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Abstract This paper presents a tool wear monitoring
strategy based on a large number of signal features in the
rough turning of Inconel 625. Signal features (SFs) were
extracted from time domain signals as well as from
frequency domain transforms and their wavelet coefficients
(time–frequency domain). All of them were automatically
evaluated regarding their relevancy for tool wear monitoring
based on a determination coefficient between the feature and
its low-pass-filtered course as well as the repeatability. The
selected SFs were used for tool wear estimation. The accuracy
of this estimation was then used to evaluate the sensor and
signal usability.

Keywords Tool condition monitoring . Signal feature
selection . Aerospace material

Abbreviations
SF Signal feature
TCM Tool condition monitoring
AE Acoustic emission
RMSE Root mean square error

1 Introduction

The search for process automation, stimulated by growing
demands for higher quality and productivity, and a
reduction in the human supervision of a machining process,

has resulted in the development of tool condition monitoring
(TCM) systems. It is generally acknowledged that
reliable process condition monitoring based on a single
signal feature (SF) is not feasible [1]. The development
of a robust and reliable tool condition monitoring system
requires the application of the most meaningful SFs which
best describe the tool wear [1–4]. Therefore, the key issue
in a TCM system is calculating a sufficient number of SFs
related to tool and/or process conditions [1, 4–6]. Various
methods for tool wear monitoring have been developed,
most often based on cutting forces, acoustic emission
(AE), and vibrations [2, 6, 7]. The sensor signal has to be
transformed into features that could describe the signal
adequately while simultaneously maintaining the relevant
information about tool conditions in the extracted features.
There are several SFs that can be extracted from any time
domain signal, including the average, effective value,
variance, skewness, kurtosis, etc. [1, 5, 6]. Sometimes, a
signal is transformed into a frequency or time–frequency
domain (fast Fourier transform, wavelet transform, etc.),
and then the signal features are extracted from these
transforms. There can be many different descriptors from
different sensor signals, most of which are hardly related
to the monitoring process. Therefore, a feature selection
procedure is necessary. Relevant features are then used for
tool or process condition diagnosis.

The information extracted from one or several sensors’
signals has to be combined into one tool condition
estimation. This can be achieved by various means such
as statistical methods, autoregressive modeling, pattern
recognition, expert systems, and others [1, 5, 6]. The neural
network approach has recently been the most intensively
studied method for feature fusion [5]. Usually, a single
neural network is used, where several SFs are fed into the
network inputs while the tool wear estimation is the
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network output. An alternative approach is the use of a
hierarchical tool wear monitoring algorithm [4].

Tool wear is an especially severe problem when
machining nickel-based heat-resistant super alloys such as
Inconel 625, which are employed in aeronautic and
aerospace applications because of their high shear strength,
work hardening tendency, highly abrasive carbide particles,
tendency to weld and form a built-up edge, and low thermal
conductivity [8]. All of these difficulties lead to high tool
wear and compromise the attainment of high material
removal rates. While machining Inconel 625, the cutting
tool often bears extreme thermal and mechanical loads
close to the cutting edge, leading to rapid tool wear.
Therefore, tool wear is not repeatable and has a tendency to
finish catastrophically (chipping or breakage of the cutting
edge). Tool condition monitoring under such conditions
seems to be especially important. The objective of this
paper was to compare the usability of various signals and
signal features originating from three sensors—cutting
force, vibration, and acoustic emission—which are used to
monitor the tool condition during the rough machining of
Inconel 625. New algorithms for signal feature selection
and elimination and training of the system were applied
based on data acquired in subsequent tool lives.

2 Experimental setup and conditions

The workpieces were impeller cases made of Inconel 625
(Fig. 1a) and machined with subsequent perpendicular cuts
from a 406- to 268-mm diameter, with the depth of the cut,
ap=2.5 mm; feed, f=0.2 mm/rev; and cutting speed, vc=
220 m/min. The tool was a CRSNL with whisker-reinforced
round ceramic inserts, RNGN CC670 (Fig. 1a). The tool
life was limited by three phenomena: tool notch wear
(Fig. 1b), burr formation (Fig. 1c), and a drastic decrease in
the surface finish. Notch wear appeared in the region where

the machined surface, hardened by previous cut, contacted
the cutting edge (see Fig. 1a). Sometimes, despite the high
value of this wear, the cutting edge region shaping the
workpiece surface was still intact and the surface finish
was still acceptable. The notch wear was often accom-
panied by burr formation (Fig. 1c), but this was not
always the case. Thus, all three phenomena appeared
autonomously, making the determination of the tool life
end difficult, subjective, and dependant on the machine
tool operator’s experience. Here, the used-up portion of
the tool life (ΔT), defined as the ratio of the cutting time
as performed so far (t) to the overall tool life span (T), was
used as the tool condition measure. Three workpieces
were machined, during which seven tools were worn out.
A higher number of used tools (tool lives) than machined
workpieces is characteristic when machining large aero-
space parts. Therefore, the application of a TCM system is
especially desirable.

