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ABSTRACT

Cells can adapt to environment and development by
reconstructing their transcriptional networks to regulate
diverse cellular processes without altering the underly-
ing DNA sequences. These alterations, namely epige-
netic changes, occur during cell division, differentiation
and cell death. Numerous evidences demonstrate that
epigenetic changes are governed by various types of
determinants, including DNA methylation patterns, his-
tone posttranslational modification signatures, histone
variants, chromatin remodeling, and recently discovered
chromosome conformation characteristics and non-
coding RNAs (ncRNAs). Here, we highlight recent efforts
on how the two latter epigenetic factors participate in the
sophisticated transcriptional process and describe
emerging techniques which permit us to uncover and
gain insights into the fascinating genomic regulation.

KEYWORDS transcriptional regulation, long non-coding
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TRADITIONAL MODEL OF TRANSCRIPTIONAL
REGULATION IN EUKARYOTES

Phenotypic diversity of cells and their response and adap-
tation to the environment are achieved through the regula-
tion of distinct gene expression in particular temporal-spatial
context. In this context, transcription control is a crucial step
(Levine and Tijian, 2003; Reik, 2007; Hager et al., 2009;
Tsompana and Buck, 2014). Many studies indicate that
aberrant transcriptional regulation is closely related with
development and exacerbation of diseases (Newman and
Young, 2010; Harismendy et al., 2011; Li et al., 2013a; Luft,
2014; Yang et al., 2014). Understanding how genome is
orderly transcribed is vital for deciphering the mystery of
cellular phenotypical changes and homeostasis.

In traditional studies, we usually think of genomes, which
encode genetic information in their linear arrangement,
abstractly as one-dimensional entities. Traditional models of
transcriptional initiation also tend to be static, although gene
transcription changes with time to adapt to developmental and
environmental cues. The basis of transcriptional activity and
regulation is the recruitment of transcription complexes to target
genes, which is dominated by an intricate combination of tran-
scription factors (TFs) (Levine and Tjian, 2003; Hager et al.,
2009) and otherregulators (Visel etal., 2009; Shen etal., 2012).
In this process, the core promoter elements provide a platform
for anchoring the intermediate complexes which were generally
referred to as the basal transcription machinery (Dynlacht,
1997; Ptashne and Gann, 1997; Levine and Tjian, 2003; Takagi
and Kornberg, 2006). Other regulatory factors could selectively
bind to long-range cis-acting elements (such as enhancers,
silencers) to regulate transcription of target gene (Dean, 2011;
de Laat and Duboule, 2013). Gene activation may be achieved
through DNA looping formation between enhancer-bound TFs
and the transcription apparatus at the core promoter. Addi-
tionally, insulators ensure cis-elements to interact with the right
promoters through the construction of chromosome domain
boundaries (Bell et al., 2001; Bushey et al., 2008; Riethoven,
2010). Active transcription can thus be orderly achieved
through the collaboration of basal and regulatory factors in RNA
polymerases assembly, initiation and elongation. Besides the
influences from trans-acting factors and cis-acting regulatory
elements, large number of DNA/histone-modifying enzymes
also contribute to local gene activity (Kimura, 2013), both of
which could recruit specified protein complexes to regulate
transcription without altering the underlying genes sequences.
Moreover, DNA methylation and histone modification may
serve as good epigenetic indicators of chromatin states, such
as gene activation (H3K4me3 and H3K36me3) and repression
(H3K9me3 and H3K27me3).

As discussed above, the transcriptional process seems
quite simple. However, the actual status of genome in the
nucleus is far from that. In eukaryotic cells, the genome is

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn

©
&)
o3
=
(]
e
(o]
|
o




©
&)
]
=
()
]
o
| 99
o

REVIEW

Jun Cao et al.

orderly organized into repeating disk-shaped units, nu-
cleosomes, which are composed of histones, their associ-
ated DNAs, other chromatin associated proteins and RNAs
(Khorasanizadeh, 2004; Woodcock, 2006). The compaction
of DNAs into highly condensed chromatin obviously poses
many obstacles to nuclear processes that require access to
DNA sequence, including RNA transcription, DNA replica-
tion, recombination and repair. That is to say, the dense
structure of chromatin limits frans-acting factors to access
cis-acting regulatory elements (Edmondson and Roth, 1996;
Khorasanizadeh, 2004; Berger, 2007). However, to maintain
normal physical activities in cells, there also exists a dy-
namic balance between packaging regulatory sequences
into chromatin and allowing transcriptional regulators access
to these sequences (Cairns, 2009). Nevertheless, the
structural nature of this inhibition and the mechanisms by
which chromatin is remodeled to facilitate the regulation of
gene expression have remained puzzles for many years.
Extensive studies indicate that the complexity of transcrip-
tional modulation is beyond our imagination (Metivier et al.,
2006; Warnefors and Eyre-Walker, 2011). Although the
genome is the same within an eukaryotic organism, their
specific functions are unique due to the cells’ specific gene
expression patterns. As mentioned above, the elaborate
nature of genome topological organization in the nucleus
makes a great contribution to the maintenance of gene
transcription at the right place and the right time (Cavalli and
Misteli, 2013; Gibcus and Dekker, 2013), albeit eukaryotic
genomes encode genetic information in their linear se-
quences. Three-dimensional chromatin structure in eukary-
otic nucleus makes the gene activity not solely be
determined by processes occurring very close to or at the
gene locus (Khorasanizadeh, 2004; Misteli, 2007). More-
over, the discovery of interchromosomal or long-range in-
trachromosomal interactions in higher eukaryotes points to a
functional interplay between genome architecture and gene
expression, challenging the view of transcription as a two-
dimensional process (Gondor and Ohlsson, 2009; Schoen-
felder et al., 2010).

