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Abstract
This paper reports new orthogonal functions on the half line based on the definition
of the classical Jacobi polynomials. We derive an operational matrix representation for
the differentiation of exponential Jacobi functions which is used to create a new
exponential Jacobi pseudospectral method based on the operational matrix of
exponential Jacobi functions. This exponential Jacobi pseudospectral method is
implemented to approximate solutions to high-order ordinary differential equations
(ODEs) on semi-infinite intervals. The advantages of using the exponential Jacobi
pseudospectral method over other techniques are discussed. Several numerical
examples are presented to confirm the validity and applicability of the proposed
method. Moreover, the obtained results are compared with those obtained using
other techniques.
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1 Introduction
Consider the initial value problem

u(m)(x) +
m–∑

i=

ai(x)u(i)(x) = f (x), x ∈ [,∞[, ()

with initial conditions

u(i)() = αi, i = , , . . . , m – , ()

where the functions a(x), a(x), . . . , am–(x) are continuous on the half line [,∞[ and
α,α, . . . ,αm– are constants. Eq. () was investigated to a wide class of deterministic and
stochastic problems. This problem describes several phenomena in engineering, physics
and chemical reaction, and so on. Many numerical methods are applied by many authors
to study high-order differential equations. Some of more recent methods are colloca-
tion method [–], multiple iterative splitting method [], modified Adomian decomposi-
tion method [–], spectral-Galerkin method [–], wavelets method [, ], homotopy
method [, ], variational iteration method [, ], elegant harmonic numbers opera-
tional matrix of derivatives [] and others [–].
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In this article, we derive the operational matrix of differentiation of exponential Jacobi
functions, and then we implement a new exponential Jacobi pseudospectral method in
conjunction with the operational matrix of differentiation of exponential Jacobi functions
to obtain numerical solutions of high-order ordinary differential equations on a semi-
infinite interval. Spectral methods (see, for instance, [–]), based on using operational
matrices, have been implemented in various problems such as fractional differential equa-
tions [, ], fractional optimal control problems [], Lane-Emden equation [, ],
and various integral equations []. This equation is collocated at the exponential Jacobi-
Gauss quadrature nodes. Doing so, we find that we can obtain very accurate results with
minimal computation. Hence, the method is rather computationally efficient compared
with other numerical or analytical approaches. Finally, numerical experiments of high-
order ODEs are implemented to demonstrate the validity and efficiency of the proposed
algorithm. In particular, in Section  we design the exponential Jacobi pseudospectral
method technique for solving high-order ODEs. In Section , several numerical exam-
ples are presented to demonstrate the efficiency of present numerical algorithm. Finally,
in Section , a few concluding remarks and future work are included.

2 Exponential Jacobi pseudospectral method
This section presents technical details of the new exponential Jacobi functions and the
exponential Jacobi pseudospectral method (EJPM). First, we outline some useful mathe-
matical properties that we shall make use of. Then, the derivative operational matrix of
exponential Jacobi functions is derived and proved. Finally, we derive the EJPM.

2.1 Mathematical preliminaries
Here we list some useful mathematical relations and identities useful in the construction
of the exponential Jacobi operational matrix (EJOM). Consider the classical Jacobi poly-
nomials J (θ ,ϑ)

k (z) on the interval [–, ] with the weight function ω(θ ,ϑ)(x) = ( – x)θ ( + x)ϑ ,
θ ,ϑ > –,

J (θ ,ϑ)
 (z) = , J (θ ,ϑ)

 (z) =


(
θ – ϑ + z(θ + ϑ + )

)
,

the set {J (θ ,ϑ)
k (z) : k = , , . . .} forms a complete orthogonal system in the weighted Hilbert

space L
ωθ ,ϑ (x)[–, ] with the inner product

(u, v)ω(θ ,ϑ)(x) :=
∫ 

–
u(x)v(x)ω(θ ,ϑ)(x) dx

and the norm

‖u‖ω(θ ,ϑ)(x) = (u, u)


ω(θ ,ϑ)(x).