The experiments were performed on a turning center
(TKX 50N) equipped with an industrial AE sensor (Kistler
8152B121) and accelerometer (PCB PIEZOTRONICS
356A16) mounted on the turret and a cutting force sensor
(Kistler 9017B) mounted under the turret. A raw AE
(AEraw) signal was acquired with a sampling frequency of
2 MHz using a DAQ card, NI PCI 6111. As this sampling
frequency produces an enormously large amount of data,
only 0.05 s (100,000 samples) out of every 10-s period was
recorded and analyzed. The demodulated amplitude of the
AE signal (AERMS), two cutting force signals (Fx and Fz),
and two vibration signals (Vy and Vz) were acquired
simultaneously with a sampling frequency of 30 kHz using
an NI PCI 6221 DAQ card at the same points of time (every
10 s) during 1.66 s (50,000 samples each). Each cut lasted
96 s, during which time eight such recordings of the
signals were taken and treated as separate, subsequent
measurements, used for tool wear monitoring.

3 Signal processing

3.1 Signal feature extraction

As it is really not possible to predict which SFs will be
useful in a particular case, as many as possible should be
extracted from the available signals. Then, those that are
informative, correlated with tool wear, should be selected
for tool condition monitoring. Here, from each of six
signals (Fx, Fz, Vy, Vz, AEraw, and AERMS), five time domain
signal features were extracted:

– Effective value (e.g., Fx,RMS),
– Standard deviation (e.g., Fx,StDev),
– Skewness (e.g., Fx,Skew),

Fig. 1 Workpiece and tool (a) and tool life criteria: tool wear (b),
burrs (c), surface roughness (d)
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– Kurtosis (e.g., Fx,Kurt), and
– Crest factor (the ratio of the peak level to the rms level,

e.g., Fx,Crest).

Fast Fourier transform was applied to obtain eight
frequency domain features from each signal:

– Dominant frequency, e.g., Fx,DF,
– Power in dominant band, e.g., Fx,PDB,
– Power in band 62–125 Hz, e.g., Fx,P62–125,
– Power in band 125–250 Hz, e.g., Fx,P125–250,
– Power in band 250–500 Hz, e.g., Fx,P250–500,
– Power in band 500–1,000 Hz, e.g., Fx,P500–1000,
– Power in band 1,000–2,000 Hz, e.g., Fx,P1000–2000, and
– Power in band 2,000–4,000 Hz, e.g., Fx,P2000–4000.

A three-level wavelet packet transform (WPT) decompo-
sition was used to obtain 14 coefficients, called approxima-
tions A and details D, which are band pass signals (see
Fig. 2). From each of these coefficients, six time–frequency
domain features were calculated:

– Logarithmic energy (e.g., Fx,ADA,E is the energy of
wavelet coefficient ADA of signal Fx),

– Skewness (e.g., Fx,ADA,Skew),
– Kurtosis (e.g., Fx,ADA,Kurt),
– Effective value (e.g., Fx,ADA,RMS),
– Threshold crossing rate (number of times the signal

crosses the threshold level, e.g., Fx,ADA,Count), and
– Pulse width (the percentage of time during which the

signal remains above this threshold, e.g., Fx,ADA,Pulse).

Thus, there were 84 wavelet-based SFs calculated from
each signal. Altogether, there were 582 signal features
calculated automatically (97 from each of the six available
signals, 194 SFs from each sensor).

3.2 Signal feature selection

While the number of extracted signal features is very large,
some of them are very distorted, hardly dependent on tool

wear (e.g., Fig. 3a), while others are dependant mainly on
the tool position on the workpiece (e.g., Fig. 3b). There are,
however, SFs that are dependent on the tool condition (e.g.,
Fig. 3c), even if some also depend on the tool position (e.g.,
Fig. 3d). Only those SFs that are relevant and sensitive to
tool conditions should be selected [5].

