem can be
analytically solved. The resulting maximization problem in
terms of the dual variables may be solved using any suit-
able first order or (apparently) second order method able
to handle discontinuous second derivatives. If the primal

subproblems happens to be infeasible, relaxation may for
instance be used (see e.g. Svanberg 2002).

The dual method based on the mixed reciprocal-linear
approximations is known as convex linearization (CON-
LIN). The concept to generate a series of convex sep-
arable subproblems has been further generalized in the
method of moving asymptotes (MMA), introduced by
Svanberg (1987). The reciprocal intervening variable is aug-
mented with an additional asymptote that allows to adjust
the curvature of the approximation. The MMA approach is
again hybrid in the sense that design variables with posi-
tive gradients are treated different to design variables with
negative gradient values. The intervening variables become:

1

xi − Li
if

∂ f

∂xi
< 0 and

1

Ui − xi
if

∂ f

∂xi
> 0.

(11)

The adjustment of the asymptotes Ui and Li may be done
heuristically as the optimization progresses, or guided by
function value and gradient information evaluated at the
previous iterate.

Several variants of, and extensions to, the original MMA
algorithm have been developed during the last decades, e.g.
see Borrval and Petersson (2001), Bruyneel et al. (2002) and
Zillober (2002). Various approaches for enforcing global
convergence have also been proposed. These include line
search variants of MMA (Zillober 1993), and MMA cast
in a framework of variable conservatism (Svanberg 2002).
Despite the risk of divergence, the simple ‘always accept’
strategy is nevertheless frequently adopted and found to
be effective and efficient in many a structural optimization
application (Groenwold and Etman 2010a).

5 Diagonal QP subproblems for SCP

The SCP class of algorithms based on convex separable
nonlinear approximations has become very popular in large-
scale structural optimization, and in topology optimization
in particular. In structural topology optimization, SCP meth-
ods are almost exclusively used, in particular when opti-
mality criteria update formulas do not apply. SQP type
of methods are far less frequently used, due to the high
dimensionality of many structural optimization problems.

We now show how an SQP type method can be developed
from the SCP class of methods by means of the approx-
imated approximations concept presented in Groenwold
et al. (2010).
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5.1 Diagonal quadratic function approximations

We depart with the diagonal quadratic Taylor approxima-
tions f̃ j to some objective and/or constraint function f j ,
given by

f̃ j (x) = f j (x{k}) +
n∑

i=1

(
∂ f j

∂xi

){k}
(xi − x {k}

i )

+ 1

2

n∑

i=1

c{k}
2i j

(xi − x {k}
i )2, j = 0, 1, . . . , m,

(12)

but with the c{k}
2i j

approximate second order diagonal Hessian
terms or curvatures. We neglect the off-diagonal Hessian
terms. So, our departing point is a separable form of the
sequential all-quadratic programming method, in which
quadratic approximations are simultaneously used for all
constraint functions (Svanberg 1993; Zhang and Fleury
1997; Fleury and Zhang 2000).

Since we assume that the user only provides function
value and gradient information, the second order coeffi-
cients c{k}

2i j
are to be estimated in some manner. To guarantee

strictly convex forms of the approximate subproblems, we
may, for example, enforce

c{k}
2i0

= max(ε0 > 0, c{k}
2i0

),

c{k}
2i j

= max(0, c{k}
2i j

), j = 1, 2, . . . , m.
(13)

We estimate the approximate second order curvatures c{k}
2i j

by building a Taylor series expansion to the nonlinear inter-
vening variables based approximations used in the SCP
methods. If we start from first-order expansion (6), we
obtain

c{k}
2i =

(
∂2 f̃I

∂x2
i

){k}
=

(
∂ f

∂xi

){k} (
∂xi

∂yi

){k} (
∂2 yi

∂x2
i

){k}
.

(14)

To illustrate: for the popular reciprocal intervening variables
yi = 1/xi , this results in

c{k}
2i = −2

x {k}
i

(
∂ f

∂xi

){k}
, (15)

e.g. see Zhang and Fleury (1997) and Bruyneel et al. (2002).
In other words: using the approximate curvatures (15)
in (12) implies that (12) becomes the quadratic approxima-
tion to the reciprocal approximation in the point x{k} (Haftka

2007, personal communication). For many a structural
optimization problem, it seems to be advantageous to
replace (15) by

c{k}
2i = 2

x {k}
i

∣∣∣∣
∂ f

∂xi

∣∣∣∣
{k}

, (16)

which yields a more conservative approximation than the
combination of (15) with (13) for positive gradients.