CHROMOSOME INTERACTIONS FUNCTION IN
TRANSCRIPTIONAL REGULATION

Many researches revealed that chromosomal interactions
can contribute to the silencing and/or activation of genes
within the three-dimensional organization of the nuclear ar-
chitecture (Galande et al., 2007; Gondor and Ohlsson, 2009;
Cavalli and Misteli, 2013). The genome forms extensive and
dynamic physical interactions in the form of chromatin loops
and bridges, which bring distal elements of the chromosome
into close physical proximity, with potential consequences for
gene expression and/or propagation of the genome. With
advances in detection technology, it is now possible to ex-
amine these interactions at molecular level. The physical
interactions of chromatin fibers can be measured by using

chromosome conformation capture (3C) (Dekker et al.,
2002) and related techniques including circular chromosome
conformation capture (4C) (Simonis et al., 2006; Zhao et al.,
2006), chromosome conformation capture carbon copy (5C)
(Dostie et al., 2006), and Hi-C (Lieberman-Aiden et al., 2009)
(Fig. 1). The common steps in all 3C-related techniques are
that chromosomes should be crosslinked with formaldehyde
and fragmented by restriction digestion (de Laat and Dekker,
2012). Classical 3C can detect chromosome interaction
between two interested loci by checking the ligation products
with PCR using locus-specific primers (one to one). 4C can
capture genome-wide interaction profiles for a single locus
with an inverse PCR. It is genome-wild but only focus on a
single locus (one to many). 5C approach combines 3C and
hybrid capture, so it can identify many chromosome inter-
actions between two large loci (many to many). Hi-C is the
first method that can get unbiased genome-wide chromo-
some interaction conformation (all to all). In Hi-C experiment,
the restriction ends are filled in with biotin-labeled nu-
cleotides before intramolecular ligation, and the ligated
fragments are selected for further analysis with biotin pull-
down. These genome-wide advances greatly contribute to
our understanding on the mechanism of the genome orga-
nization, as well as its adaptive plasticity in response to
environmental changes during development and disease.
For example, analyses of B-globin gene loci and the
regulatory regions of the H19 using 4C and 5C have re-
vealed large domains of interacting chromatin fibers (Dostie
et al.,, 2006; Zhao et al., 2006). Collaborated with Dr. MG
Rosenfeld and Dr. XD Fu (UCSD), we also developed three-
dimensional DNA selection and ligation (3D-DSL) method
(Fig. 1) and successfully detected the long-range enhancer
interactional network in human chromosome 9p21 region
(Harismendy et al., 2011). 3D-DSL is similar to 5C to identify
chromosome interactions at pre-selected genomic locus
(many to many). However, it includes further purification
steps which can greatly reduce background and increase
signal/noise ratio. A recent study by Fanucchi et al. indicated
that co-regulated genes can form long range chromosomal
contacts and that these long-range interactions may regulate
these co-regulated genes’ transcription. After knocking down
the factors which participate in the formation of the chro-
mosomal contacts, the contacts will lose and these co-
regulated genes transcription will not happen (Fanucchi
et al., 2013).

The development of 3C-based approaches has strength
ened our knowledge of the important roles of chromatin
structure in transcriptional regulation. While to establish
chromatin topology, architectural proteins are the keys. Ar-
chitectural proteins interact with specific regulatory elements
(proteins/DNA) to orchestrate long-range/short range of
chromatin organization across multiple spatial scales. These
interactions and chromatin topology would rearrange ac-
cording to the external environment changes, and these al-
ternations would directly affect the transcription process. The
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Figure 1. An overview of chromosome conformation capture (3C) and related techniques. The common steps in all 3C-related
techniques are that chromosome should be crosslinked with formaldehyde and fragmented by restriction digestion. In 4C procedure,
the fragment is further cleaved by a second restriction enzyme and subsequently religated to form DNA circles. The main different in
5C is the library preparation which need anneal and ligate 5C oligonucleotide after reverse crosslink. The Hi-C method adds a unique
step after restriction digestion, in which the staggered DNA ends are filled in with biotinylated nucleotides (as shown by the pink dot).
3D-DSL is similar to 5C to identify chromosome interactions at pre-selected genomic locus. However, probes pools were annealed to
the biotinylated 3C samples and biotinylated DNA was bound on to streptavidin magnetic beads in 3D-DSL assay. The ligated
products were then eluted from streptavidin magnetic beads. This further purification step can greatly reduce background and

increase signal/noise ratio.