To measure this relevancy, a model for the relationship
between the SF and tool wear or used-up-part-of-tool-life
ΔT is necessary. Here, a low-pass-filtered signal feature was
accepted as an SF(ΔT) model, which made it possible to
avoid any uncertain suppositions about the mathematical
formula of this model. Because the filter characteristic
depends on the number of elements in a filtered time series,
a SF is first normalized in time to 0–100% of the tool life
(SFT), then SFT is filtered to SFTf using a second-order
Butterworth filter and a low cutoff frequency of 2% of the
sampling frequency. Signal feature usability for tool
condition monitoring can be evaluated using the coefficient
of determination, Rs

2, which is a statistical measure of how
well the SFTf(ΔT) model approximates the real SFT(ΔT)
relationship, or, in other words, how much this model is
better than just the average value of SFT.

R2
s ¼

P
i SFTi � SFTavð Þ2 �P

i SFTi � SFTf ið Þ2P
i SFTi � SFTavð Þ2 ð1Þ

where
P

i SFTi � SFTavð Þ2 is the total square sum andP
i SFTi � SFTf ið Þ2 is the residual square sum.
SFTi and SFTfi are the single values of SFT and SFTf,

respectively (i=0…100), and SFTav is the average value of SFT.
Because the TCM system should be able to monitor the

tool wear already after the first tool life, this evaluation is
based on the signals acquired during this first tool life.
These SFs, for which Rs

2>0.4, are assumed to be
satisfactorily correlated with the tool condition and, thus,
useful. Figure 4 presents examples of SFs that are qualified
and rejected by this criterion.

On the other hand, the selected SFs should not be
strongly correlated to each other to avoid multiplication of
the same information. Therefore, the SFs that meet the
criterion are then sorted into a descending order, according
to the Rs

2 values. Then, the first (best) is selected and the
correlation coefficients (r2) between this SF and every other
SF are calculated. SFs with r2>0.8 are rejected as these too
correlated with the best one. From among the remaining
signal features, again, the best one is selected, and the SFs
correlated with it are rejected. The procedure is repeated
until no SF meeting the Rs

2>0.4 criterion remains. Here,
out of all 582 signal features, 133 SFs were automatically
selected as useful, but after the elimination of similar SFs,
only 40 remained.

After completion of the second tool life, the tool feature
selection is repeated using all of the available data. Thus,

Fig. 2 Three-level WPT decomposition; blackened fields indicate the
frequency band of original signal

Int J Adv Manuf Technol (2012) 59:73–81 75



Rs
2 coefficients are calculated for both tool lives and

averaged. Now, the application of the second, even more
important, SF usability criterion can be applied: repeatability.
It is evaluated using another determination coefficient, Rr

2:

R2
r ¼

P
j

P
i SFTf ji � SF2Tfav
� �2 �P

j

P
i SFTf ji � SFTfavi
� �2

P
j

P
i SFTf ji � SF2Tfav
� �2 ð2Þ

where SFTfji is the value of SFTf in the ith point (i=0…
100) and jth tool life (j=1…2), SFTfavi ¼ 1

2

P
j SFTij is the

average of SFTf in ith point, and SF2Tfav ¼ 1
202

P
j

P
i SFTij

is the average of all SFTf values in two tool lives.
These SFs for which Rr

2>0.6 are assumed to be
sufficiently repeatable. All of the SFs that meet both criteria
are sorted according to their Rr

2 values. The elimination of
the SFs that are correlated to each other is based on the data

Fig. 3 Examples of signal fea-
tures calculated from available
signals during all seven tool
lives: skew of AEraw signal (a),
kurtosis of Fz signal (b), energy
of WPT coefficient ADD of Vy
signal (c), and standard
deviation of Fx signal (d)

Fig. 4 Examples of SFs that
met the Rs

2>0.4 criterion (a)
and those rejected by this
criterion (b)
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for two tool lives. One hundred eight SFs were recognized
as useful and repeatable, but after the elimination of similar
SFs, only 39 remained.

After the end of the third tool life, the entire SF selection
and elimination procedure is again repeated using all of the
available data. Figure 5 presents examples of the signal
features accepted by both criteria and recognized as
correlated with the tool wear, but not repeatable and thus
rejected. Finally, there were 62 relevant and repeatable
signal features, out of which 27 appeared to be not similar
to each other. The signal features selected in this way were
used for tool wear monitoring in all of the subsequent tool
lives, beginning from the fourth one.