Let us define the exponential Jacobi functions by replacing z by  –  exp(–x/L). Denoting
the exponential Jacobi functions J (θ ,ϑ)

i ( –  exp(–x/L)) by EJ (θ ,ϑ)
i (x), x ∈ [,∞). Therefore,
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EJ (θ ,ϑ)
i (x) may be created by the following recurrence relation:

EJ (θ ,ϑ)
k+ (x)

=
(k + θ + ϑ + )(k + θ + ϑ + )

(k + )(k + θ + ϑ + )

[(
((θ + )(θ + ϑ) + k + k(θ + ϑ + ))

(k + θ + ϑ)(k + θ + ϑ + )

– exp(–x/L)
)

EJ (θ ,ϑ)
k (x) –

(k + θ )(k + ϑ)
(k + θ + ϑ)(k + θ + ϑ + )

EJ (θ ,ϑ)
k– (x)

]
, k ≥ , ()

where

EJ (θ ,ϑ)
 (x) = , EJ (θ ,ϑ)

 (x) = (θ + ) – (θ + ϑ + ) exp(–x/L),

and

(k + θ + ϑ)EJ (θ ,ϑ)
i (x) = (k + ϑ)EJ (θ ,ϑ–)

i (x) + (k + θ )EJ (θ–,ϑ)
i (x).

The exponential Jacobi functions EJ (θ ,ϑ)
i (x) of degree i can be written as

EJ (θ ,ϑ)
i (x) =

i∑

k=

(–)k �(i + θ + )�(i + k + θ + ϑ + )
�(θ + k + )�(i + θ + ϑ + )(i – k)!k!

exp(–kx/L),

where

EJ (θ ,ϑ)
i () =

i∑

k=

(–)k �(i + θ + )�(i + k + θ + ϑ + )
�(θ + k + )�(i + θ + ϑ + )(i – k)!k!

, ()

DqEJ (θ ,ϑ)
i () =

i∑

k=

(–)k+q kq�(i + θ + )�(i + k + θ + ϑ + )
Lq�(θ + k + )�(i + θ + ϑ + )(i – k)!k!

. ()

Let χ
(θ ,ϑ)
R (x) = /L exp(–x(θ + )/L)( – exp(–x/L))ϑ , θ ,ϑ > –. The orthogonality condition

of exponential Jacobi functions is

∫ ∞


EJ (θ ,ϑ)

i (x)EJ (θ ,ϑ)
j (x)χ (θ ,ϑ)

R (x) dx =

⎧
⎨

⎩
γ

(θ ,ϑ)
i , i = j,

, i �= j,
()

where

γ
(θ ,ϑ)
i =

�(i + θ + )�(i + ϑ + )
(i + θ + ϑ + )�(i + )�(i + θ + ϑ + )

.

Any function u(x) ∈ L
χ

(θ ,ϑ)
R (x)

[,∞) can be expanded in terms of exponential Jacobi func-
tions as

u(x) =
∞∑

j=

cjEJ (θ ,ϑ)
j (x),
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where the coefficients cj are given by

cj =


γ
(θ ,ϑ)
j

∫ ∞


u(x)EJ (θ ,ϑ)

j (x)χ (θ ,ϑ)
R (x) dx, j = , , . . . .

Here, we outline the exponential Jacobi-Gauss quadrature. Assume that x(θ ,ϑ)
N ,j ,  ≤ j ≤ N ,

are the zeros of the Jacobi-Gauss interpolation on the interval (–, ) and 	
(θ ,ϑ)
N ,j ,  ≤ j ≤ N ,

are the corresponding weights of this interpolation. The nodes of the exponential Jacobi-
Gauss interpolation on the interval (,∞) are the zeros of EJ (θ ,ϑ)

N+ (x), which are denoted

by x(θ ,ϑ)
R,N ,j,  ≤ j ≤ N . Clearly x(θ ,ϑ)

R,N ,j = –L ln(
–x(θ ,ϑ)