golden rule in three-dimensional regulation of transcription is
that the dynamic balance between effective genome pack-
aging and accessibility within the nuclear space should be
established to adapt to environment changes and home-
ostasis. In this process, several crucial nodes of genome
topology can be proposed (Gomez-Diaz and Corces, 2014).
First and foremost, CCCTC binding factor (CTCF), which
was named “Master Weaver of the Genome” (Phillips and
Corces, 2009), associated with insulator sequences,
boundary elements and imprinting control regions, acts as a

global chromatin organizer to dominate higher-order chro-
matin into functional subdomains (Splinter et al., 2006;
Wendt et al., 2008; Herold et al., 2012). Meanwhile, the
distinct patterns of CTCF chromatin binding at dynCTS
(dynamic CTCF binding sites) were positively linked with
changes during gene transcription that relate to various
biological processes (Nakahashi et al., 2013). Moreover, a
recent research reveals that CTCF comprises a great ma-
jority of sites showing highly dynamic binding patterns during
the course of cellular senescence and aging-associate
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diseases (Recillas-Targa et al., 2006; Thijssen et al., 2013).
Additionally, mediator forms a complex with cohesion/Nipbl,
which can form rings that connect the enhancer with the
promoter and provides stability for long-range interactions
(Fig. 2) (Parelho et al., 2008; Newman and Young, 2010; Li
et al., 2013b). Particularly, 3C experiments revealed that this
complex can co-occupy different promoters among different
cell types and thus generate cell type-specific DNA loops
and affect differential gene expression (Kagey et al., 2010).
Recent studies by Tark-Dame et al. indicated that CTCF and
cohesin, acting as chromatin looping proteins, are respon-
sible primarily for constructing physical contacts, especially
short-range loops, between promoters and enhancers in cell
type-specific transcription (Tark-Dame et al., 2014).

Based on these evidences, it is easy to realize that trans-
acting factors and cis-acting elements play vital roles in
regulating nearby-gene expression and maintaining genome
topology. The identification of individual basal components,
especially various TFs and protein markers, makes people
used to judge gene regulatory network as protein-centric,
which is depending on protein-mediated transcriptional
control (Millau and Gaudreau, 2011). However, as Dr.

’Cohesin E Enhancer

IPJ Promoter
IncRNA CTCF

Chromosome

ee
NG

Shelley L. Berger said, “Every global traveler has experi-
enced the disorientation of being unable to speak the local
language...... those in the field of chromatin are in a similar
position...... we are faced with observations that cannot be
neatly categorized within previous models” (Berger, 2007).
Thus the above-mentioned studies are just the tip of the
iceberg of transcription regulation. More recent high-
throughput genomic technologies have now demonstrated
that only <2% of the human genome encodes for amino
acids in proteins. Undeniably, alternative splicing and post-
translational modifications make a significant contribution to
the diversity and functionality of the proteome. Nevertheless,
at least 98% outcome of genome exists as non-protein-
coding RNAs (or called non-coding RNA; ncRNAs) (Mattick,
2011). It became clear that developmental complexity and
environmental adaptation probably do not solely rely on
protein-mediated three-dimensional transcription. A myriad
of ncRNAs may play a decisive role in most, if not all,
aspects of gene regulation, especially in these epigenetic
processes (Wilusz et al., 2009; Lee, 2012; Schonrock et al.,
2012; Dey et al., 2014; Fatica and Bozzoni, 2014; Fitzgerald
and Caffrey, 2014; Hacisuleyman et al., 2014).

Figure 2. A simplified example of how CTCF/cohesion and IncRNAs respectively participate in construction of three-
dimensional chromosome network. The IncRNA network was modified from Hacisuleyman et al. (2014).
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LNCRNAS FUNCTIONS IN TRANSCRIPTIONAL
REGULATION