It must be stressed that the signal features that qualified
after the first tool life did not have to be selected after two
or three tool lives, e.g., the SFs selected from the
accelerometer sorted according to Rs

2 after the first tool
life and accordingly to Rr

2 after the second and third tool
lives were:

& After the first tool life: Vz,ADA,E, Vy,RMS, Vy,Crest, Vz,D,

Skew, Vz,DDA,Kurt, Vz,AD,Pulse, Vy,P250–500, Vz,AAD,Kurt, Vz,

Kurt, Vy,A,RMS, Vy,AD,Kurt, Vz,AD,Kurt, Vz,DAA,Kurt, Vz,DDA,

Count

& After two tool lives: Vy,Crest, Vz,StDev, Vy,D,Pulse, Vz,AAD,

RMS, Vy,P4000–8000, Vy,AAD,Kurt, Vy,DA,E, Vy,AAA,Kurt, Vy,AD,
RMS, Vy,A,RMS, Vy,AD,Count, Vz,P250–500, Vz,P500–1000, Vz,

AAD,Kurt

& After three tool lives: Vy,D,Pulse, Vy,AAD,RMS, Vy,P4000–8000,
Vy,AAA,Kurt, Vz,StDev, Vy,A,RMS

Figure 6 shows the numbers of SFs selected after the
first tool life and the three tool lives for each sensor. The
latter are also shown for each signal. As can be seen, the
force sensor produced the highest number of useful,
relevant SFs, meaning those that were well correlated with
the tool condition, repeatable, and not similar to each other.
The data presented in Fig. 6 show that the cutting force
component, Fx (perpendicular to the cutting speed vector),

is a source of more potentially useful SFs than Fz

(parallel to the cutting speed vector), and the vibration in
the y direction is also more informative than that parallel
to the cutting speed. The AE sensor produced the smallest
number of useful signal features from both the low- and
high-frequency signals (AERMS and AEraw, respectively).

It may be interesting to consider the possibility of using
the signals singly and in various combinations. Such a
comparison is presented in Table 1 (SFs only after three tool
lives). As can be seen, the number of useful signal features
selected from two signals does not have to be the sum of
the SF numbers selected from the signals separately
because the SFs calculated from one sensor can be
correlated to the SFs calculated from another signal.

Because the cutting force sensor is much more difficult
to install than the vibration and AE sensors installed on the
surface of the machine tool, it is worth considering using
them without the cutting force sensor. Another option worth
considering is dropping the AEraw signal, which requires
much more demanding signal processing and a separate
DAQ device (high sampling frequency). In both cases, the
number of useful SFs for tool condition monitoring appears
to be the sum of the SFs obtained from separate signals.

4 Decision-making algorithm

Tool wear estimation is based on a hierarchical algorithm
[4]. In the first step of the algorithm, the used-up portion of
the tool life (ΔT) is evaluated using every selected signal
feature separately [9].

4.1 Tool condition estimation based on single signal feature

Here, the tool condition is estimated on the basis of a signal
feature, the used-up portion of tool live model in the form
of function SFTf (ΔT), which is an array of 101 elements
(0–100% of ΔT) − SFTf[ΔT].

Fig. 5 Examples of the evalua-
tion of signal features’ repeat-
ability based on data from three
tool lives: SF which met the
criterion (a) and SF that was
rejected as not repeatable
despite being correlated with
tool wear (b)
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After subsequent signal measurements, the system
calculates the signal feature value SF[n], where n is the
number of measurements (data acquisitions). Then, the
SFTf[ΔT] array created after the preceding tool lives is
searched for the values closest to SF[n] (Fig. 7a). It may
happen that after the next measurement, the SF value
corresponds to a value of the used-up portion of the tool life
lower than that reached in the previous operation (Fig. 7b).
Such a system indication might be disorienting for the
operator. Therefore, the search starts from the ΔT value
obtained after the previous measurement, which means that
the used-up portion of the tool life presented to the operator
cannot decrease. Sometimes it happens that the SF value is
affected by some disturbance and corresponds to a very
large increase in the tool wear. To remedy such a mistake,
the search for the SF value is limited to 30 elements of the
SFTf[ΔT] array created after the preceding tool lives array,
i.e., to 30% of the tool life (see Fig. 7c). This means that in
the case of accelerated tool wear, the system allows three
operations to be performed before it signals a tool failure.
This procedure also has another purpose, namely, it enables
signal features that are not monotonic with respect to the
used-up portion of the tool life to be utilized, at least to

some extent, as presented in Fig. 7d. In the example shown
here, the signal feature value corresponds to ΔT=63% and
ΔT=95%. The restriction of the array search to 30% of ΔT
indicates that ΔT=63%.

4.2 Integration of tool condition estimations

Separate tool condition estimations based on each useful
signal feature are integrated in the next step of the
algorithm (Fig. 8). All of the ΔT estimations are averaged
and displayed as the final tool condition evaluation. This
value is used as the initial value, ΔTB, in the next iteration
of the algorithm (after the next measurement).