For other diagonal quadratic approximations to a number
of different well known nonlinear approximations, includ-
ing the exponential, CONLIN, MMA and TANA approxi-
mations, see Groenwold et al. (2010).

5.2 Approximate subproblem in dual form

Given primal approximate optimization subproblem (4),
with the approximate functions f̃ j , j = 0, 1, . . . , m given
by the (convex) diagonal quadratic approximations (12), the
approximate dual subproblem PD[k] becomes

max
λ

⎧
⎨

⎩γ (λ) = f̃ {k}
0 (x(λ)) +

m∑

j=1

λ j f̃ {k}
j (x(λ))

⎫
⎬

⎭ ,

subject to λ j ≥ 0, j = 1, 2, . . . , m,

(17)

with the primal-dual relationship between variables xi , i =
1, 2, . . . , n and λ j , j = 1, 2, . . . , m, given by

xi (λ) =

⎧
⎪⎨

⎪⎩

βi (λ) if x̌ {k}
i < βi (λ) < x̂ {k}

i ,

x̌ {k}
i if βi (λ) ≤ x̌ {k}

i ,

x̂ {k}
i if βi (λ) ≥ x̂ {k}

i ,

(18)

and

βi (λ) = x {k}
i −

⎛

⎝c{k}
2i0

+
m∑

j=1

λ j c
{k}
2i j

⎞

⎠
−1

×
⎛

⎝∂ f {k}

∂xi
+

m∑

j=1

λ j
∂ f {k}

j

∂xi

⎞

⎠ . (19)

For details, the reader is referred to our previous efforts
(Groenwold and Etman 2008). A globally convergent algo-
rithm may be obtained by casting dual subproblems PD[k]
in a framework of variable conservatism, or in a trust region
framework, see Groenwold et al. (2009) and Groenwold and
Etman (2010a).
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5.3 Approximate subproblem in QP form

Since the approximations (12) are (diagonal) quadratic,
the subproblems are easily transformed into a quadratic
program PQ P [k], written as

min
s

f̄ {k}
0 (s) = f0(x{k}) + ∇ f T

0 (x{k})s + 1

2
sT Q{k}s

subject to f̄ {k}
j (s) = f j (x{k}) + ∇ f T

j (x{k})s ≤ 0, (20)

‖ s ‖∞≤ �{k},

with j = 1, 2, . . . , m, s = (x − x{k}) and Q{k} the Hessian
matrix of the approximate Lagrangian at x{k}.

Using the diagonal quadratic objective function and con-
straint function approximations f̃ j , j = 0, 1, . . . , m, the
approximate Lagrangian L{k} equals

L{k} = f̃0(x{k}) +
m∑

j=1

λ
{k}
j f̃ j (x{k}), (21)

with

Q{k}
i i = c{k}

2i0
+

m∑

j=1

λ
{k}
j c{k}

2i j
, (22)

and Qil = 0 ∀ i �= l, i, l = 1, 2, . . . , n. The Lagrange mul-
tiplier values λ

{k}
j follow from the multiplier estimates due

to the solution of the QP subproblem at the previous iter-
ate x{k−1}. This approach is very similar to the well-known
SQP method discussed in in Section 3; the fundamental dif-
ference being the way the Hessian matrix of the Lagrangian
function is determined. Instead of using the exact or approx-
imate quasi-Newton Hessian matrices commonly used in
classical SQP algorithms, we use only approximate diag-
onal terms, estimated from suitable intervening variable
expressions for the objective function and all the constraints.
As we did for the dual subproblems, we again apply con-
vexity conditions (13), to arrive at a strictly convex QP
subproblem with a unique minimizer.

The quadratic programming problem requires the deter-
mination of the n unknowns xi , subject to m linear inequal-
ity constraints and the trust region bounds. Efficient QP
solvers can typically solve problems with very large num-
bers of design variables n and constraints m. Obviously, it
is imperative that the diagonal structure of Q is exploited
when the QP subproblems are solved.