As early as 1990, Brannan and colleagues found a regula-
tory ncRNA when they aimed to find the mouse H19 gene
which was involved in a particular biological function by
screening the cDNA library of a fetal liver. This ncRNA is
different from classic structural ncRNAs such as rRNAs and
tRNAs (Brannan et al., 1990). With the innovations in next-
generation sequencing technologies and computational bi-
ology, a seemingly endless stream of ncRNAs are being
identified and characterized at a rapid pace. Researches on
ncRNAs have now gained the No.1 ranking in the top ten
scientific breakthroughs in the early decades of the twenty-
first century (News, 2010; Pennisi, 2010). Over the past fif-
teen years, small regulatory ncRNA (<200 nucleotides in
length), such as small interfering RNA (siRNAs) and mi-
croRNAs (miRNAs), have been extensively investigated and
the underlying molecular mechanisms have been well
documented, suggesting that these ncRNAs play major roles
in many cellular processes (Chitwood and Timmermans,
2010; Stuwe et al.,, 2014; Toscano-Garibay and Aquino-
Jarquin, 2014). The surprises didn’t stop at small ncRNAs,
and an expanding body of evidence reveals that long non-
coding RNAs (IncRNAs, >200 nucleotides in length), once
were described as ‘dark matter’, act as essential regulators
in diverse cellular progresses. These include regulation of
gene ftranscription (Orom et al., 2010; Sun et al., 2013),
dosage compensation (llik et al., 2013; Maenner et al.,
2013), genomic imprinting (Lee and Bartolomei, 2013; Simon
et al., 2013), DNA damage and nuclear organization (Wang
et al.,, 2011b; Wang et al., 2011c; Wan et al., 2013), via a
number of complex yet not fully understood mechanisms.
Along with the dramatic development in deep sequencing,
major hurdles rise to the surface. For example, how these
transcripts execute the specific function in different condi-
tions and how to classify them (Derrien et al., 2012; Guttman
and Rinn, 2012; Schonrock et al., 2012). Considering only
limited information about INcRNAs’ functions and structures
are known, the loci in genome where IncRNAs were tran-
scribed become the top choice to define these transcripts.
Based on the genomic localization and context, IncRNAs
can be classified as enhancer RNAs (eRNAs) (Lam et al.,
2014), promoter-associtated RNAs (pRNAs or PROMPTs)
(Marques et al., 2013), natural antisense transcripts (NATSs)
(Katayama et al., 2005; Magistri et al., 2012), intergenic
IncRNAs (lincRNAs) (Guttman et al., 2009; Cabili et al.,
2011; Ulitsky and Bartel, 2013) and intronic IncRNAs (Guil
et al., 2012). The detail classification and definition are de-
scribed in Fig. 3.

Distinct from small regulatory ncRNAs that regulate gene
expression mainly through base pairing to target transcripts,
most identified INcCRNAs play significant roles in regulating
protein activity or maintaining the integrity of protein com-
plex. LncRNAs are larger in length and thus possess com-
plex secondary and tertiary structures. These complicated

structures endow IncRNAs with the abilities to bind DNA,
RNA, protein molecules and/or their combinations in the
nucleus and cytoplasm, and thus they have multiple
regulatory capacities (Wilusz et al., 2009; Wang and Chang,
2011; Yang et al., 2014). Here, we highlight the possible
mechanisms by which IncRNAs regulate the transcription of
nearby protein-coding genes. The detailed regulatory mod-
els and examples are as follows:

1) LncRNAs act as “decoy” RNAs (Fig. 4A). LncRNAs can
bind to transcription factors or some other proteins away
from chromatin and prevent them from binding to their
proper regulatory targets. Growth arrest-specific 5
(Gasb) IncRNA, transcribed from exon 7 of Gas5 gene,
directly interacts with the DNA-binding domain (DBD) of
the glucocorticoid receptor (GR) by acting as a decoy
RNA version of the “glucocorticoid response element
(GRE)”, thus competing with DNA GREs for binding to
the GR DBD. Gas5, acting as a “riborepressor” of the
GR, thus influences cell survival and metabolic activities
during starvation by modulating GR-induced transcrip-
tional activity of endogenous glucocorticoid-responsive
genes (Kino et al., 2010).

2) LncRNAs act as “scaffold” RNAs (Fig. 4B). Because of
their structural flexibility, INcRNAs are well-suited to
assemble diverse combinations of regulatory proteins
through specific secondary structures to enhance the
protein-protein interactions. A classic model is the Yeast
telomerase, in which an 1157-nucleotide INncRNA (TLC7)
not only provides the template for telomeric DNA synthe-
sis, but also serves as a flexible scaffold for tethering
TERT/Est1p/Ku/Sm into the complex (Zappulla and Cech,
2006). Our previous results provided another example,
IncRNAccnp1- Itis transcribed from the promoter region of
the cyclin D (CCND1) gene and upregulated upon DNA
damage, where it acts as molecular ‘ligand’ for RNA-
binding protein TLS and promotes an allosteric effect to
release it from the inactive conformation. This recruitment
of TLS by IncRNAccnp+ leads to the inhibition of the HAT
functions of CBP/p300 and repression of CCND1 tran-
scription (Wang et al., 2008).

3) LncRNAs act as “guide” RNAs (Fig. 4C). LncRNAs can
function in cis on nearby gene or in trans on distally located
genes through recruiting chromatin-modifying enzymes to
targets. LncRNA Air, transcribed form an antisense
promoter located in intron 2 of Igf2r, silences transcription
of the distal paternal Slc22a3 gene via a specific chromo-
some interaction between Air and the Sic22a3 promoter
(Nagano et al., 2008). Accumulated Air at the Slc22a3
promoter recruits H3K9 histone methyltransferase G9a in
placenta and leads to targeted H3K9 methylation and
allelic silencing. Likewise, Xist (Wutz et al.,, 2002),
COLDAIR (Heo and Sung, 2011), HOTTIP (Wang et al.,
2011a) can guide changes of gene transcription in cis and
HOTAIR (Gupta et al., 2010), lincRNA-p21 (Huarte et al.,
2010) and Jpx (Tian et al., 2010) can guide in trans.
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Figure 3. The classification of IncRNAs. Based on the genomic localization and context, IncRNAs can be classified as eRNAs,
pRNAs, NATs, lincRNAs and intronic INcRNAs. eRNAs broadly defined as bidirectional and nonpolyadenylated transcripts which are
transcribed from enhancers. pRNAs originate from intragenic promoters. NATs are transcribed from the opposite strand of either
protein or non-protein coding genes. LincRNAs are transcriptional units,which are transcribed from regions intervening protein-coding
loci. Intronic INcRNAs derived from specific introns of protein-coding genes.