N ,j
 ), and weights are 	

(θ ,ϑ)
R,N ,j = 

θ+ϑ+ 	
(θ ,ϑ)
N ,j ,

 ≤ j ≤ N . Let SN (,∞) be the set of all polynomials of degree at most N .
Let N be any positive integer, and

SN (,∞) = span
{

EJ (θ ,ϑ)
 (x), EJ (θ ,ϑ)

 (x), . . . , EJ (θ ,ϑ)
N (x)

}
. ()

Then, for any φ ∈ SN+(,∞), we obtain

∫ ∞




L

exp

(
–x(θ + )

L

)(
 – exp

(
–x
L

))ϑ

φ(x) dx

=


θ+ϑ+

∫ 

–
( – x)θ ( + x)ϑφ

(
–L ln

(
 – x



))
dx

=


θ+ϑ+

N∑

j=

	
(θ ,ϑ)
N ,j φ

(
–L ln

( – x(θ ,ϑ)
N ,j



))

=
N∑

j=

	
(θ ,ϑ)
R,N ,j φ

(
x(θ ,ϑ)

R,N ,j
)
. ()

Now, approximating u(x) by N +  terms of exponential Jacobi functions yields

u(x) �
N∑

j=

cjEJ (θ ,ϑ)
j (x) = CTφ(x), ()

where C and φ(x) are the unknown coefficients vector and the exponential Jacobi function
vector, respectively, and they are given by:

C = [c, c, . . . , cN ]T , ()

φ(x) =
[
EJ (θ ,ϑ)

 (x), EJ (θ ,ϑ)
 (x), . . . , EJ (θ ,ϑ)

N (x)
]T . ()

2.2 The derivative operational matrix of exponential Jacobi function
Here we shall give the derivation of a new operational matrix of derivative of the expo-
nential Jacobi functions, which is essential to our numerical method.

Theorem . Let φ(x) be the exponential Jacobi vector defined in (). The derivative of
the vector φ(x) can be expressed by

φ′(x) =
dφ(x)

dx
� Dφ(x), ()
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where D is the (N + ) × (N + ) operational matrix of the derivative. Then the nonzero
elements dij for  ≤ i, j ≤ N are given as follows:

di+,i =
(θ + i + )(θ + ϑ + i + )

L(θ + ϑ + i + )
, dii = –

i
L

,

dij =
(–)i+j+(j + θ + ϑ + )

L

i–j∏

k=

(θ + i – k + )
(θ + ϑ + i – k + )

, j < i – .

It is noticed that D is a lower-Heisenberg matrix.

Proof By differentiation with respect to x in () we get

d
dx

EJ (θ ,ϑ)
k+ (x) =

(k + θ + ϑ + )(k + θ + ϑ + )
(k + )(k + θ + ϑ + )

×
[(

((θ + )(θ + ϑ) + k + k(θ + ϑ + ))
(k + θ + ϑ)(k + θ + ϑ + )

– exp

(
–x
L

))
d

dx
EJ (θ ,ϑ)

k (x) +

L

exp

(
–x
L

)
EJ (θ ,ϑ)

k (x)

–
(k + θ )(k + ϑ)

(k + θ + ϑ)(k + θ + ϑ + )
d

dx
EJ (θ ,ϑ)

k– (x)
]

, k ≥ .

According to

(θ + ϑ + ) exp

(
–x
L

)
= (θ + )EJ (θ ,ϑ)

 (x) – EJ (θ ,ϑ)
 (x) =

d
dx

EJ (θ ,ϑ)
 (x), ()

the elements dij of the matrix D may be achieved from

d
dx

EJ (θ ,ϑ)
k+ (x) =

(k + θ + ϑ + )(k + θ + ϑ + )
(k + )(k + θ + ϑ + )

×
[(

((θ + )(θ + ϑ) + k + k(θ + ϑ + ))
(k + θ + ϑ)(k + θ + ϑ + )

– exp

(
–x
L

))
d

dx
EJ (θ ,ϑ)

k (x) +


(θ + ϑ + )L
d

dx
EJ (θ ,ϑ)

 (x)EJ (θ ,ϑ)
k (x)

–
(k + θ )(k + ϑ)