The tool condition monitoring results obtained for each
sensor used separately and for all of the sensors used
together are presented in Fig. 9 as the used-up portions of
tool lives evaluated by the system, ΔTev, vs. the actual
values of ΔT. As the first tool life was used only for system
training, the results of the six following tool lives are
presented there. The second tool (dashed line with circles)
was monitored using only data gathered during the first tool
life, the third tool (dashed line with triangles) was monitored
using data from the first two tool lives, while tools 4–7 (solid
lines) were monitored using data from tool lives 1–3.

The accuracy of the tool condition monitoring evaluation
can be assessed using the root mean square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i
ΔTev �ΔTð Þ2

r
ð3Þ

The ΔT values are expressed as percentages; thus, the
RMSEs can be interpreted as average percentage errors.
The RMSEs are also presented in Fig. 9.

As can be seen in Fig. 9a, the best results (RMSE=8.7)
were obtained using the cutting force sensor, which is not

Fig. 6 Number of useful SFs
selected from each sensor signal
before and after elimination
of similar SFs

Table 1 Numbers of SFs selected from various combination of signals
after three tool lives – number of all SFs meeting criteria Rs

2>0.4 and
Rr

2>0.6/number of SFs after elimination of similar SFs
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surprising—cutting force signals are commonly recognized as
the most informative for tool condition monitoring. Here, this
signal produced the highest number of useful signal features
(see Fig. 6). The results achieved using the vibration sensor
were also relatively good (Fig. 9b, RMSE=13.4), but much
worse than those obtained using the force sensor, which
could be expected from the lower number of useful
signal features (Fig. 6). Not much worse were the results
based on AE signals (Fig. 9c, RMSE=14.4), which
produced a similar number of good SFs. All of the signals
used together (Fig. 9d) produced results a little worse than
the force sensor alone, which means that the poorly

repeatable AE signal features had a negative influence
on this result.

Again, it is worth considering the possibility of using
single signals separately. Such a comparison is presented
in Fig. 10. If the force sensor measured only one
component (Fx or Fz), the TCM system performance
would be worse than for both available signals, which is
caused by the useful SFs presented in Fig. 6. The Fx signal
alone produced much better results than the Fz signal,
which is a well-known phenomenon in tool condition
monitoring. Vibration signals also allow for a better tool
wear estimation when used together rather than separately,
and the direction perpendicular to the cutting direction is
more informative than that parallel to cutting. Finally, the
AE sensor produced two signals in different frequency
ranges (AERMS and AErms): When the signals were used
separately, each achieved results that were half as good
(higher RMSE) as the cutting force signals, which was the
result of the very small number of useful SFs. This time,

Fig. 8 Hierarchical tool condition estimation

Fig. 7 Used-up portion of tool life evaluation based on single signal
feature. a Search of array SFTf[ΔT] for the value closest to SF[n]
obtained after the last signal measurement. b Search started from
previous result; thus, ΔT value cannot diminish. c Search limited to 30
elements of SFTf[ΔT] array to reduce the influence of accidental high
values. d Enabling the use of non-monotonic signal features
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merging the two signals allows the highest improvement
in the result, making it only a little worse than that
achieved using vibration signals. The application of just
the vibration and AE sensors, which are much easier to
install than the cutting force sensor, results in an RMSE=
12.5, which is better than that achieved by the sensors
separately. The removal of the AEraw signal, which
requires a much higher sampling frequency, does not

result in substantial worsening of the RMSE error in this
application.

5 Conclusions

Advanced signal processing methods offer a large number
of possible signal features. It is impossible to predict in

Fig. 9 Used-up portion of tool
life evaluated by TCM system
(ΔTev) vs. actual portion (ΔT)
after training on selected signals

Fig. 10 Root mean square
errors of tool wear monitoring
based on various combinations
of signals
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advance which ones will be useful for tool condition
monitoring in a particular application. Therefore, efficient
methods to evaluate their usability have to be applied. The
methodology proposed here was based on:

– Modeling the signal feature dependence on the used-
up portion of tool life by low-pass filtering of the
feature,

– Qualification of SF usability using a determination
coefficient between the feature and its low-pass-filtered
estimate and SF repeatability, and

– Elimination of similar (correlated with each other)
signal features.

This methodology proved its effectiveness under very
difficult cutting conditions where the number of tool lives is
less than the number of the machined parts. A tool
condition monitoring strategy based on a hierarchical
algorithm was also tested, and the results achieved show
that it is worth implementing on a factory floor in many
applications.
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