4) LncRNAs act as “sponge” RNAs (Fig. 4D). LncRNAs
could competitively inhibit the ability of miRNAs to
interact with their target mRNA. The vertebrate INcRNA
H19 mentioned above harbors both canonical and
noncanonical binding sites for the let-7 family of micro-
RNAs, which plays important roles in development,
cancer and metabolism. H19 modulates the availability
of let-7 by acting as a molecular sponge to specifically
sequester endogenous let-7, preventing it from inhibiting
Rluc expression (Kallen et al., 2013).

In addition to the models mentioned above, IncRNAs can
also serve as precursors of some small ncRNAs, interact with
other RNAs to form the complementary double strands, and
participate in some processes such as RNA splicingand mRNA
transcription (Kretz et al., 2013). Terminal differentiation-in-
duced ncRNA (TINCR) interacts with a range of differentiation
mRNAs (e.g. KRT80) to mediate their stabilization. TINCR-
mRNA interaction occurs through ‘TINCR box’, a 25-nucleotide

motif which is strongly enriched in interacting mRNAs and re-
quired for TINCR binding (Kretz et al., 2013). Besides that,
antisense INcRNAs may form sense-antisense pairs by pairing
with a protein-coding gene on the opposite strand to regulate
epigenetic silencing, transcription and mRNA stability. For ex-
ample, antisense Uchl1 increases UCHL1 protein levels via an
embedded inverted SINEB2 element (Carrieri et al., 2012). In
some cases, IncRNAs may have sequence-independent
functions, whereby the action of their transcription alone may
regulate transcription of neighboring genes (a phenomenon
called transcriptional interference or promoter occlusion)
(Kornienko et al., 2013).

It is worth mentioning that with the identification of circular
transcript Sry (Capel et al., 1993), a new class of circular
RNAs (circ-RNAs) has been attracting wide attentions about
their biogenesis and mechanisms. Recent studies revealed
that circ-RNAs not only can act as molecular sponges by
competing and/or sequestering miRNAs (e.g. circular RNA
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Figure 4. The regulatory models of IncRNAs.

sponge for miR-7, ciRS-7) (Hansen et al., 2013), but also
can function as positive regulators of Pol Il transcription (e.g.
ci-ankrd52) (Zhang et al., 2013).

Although the functions of only a limited number of
IncRNAs have been characterized to date, numerous para-
digms are emerging. With the advancement of next gen-
eration sequencing and RNA profiling strategies, further
work will likely identify many more IncRNAs and their func-
tional mechanisms.

NEW TRENDS IN TRANSCRIPTIONAL
REGULATION: THREE-DIMENSIONAL VIEW

With the development on both chromosome interactions/
structures and IncRNAs, we now should view and study
transcriptional regulation in three-dimensional way. That is,
chromosome interactions and IncRNAs together form a
network of three-dimensional transcriptional regulation.
Although both components are important and should be
considered as a whole in transcriptional regulation in this
three-dimensional view, IncRNAs play significant roles in
organizing and/or maintaining the three-dimensional chro-
matin network formed by different chromosome interactions.

N i Rluc
U\H' i
L ‘l77- ﬂ\

I’

i

Thus scientists are paying more attention to INcRNAs me-
diated regulation, and this is also the focus of our own lab.

Over 25 years ago, RNA was identified to be closely re-
lated with the “nuclear matrix” (Nickerson et al., 1989).
Digesting or stopping the production of RNAs, but not pro-
teins, resulted in disorganized chromatin regions inside the
nucleus. Increased evidences now indicate that IncRNAs
play irreplaceable roles in the establishment of three-
dimensional chromatin network (Quinodoz and Guttman,
2014; Rinn and Guttman, 2014). In several dynamic systems,
the transcription of INcRNAs from enhancer regions (eRNAs)
has been shown to correlate with the transcription of neigh-
boring protein-coding genes (De Santa et al., 2010; Orom
et al., 2010; Wang et al., 2011c). Studies with 3C-related
techniques subsequently provided evidences for a causal
role in the establishment or maintenance of enhancer-pro-
moter looping and activation of gene transcription.