(k + θ + ϑ)(k + θ + ϑ + )
d

dx
EJ (θ ,ϑ)

k– (x)
]

, k ≥ , ()

d
dx

EJ (θ ,ϑ)
 (x) = (θ + )EJ (θ ,ϑ)

 (x) – EJ (θ ,ϑ)
 (x), ()

d
dx

EJ (θ ,ϑ)
 (x) = . ()

A combination of Eqs. (), () and () leads to the desired result. �

The main advantages of studying the general class of exponential Jacobi functions is that
the exponential Legendre functions, exponential Chebyshev functions of all kinds, and the
exponential Gegenbauer functions can be obtained as immediately special cases of the ex-
ponential Jacobi functions. Accordingly, in this article we cover all the previous mentioned
functions. More specifically, exponential Legendre, exponential Chebyshev and exponen-
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tial Gegenbauer operational matrices can be obtained as special cases from the derived
exponential Jacobi functions. These cases are summarized in the following corollaries.

Corollary . If θ = ϑ = , we obtain the exponential Legendre functions, then the nonzero
elements of the operational matrix of the exponential Legendre functions dij for  ≤ i, j ≤ N
are given as follows:

di+,i =
i + 

L
, dii = –

i
L

,

dij = (–)i+j+ (j + )
L

, j < i – .

Corollary . If θ = ϑ = – 
 , we have the exponential Chebyshev functions of the first kind,

then the nonzero elements of the operational matrix of the exponential Chebyshev functions
of the first kind dij for  ≤ i, j ≤ N are given as follows:

di+,i =
(i + )

L
, dii = –

i
L

,

dij =
(–)i+j+j(i – 

 )i–j

L( – i)i–j
, j < i – .

Corollary . If θ = ϑ = 
 , we have the exponential Chebyshev functions of the second

kind, then the nonzero elements of the operational matrix of the exponential Chebyshev
functions of the second kind dij for  ≤ i, j ≤ N are given as follows:

di+,i =
(i + )(i + )

L(i + )
, dii = –

i
L

,

dij =
(–)i+j+(j + )(i – 

 )i–j

L(–i – )i–j
, j < i – .

Corollary . If θ = – 
 , ϑ = 

 , we have the exponential Chebyshev functions of the third
kind, then the nonzero elements dij for  ≤ i, j ≤ N are given as follows:

di+,i =
(i + )

L(i + )
, dii = –

i
L

,

dij =
(j + )(–)i+j+�(–i)( 

 – i)i–j

L�(–j)
, j < i – .

Corollary . If θ = 
 , ϑ = – 

 , we have the exponential Chebyshev functions of the fourth
kind, then the nonzero elements dij for  ≤ i, j ≤ N are given as follows:

di+,i =
(i + )(i + )

L(i + )
, dii = –

i
L

,

dij =
(–)i+j�(–i)�( 

 – j)
L�(–i – 

 )�(–j)
, j < i – .

Remark . The operational matrix for the nth derivative can be derived as

dnφ(x)
dxn =

(
D())n

φ(x), ()
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where n ∈ N and the superscript in D() denotes matrix powers. Thus

D(n) =
(
D())n, n = , , . . . . ()

2.3 Derivation of the pseudospectral method
The purpose of this section is to derive a numerical algorithm for the exponential Jacobi
spectral collocation method based on the operational matrix of derivative of exponential
Jacobi function to solve high-order ordinary differential equations on the half line. Let us
consider the high-order ordinary differential equations of the form

u(m)(x) +
m–∑

i=

ai(x)u(i)(x) = f (x), x ∈ [,∞[, ()

with initial conditions

u(i)() = αi, for i = , , . . . , m – . ()

We give some needed properties of exponential Jacobi functions in the preceding sub-
sections, along with the derivation of the operational matrix of derivatives of exponential
Jacobi functions.

We will obtain a system of N +  algebraic equations from: (i) applying the operational
matrix of an exponential Jacobi function; (ii) collocation of the high-order ordinary dif-
ferential equations at (N – m – ) exponential Jacobi-Gauss points; (iii) imposition of m
initial conditions.