To arrive at a globally convergent algorithm, the use of
trust regions in SQP algorithms is of course well known,
e.g. see Nocedal and Wright (2006), Conn et al. (2000), and
many others.

6 Numerical example

We now illustrate the QP-based SCP approach as pro-
posed in Section 5.3 using a numerical example, and com-
pare this method with the dual SCP method presented in
Section 5.2. We use the quadratic approximation to the
reciprocal approximation (16) for the objective function
and all the constraints, which allows for the unconditional
acceptance of the iterates; convergence is obtained without
the use of a global convergence strategy.

We consider the optimal sizing design of the tip-loaded
multi-segmented cantilever beam proposed by Vanderplaats
(1984, 2004). The beam is of fixed length l, is divided into
p segments, and is subject to geometric, stress and a sin-
gle displacement constraint. The geometry has been chosen
such that a very large number of the constraints are active or
‘near-active’ at the optimum (Fig. 1).

The objective function is formulated in terms of the
design variables bi and hi as

min f0(b, h) =
p∑

i=1

bi hi li ,

with li constant for given p. We enforce the bound con-
straints 1.0 ≤ bi ≤ 80, and 5.0 ≤ hi ≤ 80 (the upper
bounds were arbitrarily chosen; they are needed to allow for
the notion of a ‘move limit’). The stress constraints are

σ(b, h)

σ̄
− 1 ≤ 0, i = 1, 2, . . . , p,

while the linear geometric constraints are written as

hi − 20bi ≤ 0, i = 1, 2, . . . , p.

The tip displacement constraint is

utip(b, h)

ū
− 1 ≤ 0.

The constraints are rather easily written in terms of the
design variables b and h, e.g. see Vanderplaats (1984). Note
that the constraints are normalized; this is sound practice
in primal algorithms. However, this may not be desirable

h

il

b

i

i

Fig. 1 Vanderplaats’ beam
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Table 1 Vanderplaats-beam with displacement constraint

p n k∗ f ∗
0 h∗ CPU

5 10 8 65,419.64 5.38 · 10−06 0.01

5 · 10 102 10 63,704.47 3.86 · 10−06 0.01

5 · 102 103 11 63,665.62 4.32 · 10−07 0.04

5 · 103 104 12 63,665.11 3.77 · 10−06 0.96

5 · 104 105 12 63,665.10 6.99 · 10−05 50.40

5 · 105 106 13 63,665.10 2.06 · 10−04 2,878.66

Computational effort for dual-SCP (m = n + 1)

in algorithms based purely on dual statements. We therefore
scale the last constraint by 103 (to have all the dual variables
of roughly the same order; this is easily determined for the
problems of low dimensionality).

Using consistent units, the geometric and problem data
are as follows (Vanderplaats 1984): we use a tip load of P =
50,000, a modulus of elasticity E = 2 × 107, a beam length
l = 500, while σ̄ = 14,000, and ū = 2.5. The starting point
is bi = 5.0 and hi = 60 for all i .

We consider two cases of the Vanderplaats’ beam prob-
lem: the original problem with tip displacement constraint
and the problem without tip displacement constraint. The
problems are both expressed in terms of n = 2p design
variables; the number of constraints m may be found in the
results tables.

We present computational results for two rudimentary
SCP algorithms, denoted dual-SCP and QP-SCP, respec-
tively. Algorithm dual-SCP implements dual subprob-
lems (17), the dual subproblems are solved using the lim-
ited memory bound constrained L-BFGS-B solver (Zhu
et al. 1994). Algorithm QP-SCP implements QP subprob-
lem (20), this time we use the diagonal Galahad LSQP
solver (Gould et al. 2004) to solve the QP subproblems. In
the case of an infeasible subproblem the solver finds a sub-
problem solution with minimum constraint violation while
respecting the imposed move limits. For both dual-SCP and
QP-SCP we have used a 20% move limit (with respect to
x̂i − x̌i ) throughout (but it often is advantageous for QP

Table 2 Vanderplaats-beam with displacement constraint

p n k∗ f ∗
0 h∗ CPU

5 10 9 65,419.66 1.38 · 10−07 0.00

5 · 10 102 11 63,704.47 7.59 · 10−09 0.04

5 · 102 103 12 63,665.62 3.30 · 10−10 0.46

5 · 103 104 12 63,665.11 3.29 · 10−10 5.50

5 · 104 105 13 63,665.11 1.70 · 10−11 83.15

5 · 105 106 14 63,665.11 1.62 · 10−11 1,193.77

Computational effort for QP-SCP (m = n + 1)