A collaborated work indicated that IncRNAs in MCF-7
cells induced by 17B-oestradiol (E2) play important roles in
chromosomal conformation (Li et al., 2013b). In this study,
we also adopted 3D-DSL method and identified the impor-
tance of eRNAs in increasing the strength of specific
enhancer-promoter looping initiated by oestrogen receptor a
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(ER-a). The depletion of E2-induced IncRNAs can affect the
chromosomal interaction which in turn reduced the DNA
looping events and gene transcription. Furthermore, Lai and
colleagues identified ncRNA-activating (ncRNA-a) and re-
vealed that the mediator complex was involved in the
establishment or maintenance of chromatin looping between
the IncRNA loci and their regulated promoters (Lai et al.,
2013). A similar work was also provided by Xiang and col-
leagues shown that INcRNA CCAT17-L plays an important
role in MYC transcriptional regulation and promotes long-
range chromatin looping (Xiang et al., 2014). A very recent
study provided new insights into the formation of “chromatin
loops” mediated by IncRNAs (Hacisuleyman et al., 2014),
where the control range of IncRNAs is no longer restricted to
single chromosome. It is found in this work that IncRNA Firre
interacts with hnRNPU (nuclear-matrix factor), and brings at
least three genes together around their own transcription
sites. The co-localization of these different gene loci is lost
upon deleting the IncRNA Firre locus or knocking down
hnRNPU. This multichromosomal nuclear interaction could
be achieved by RNA-protein-DNA loop and bring the specific
gene locus into proximity that may be far away in linear
sequence (Fig. 2).

Meanwhile, a bulk of evidences suggest that the char-
acteristics of IncRNAs include relatively low abundance,
tissue-restricted or cell type-specific expression patterns and
localization to specific subcellular compartments. These in-
trinsic indices of IncRNAs suggest that they are likely rep-
resenting a previously hidden epigenetic regulator in the
determination of cell development, function and adaptation.
Given that the degree of organismal complexity scales with
the amount of non-coding DNA sequences, it is intriguing to
speculate that the increase in regulatory complexity afforded
by the dynamic interplay between IncRNAs and chromo-
some interactions, which established the dynamic three-di-
mensional transcriptional regulation, may be responsible for
the more complex transcriptional regulation and epigenetic
changes in organisms with higher complexity. However,
even with the massive increasing information on IncRNAs,
we still have a lot to learn. For example, to what degree do
IncRNAs participate in construction of genome topology and
gene expression? What do they depend on when they form
clusters to target gene in spatial proximity? In the process of
recruitment to specific genome loci, which way do they
choose to execute—working collaboratively or alone? If they
choose to collaborate, who will dominate this enrichment
process? A recent study demonstrated that a large number
of IncRNAs were identified during replicative senescence,
with few functions fully understood (Abdelmohsen et al.,
2013). With the acceleration of population aging process, the
relationship between INcRNAs and senescence-associated
diseases has attracted more and more attention (Abdel-
mohsen et al., 2013). Our lab aims to use 3D-DSL tech-
nology together with other genomic techniques to study the
molecular mechanism of transcription during cellular se-
nescence, focusing on the roles of INRNAs, and their

interactions with regulatory proteins (CTCF/Cohesin) and
genome loci that form genome topology in this complex
transcriptional regulation. We are particularly interested in
finding out whether IncRNAs participate in the chromatin
network with CTCF. We speculate that during the cell aging,
IncRNAs drag different regions of inter/intra-chromosome to
assemble specific transcriptional active and repressive re-
gions, relying on the flexible structure of IncRNAs. In this
process, CTCF collaborates with IncRNAs to establish
relatively stable state of three-dimensional chromatin net-
work and regulate gene expression (Fig. 5). This study will
hopefully provide new clues on how aging occurs.

FUTURE DIRECTIONS

Eukaryotic gene transcription can be viewed within a con-
ceptual framework in which regulatory mechanisms are in-
tegrated at three hierarchical levels. The first is the sequence
level, i.e. the linear organization of transcription units and
regulatory sequences. The second is the chromatin level,
which allows switching between different functional states.
This regulatory level is close related to histone modification,
DNA methylation, IncRNAs and a variety of repressing and
activating mechanisms. The third level is the nuclear level,
which includes the dynamic three-dimensional spatial orga-
nization of the genome inside the nucleus. The nucleus is
structurally and functionally compartmentalized, and epige-
netic regulation of gene expression may involve reposition-
ing of loci in the nucleus through changes in large-scale
chromatin structure. The traditional theory of two-dimen-
sional transcriptional regulation has been undergoing a
fundamental shift to three-dimensional modulation. Our un-
derstanding of the roles and implications of dynamic prop-
erties of the transcription machinery is still in infancy. Thus, it
is more necessary to integrate the different epigenetic de-
terminants, especially chromatin conformation characteris-
tics and IncRNAs into a whole to explicate the mechanism of
gene transcription.