In order to use the exponential Jacobi operator matrix for this problem, we first approx-
imate u(x), u(i)(x) and u(m)(x) by the exponential Jacobi functions as

uN (x) �
N∑

j=

cjR(θ ,ϑ)
j (x) = CTφ(x), ()

u(i)
N (x) �

N∑

j=

cj
di

dxi R(θ ,ϑ)
j (x) = CT D(i)φ(x), ()

and

u(m)
N (x) �

N∑

j=

cj
dm

dxm R(θ ,ϑ)
j (x) = CT D(m)φ(x). ()

By substituting Eqs. (), () and () in Eq. (), we get

CT D(m)φ(x) +
m–∑

i=

ai(x)CT D(i)φ(x) = f (x). ()

Now, we satisfy () exactly at the collocation points of Jacobi rational Gauss quadrature.
In other words, we have to collocate this operational matrix relation at the (N – m – )
exponential Jacobi roots; x(θ ,ϑ)

R,N–m,k , k = , , . . . , N – m,
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CT D(m)φ
(
x(θ ,ϑ)

R,N–,k
)

+
m–∑

i=

ai
(
x(θ ,ϑ)

R,N–,k
)
CT D(i)φ

(
x(θ ,ϑ)

R,N–,k
)

= f
(
x(θ ,ϑ)

R,N–,k
)
,

k = , , . . . , N – m. ()

Furthermore, for imposing of m initial conditions, substituting Eq. () in Eq. () gives

u(i)() = CT D(i)φ() = αi. ()

Finally, the relations ()-() constitute a system of (N +) algebraic equations, which can
be solved using any iterative technique. Consequently, the approximate solution uN (x) can
be obtained (for more details, see [, , ]).

3 Numerical results
This section presents several numerical examples to demonstrate the high accuracy and
applicability of the present method, and all of them were performed on the computer using
a program written in Mathematica .. The absolute errors in the given tables are the
values of |u(x) – uN (x)| at selected points. Moreover, the obtained results are compared
with those obtained using other techniques. We consider the following examples.

Example  Consider the nonlinear Emden-Fowler equation

u()(x) +


(x)
u()(x) + u(x) = –u ln u, x ≥ , ()

subject to

u() = , u()() = .

The analytical solution is u(x) = e–x .
In this example, ten node points in [, ] and six corresponding weights with respect to

first six exponential Jacobi functions are considered. Table  shows the analytical and ap-
proximation solutions of u(x) obtained by Chebyshev neural network (ChNN) [] and
exponential Jacobi operational matrix (EJOM) with θ = ϑ = – 

 (first kind exponential
Chebyshev functions), θ = ϑ =  (exponential Legendre functions) and θ = ϑ = 

 (second
kind exponential Chebyshev functions), respectively. Absolute errors obtained by EJOM
with θ = 

 , ϑ = – 
 , N =  and L =  for Example  are plotted in Figure . The graph of an-

alytical solution and approximate solution for θ = 
 , ϑ = – 

 , N =  and L =  is displayed
in Figure  to make it easer to compare with analytical solution. Moreover the resulting
graph of Eq. () for the presented method and the analytic solution are shown in Figure .

Example  Consider the second-order nonlinear differential equation

u()(x) +


(x)
u()(x) + u(x) = erf(x) –

e–x (x – )√
πx

, x ≥ , ()

subject to

u() = , u()() =
√
π

.

The analytical solution is u(x) = √
π

∫ x
 e–t dt.
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Table 1 Comparison of the absolute errors for Example 1

x Analytical ChNN
[38]

EJOM (N = 20, L = 1)