Table 3 Vanderplaats-beam without displacement constraint

p n k∗ f ∗
0 h∗ CPU

5 10 7 61,914.79 1.02 · 10−06 0.01

5 · 10 102 9 54,605.11 2.54 · 10−06 0.08

5 · 102 103 9 53,827.75 5.78 · 10−06 0.88

5 · 103 104 10 53,749.44 8.71 · 10−06 16.77

5 · 104 105 11 53,741.61 7.02 · 10−04 440.42

5 · 105 106 – – – –

Computational effort for dual-SCP (m = n)

problems to not do so). We terminate the iterations when
‖x{k} − x{k−1}‖2 ≤ εx , with εx = 10−3. The algorithms
are considered to have failed when the CPU time exceeds
5,000 s.

The numerical results for dual-SCP and QP-SCP are pre-
sented in Tables 1, 2, 3 and 4, for p ranging from 5 to
5 · 105. Each line in the tables represents the outcome of
one optimization run. We have used compressed sparse
row (CSR) data representation. We define h = max{ f j },
j = 1, 2, . . . , m; h∗ is the same at optimality, while l∗ and
u∗ respectively indicate the number of design variables on
the lower and upper bounds at the solution x∗. k∗ denotes
the required number of iterations. For each optimal design
found, we have verified that the first-order KKT conditions
are satisfied to a reasonable accuracy (not explicitly shown).
The reported CPU effort is in seconds.

For both cases considered, algorithm QP-SCP is supe-
rior to algorithm dual-SCP, albeit that algorithm dual-SCP
is preferable for the case with a displacement constraint and
low dimensionality. For p = 5 · 105 the dual algorithm
timed out for the case without the displacement constraint,
whereas algorithm QP-SCP converged rather nicely. How-
ever, not shown is that the computational effort required
with QP-SCP is rather insensitive to the scaling of the con-
straints; for the Falk dual subproblems, ineffective scaling
can increase the computational effort by up to an order
of magnitude(!) Finally, the steep increase in CPU time

Table 4 Vanderplaats-beam without displacement constraint

p n k∗ f ∗
0 h∗ CPU

5 10 6 61,914.79 1.21 · 10−09 0.02

5 · 10 102 8 54,605.12 3.45 · 10−13 0.04

5 · 102 103 9 53,827.75 3.83 · 10−08 0.42

5 · 103 104 10 53,749.44 5.37 · 10−14 5.05

5 · 104 105 10 53,741.61 0.00 · 10+00 57.29

5 · 105 106 10 53,740.83 0.00 · 10+00 706.20

Computational effort for QP-SCP (m = n)
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with growing problem size is noteworthy. This has also
been observed and discussed in further detail by Fleury
(2009).

7 Conclusions

Through the concept of approximated-approximations, the
sequence of nonlinear subproblems that are solved in SAO
algorithms may be replaced by the solution of a sequence of
diagonal Lagrange-Newton QP subproblems, in the spirit of
classical SQP methods. This specializes to any SCP method
that employs a sequence of convex separable nonlinear sub-
problems. That is, a SCP can be transformed into a SQP
that uses an approximate diagonal Hessian matrix. The diag-
onal Hessian information may be obtained by replacing
an arbitrary separable nonlinear intervening variable-based
approximation by its own quadratic Taylor series expan-
sion. Hence, only function values and gradient informa-
tion are used; Hessian information is neither stored nor
updated.

The resulting first-order SCP method based on diago-
nal QP subproblems is particularly promising for structural
optimization problems where both the number of design
variables and constraints are high. This may provide new
opportunities for the use and development of algorithms
for large-scale structural optimization. We have herein
restricted ourselves to the quadratic approximation to the
reciprocal approximation, but only for the sake of brevity;
in principle any other nonlinear intervening variable based
approximation (e.g. MMA and the exponential approxima-
tion) may be considered for quadratic treatment and cast
into the QP format. What is more, different approximations
may be used for the objective function, and for any or all of
the constraint functions.

Finally, we have herein not addressed equality con-
straints, but equalities are included rather trivially in SQP
and interior point methods.
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