Emerging developments in technologies have made it
possible to create high resolution genome-wide maps of
physical interactions along genomic regions and ncRNAs.
First of all, in the aspect of three-dimensional chromatin
network research, advanced imaging technologies (for ex-
ample single-molecule RNA fluorescence in situ hybridiza-
tion; single-molecule RNA-FISH) could examine subcellular
localization of IncRNA Firre in embryonic stem cells
(Hacisuleyman et al., 2014). Meanwhile, combination of
technology innovations in probing the folding of chromo-
somes (such as 3D-DSL and Hi-C) has uncovered an ex-
tensive, and previously underestimated network of local and
long-range intrachromosomal loops and interchromosomal
contacts. Howbeit, light microscopy just affords a resolution
of 100-200 nm at best, which is insufficient to define clear
chromosome conformation. Electron microscopy, while af-
fording high resolution, is laborious and not easily applicable
to study specific loci, not to mention the definite targets of
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Figure 5. The hypothetical model of how CTCF/cohesion collaborate with different IncRNAs to establish relatively stable
state of three-dimensional chromatin network and regulate gene expression in the process of cell aging.

IncRNAs. DNA binding proteins fused to different versions of
green fluorescent proteins permit visualization of individual
loci, but only a few positions can be examined simultane-
ously. Multiple loci can be visualized with FISH, but the
resolution for different loci is about 1000 kb. Given the
limitation of above techniques and based on the physical
crosslinking in the close region of inter/intra-chromosome,
the series of high-throughput 3C-associated methodologies
can be used to analyze the overall spatial organization of
chromosomes and to investigate their physical properties at
high resolution in a more systematic and unbiased manner.
Notwithstanding, a common problem in all of these tech-
niques is the requirement of a great number of cells, espe-
cially in the high-throughput methodologies. Single cell Hi-C
method has thus been developed (Nagano et al., 2013),
which effectively bridge current gaps between genomics and
microscopy studies of chromosomes. Secondly, in the study
of IncRNAs function, RNA microarray plays a prominent role
in providing reliable and sensitive results to discover the
mechanism studies of IncRNAs. With accurate probe anno-
tations and designs to distinguish splicing variants and de-
tect ncRNAs, microarray analysis can get pretty close to
what RNA-Seq or IncRNAs-Seq can offer at a significantly
lower cost. The mature software and normalization tech-
niqgues make analyzing RNA microarray data seem like a
breeze. However, microarrays only indicate known and
relative rather than absolute transcript levels. If we want to
assess rare and whole transcripts, GRO-Seq and IncRNA-
Seq are better options: the dynamic range is orders of
magnitude greater than that of microarrays. We believe that
the cost and complication of analysis can improve over time,
and with the advent of third generation sequencing, which
has a lower rate of sequencing error (not enzyme based) and
no need for amplification, the future of GRO-Seq and
IncRNA-Seq will certainly be promising.

Comprehensive understanding of three hierarchical levels
of transcriptional regulator is contingent on the upgrading

and innovation of technologies. These will come in several
areas ranging from classic molecular biology techniques to
bioinformatics tools. Despite that many mysteries about
gene transcription are still under investigation, the overall
picture is gradually clear: interdisciplinary techniques that
enable imaging analysis of complex in vivo systems will help
bridge the gap between live cell imaging and in vitro bio-
chemistry. With research underway in all of these areas, the
rapid progress in this field over the past decade should
continue unabated.

ACKNOWLEDGMENTS

We are grateful for the anonymous Reviewers, whose suggestions
have greatly improved the presentation of this manuscript. We
thank Qi Peng and other members in the Song lab for their help and
suggestions on the manuscript. This work was supported by grants
from the National Natural Science Foundation of China (Grant No.
31472059), the National Key Scientific Program of China (No.
2015CB943000), the Fundamental Research Funds for the Central
Universities (WK2070000034, WK2070000023) and the Major/
Innovative Program of Development Foundation of Hefei Center for
Physical Science and Technology (2014FXCX009) to XYS.
XYS is a recipient of the Young Thousand Talents program
(KJ2070000026).

ABBREVIATIONS

CTCF, CCCTC binding factor; GR, glucocorticoid receptor; GRE,
glucocorticoid response element; IncRNAs, long non-coding RNAs;
miRNAs, microRNAs; ncRNAs, non-coding RNAs; siRNAs, small
interfering RNA; TFs, transcription factors.

COMPLIANCE WITH ETHICS GUIDELINES

Jun Cao, Zhengyu Luo, Qingyu Cheng, Qianlan Xu, Yan Zhang, Fei
Wang, Yan Wu, and Xiaoyuan Song declare that they have no conflict
of interest.

This review does not include human or animal studies.

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn 249

©
&)
o3
=
(]
e
(o]
|
o




©
&)
]
=
()
]
o
| 99
o

REVIEW

Jun Cao et al.

OPEN ACCESS

This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and
the source are credited.