θ = ϑ = – 1
2 θ = ϑ = 0 θ = ϑ = 1

2

0.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.1 0.99004983 0.99004883 0.99004988 0.99004994 0.99004993
0.2 0.96078943 0.96077941 0.96078946 0.96078942 0.96078934
0.3 0.91393118 0.9139317 0.91393112 0.91393112 0.91393120
0.4 0.85214378 0.85224279 0.85214382 0.85214381 0.85214376
0.5 0.77880078 0.77870077 0.77880085 0.77880096 0.77880099
0.6 0.69767632 0.69767719 0.69767618 0.69767594 0.69767596
0.7 0.61262639 0.61272838 0.61262644 0.61262662 0.61262661
0.8 0.527292424 0.52729340 0.52729252 0.52729272 0.52729269
0.9 0.44485806 0.44490806 0.44485807 0.44485772 0.44485769
1.0 0.36787944 0.36782729 0.36787939 0.36787915 0.36787921

Figure 1 Absolute residual error functions with θ = 1
2 , ϑ = – 1

2 , N = 20 and L = 1 for Example 1.

Figure 2 Exact solution and approximate solution at θ = 1
2 , ϑ = – 1

2 , N = 20 and L = 1 for Example 1.
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Figure 3 Exact solution and approximate solution with θ = 1
2 , ϑ = – 1

2 , N = 20 and L = 1 for Example 1.

Table 2 Comparison of the absolute errors for Example 2

x θ = ϑ = –1
2 θ = ϑ = 0 θ = ϑ = 1

2

0.0 0 0 0
1.0 3.007.10–8 2.107.10–8 2.707.10–8

2.0 2.353.10–8 4.976.10–8 5.067.10–8

3.0 3.180.10–8 5.733.10–8 5.028.10–8

4.0 9.386.10–8 2.368.10–8 6.252.10–9

5.0 9.514.10–9 6.890.10–9 1.667.10–8

6.0 1.007.10–9 4.581.10–9 3.294.10–9

7.0 6.591.10–10 1.593.10–10 9.366.10–9

8.0 1.070.10–9 3.543.10–9 1.079.10–8

9.0 1.375.10–9 5.259.10–9 1.136.10–8

10.0 6.492.10–10 5.976.10–9 1.153.10–8

Figure 4 Absolute residual error functions with θ = – 1
2 , ϑ = 1

2 , N = 24 and L = 1 for Example 2.

In Table , we introduce the absolute errors with different values of θ , ϑ , N =  and
L = . In Figure , we plot the absolute errors obtained by EJOM with θ = – 

 , ϑ = 
 , N = 

and L = , while Figure  presents the analytic solution with the approximate solution with
θ = – 

 , ϑ = 
 , N =  and L = .
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Figure 5 Exact solution and approximate solution with θ = – 1
2 , ϑ = 1

2 , N = 24 and L = 1 for Example 2.

Table 3 Comparison of the absolute errors for Example 3

x RCC [36]
method

EJOM (N = 7, L = 10)

θ = ϑ = – 1
2 θ = ϑ = 0 θ = ϑ = 1

2

0.0 0 0 0 0
0.1 1.253.10–4 2.915.10–5 3.871.10–5 3.985.10–5

0.2 5.855.10–4 1.836.10–4 2.508.10–4 2.552.10–4

0.3 1.131.10–3 4.957.10–4 6.943.10–4 6.952.10–4

0.4 2.276.10–3 9.589.10–4 1.368.10–3 1.341.10–3

0.5 3.488.10–3 1.564.10–3 2.255.10–3 2.152.10–3

0.6 4.950.10–3 2.320.10–3 3.342.10–3 3.088.10–3

0.7 6.665.10–3 3.255.10–3 4.631.10–3 4.123.10–3

0.8 8.596.10–3 4.416.10–3 6.139.10–3 5.246.10–3

0.9 1.074.10–2 5.872.10–3 7.897.10–3 6.463.10–3

1.0 1.309.10–2 7.701.10–3 9.949.10–3 7.795.10–3

Example  Consider the linear third-order problem

u()(x) +


(x + )
u()(x) –


(x + ) u()(x) +

x
x + 

u(x) =
x ln(x + )

x + 
, x ∈ [, ], ()

subject to the conditions

u() = , u()() = , u()() = –,

and the analytical solution u(x) = ln(x+). We apply the proposed exponential Jacobi oper-
ational matrix (EJOM) with three choices of θ and ϑ ; θ = ϑ = –/ (first kind exponential
Chebyshev functions), θ = ϑ =  (exponential Legendre functions), θ = ϑ = / (second
kind exponential Chebyshev functions) and the numerical results are tabulated in Table .
In this table we compare our results with those obtained by the rational Chebyshev collo-
cation (RCC) method []. Numerical results of this problem show that (EJOM) is more
accurate than the presented method in []. The graph of analytical solution and approx-
imate solution for θ = 

 , ϑ = – 
 at N =  and L =  is displayed in Figure  to make

it easer to compare with analytical solution. Figure  shows the absolute residual error
functions for θ = 

 , ϑ = – 
 at N =  and L = .
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Figure 6 Exact solution and approximate solution with θ = 1
2 , ϑ = – 1

2 , N = 16 and L = 10 for Example 3.

Figure 7 Absolute residual error functions with θ = 1
2 , ϑ = – 1

2 , N = 20 and L = 10 for Example 3.

Example  Consider the linear fourth-order problem

u()(x) + cos xu()(x) + sin xu()(x)

–  cos xu()(x) –  sin xu(x) = f (x), x ∈ [, ], ()

subject to the conditions

u() = , u()() = , u()() = –, u()() = ,

where f is selected such that exact solution is u(x) = e–x sin x. In Table , we list the absolute
errors obtained by EJOM with different values of θ , ϑ at N =  and L = . Figure  is
plotted to compare the analytic solution with the approximate solution with θ = ϑ = – 

 at
N =  and L = .
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Table 4 Comparison of the absolute errors for Example 4

x θ = ϑ = 0 θ = ϑ = 1
2 θ = ϑ = 1

0.0 0 0 0
10.0 5.810.10–8 6.143.10–8 6.856.10–8

20.0 5.880.10–8 1.450.10–6 1.264.10–6

30.0 2.953.10–7 1.094.10–6 5.662.10–8

40.0 1.933.10–7 8.744.10–7 2.319.10–6

50.0 1.047.10–7 1.617.10–6 3.126.10–6

60.0 8.421.10–7 1.775.10–6 3.296.10–6

70.0 8.012.10–8 1.805.10–6 3.329.10–6

80.0 7.940.10–8 1.811.10–6 3.335.10–6

90.0 7.924.10–8 1.812.10–6 3.336.10–6

100.0 7.924.10–8 1.812.10–6 3.336.10–6

Figure 8 Exact solution and approximate solution with θ = ϑ = – 1
2 , N = 24 and L = 6 for Example 4.

4 Conclusions
In this paper, we derived the operational matrix of derivative of exponential Jacobi func-
tions. This operational matrix in conjunction with the exponential Jacobi spectral col-
location method is utilized for reducing the solution of high-order ordinary differential
equations on the semi-infinite interval to that of a system of algebraic equations, which
may then be solved much more easily. The operational matrices of derivatives of exponen-
tial Legendre and exponential Chebyshev functions of the first and second kinds, which
often appear in conjunction with such spectral methods in the literature, may be obtained
as special cases of the operational matrix of exponential Jacobi functions by taking the
corresponding spacial cases of the exponential Jacobi functions parameters θ and ϑ .

Illustrative numerical examples with the satisfactory approximate solutions are achieved
to demonstrate the applicability and high accuracy of the present technique. The obtained
approximations of the exact solutions for the test problems make this technique very at-
tractive and contributed to the good agreement between approximate and exact values
in the numerical example. In addition, the present method could prove fruitful for those
investigating not only high-order ordinary differential equations, but more broadly equa-
tions with (i) strong nonlinearity and (ii) singularities.

It can be expected that the new exponential Jacobi pseudospectral scheme coupled with
a spectral element method will be an effective tool for the numerical solution of time-
dependent differential equations []. It also may be extended to solve nonlocal bound-
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ary value problems with more complicated conditions, meanwhile its extension to the
two-dimensional problems is straightforward. We assert that the proposed technique can
be applied to a much larger class of fixed-order and variable-order fractional differential
equations (see, for instance, [, ]).
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