REFERENCES

Abdelmohsen K, Panda A, Kang MJ, Xu J, Selimyan R, Yoon JH,
Martindale JL, De S, Wood WH 3rd, Becker KG et al (2013)
Senescence-associated INcRNAs: senescence-associated long
noncoding RNAs. Aging Cell 12:890-900

Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries:
versatile regulatory elements in the eukaryotic genome. Science
291:447-450

Berger SL (2007) The complex language of chromatin regulation
during transcription. Nature 447:407-412

Brannan ClI, Dees EC, Ingram RS, Tilghman SM (1990) The product
of the H19 gene may function as an RNA. Mol Cell Biol 10:28-36

Bushey AM, Dorman ER, Corces VG (2008) Chromatin insulators:
regulatory mechanisms and epigenetic inheritance. Mol Cell
32:1-9

Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A,
Rinn JL (2011) Integrative annotation of human large intergenic
noncoding RNAs reveals global properties and specific sub-
classes. Genes Dev 25:1915-1927

Cairns BR (2009) The logic of chromatin architecture and remod-
elling at promoters. Nature 461:193-198

Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P,
Goodfellow P, Lovell-Badge R (1993) Circular transcripts of the
testis-determining gene Sry in adult mouse testis. Cell 73:1019-
1030

Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S,
Pesce E, Ferrer |, Collavin L, Santoro C et al (2012) Long non-
coding antisense RNA controls Uchl1 translation through an
embedded SINEB2 repeat. Nature 491:454-457

Cavalli G, Misteli T (2013) Functional implications of genome
topology. Nat Struct Mol Biol 20:290-299

Chitwood DH, Timmermans MC (2010) Small RNAs are on the
move. Nature 467:415-419

de Laat W, Dekker J (2012) 3C-based technologies to study the
shape of the genome. Methods 58:189-191

de Laat W, Duboule D (2013) Topology of mammalian developmen-
tal enhancers and their regulatory landscapes. Nature 502:499-
506

De Santa F, Barozzi |, Mietton F, Ghisletti S, Polletti S, Tusi BK,
Muller H, Ragoussis J, Wei CL, Natoli G (2010) A large fraction of
extragenic RNA pol Il transcription sites overlap enhancers.
PLoS Biol 8:e1000384

Dean A (2011) In the loop: long range chromatin interactions and
gene regulation. Brief Funct Genomics 10:3-10

Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing
chromosome conformation. Science 295:1306-1311

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H,
Guernec G, Martin D, Merkel A, Knowles DG et al (2012) The
GENCODE v7 catalog of human long noncoding RNAs: analysis

of their gene structure, evolution, and expression. Genome Res
22:1775-1789

Dey BK, Mueller AC, Dutta A (2014) Long non-coding RNAs as
emerging regulators of differentiation, development, and disease.
Transcription 5:€944014

Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA,
Rubio ED, Krumm A, Lamb J, Nusbaum C et al (2006)
Chromosome conformation capture carbon copy (5C): a mas-
sively parallel solution for mapping interactions between genomic
elements. Genome Res 16:1299-1309

Dynlacht BD (1997) Regulation of transcription by proteins that
control the cell cycle. Nature 389:149-152

Edmondson DG, Roth SY (1996) Chromatin and transcription.
FASEB J 10:1173-1182

Fanucchi S, Shibayama Y, Burd S, Weinberg MS, Mhlanga MM
(2013) Chromosomal contact permits transcription between
coregulated genes. Cell 155:606-620

Fatica A, Bozzoni | (2014) Long non-coding RNAs: new players in
cell differentiation and development. Nat Rev Genet 15:7-21

Fitzgerald KA, Caffrey DR (2014) Long noncoding RNAs in innate
and adaptive immunity. Curr Opin Immunol 26:140-146

Galande S, Purbey PK, Notani D, Kumar PP (2007) The third
dimension of gene regulation: organization of dynamic chromatin
loopscape by SATB1. Curr Opin Genet Dev 17:408-414

Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol
Cell 49:773-782

Gomez-Diaz E, Corces VG (2014) Architectural proteins: regulators of
3D genome organization in cell fate. Trends Cell Biol 24:703-711

Gondor A, Ohlsson R (2009) Chromosome crosstalk in three
dimensions. Nature 461:212-217

Guil S, Soler M, Portela A, Carrere J, Fonalleras E, Gomez A,
Villanueva A, Esteller M (2012) Intronic RNAs mediate EZH2
regulation of epigenetic targets. Nat Struct Mol Biol 19:664-670

Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai
M-C, Hung T, Argani P, Rinn JL (2010) Long non-coding RNA
HOTAIR reprograms chromatin state to promote cancer metas-
tasis. Nature 464:1071-1076

Guttman M, Rinn JL (2012) Modular regulatory principles of large
non-coding RNAs. Nature 482:339-346

Guttman M, Amit |, Garber M, French C, Lin MF, Feldser D, Huarte
M, Zuk O, Carey BW, Cassady JP et al (2009) Chromatin
signature reveals over a thousand highly conserved large non-
coding RNAs in mammals. Nature 458:223-227

Hacisuleyman E, Goff LA, Trapnell C, Wiliams A, Henao-Mejia J,
Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley
DR et al (2014) Topological organization of multichromosomal
regions by the long intergenic noncoding RNA Firre. Nat Struct
Mol Biol 21:198-206

Hager GL, McNally JG, Misteli T (2009) Transcription dynamics. Mol
Cell 35:741-753

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B,
Damgaard CK, Kjems J (2013) Natural RNA circles function as
efficient microRNA sponges. Nature 495:384-388

Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman
N, Ren B, Fu XD, Topol EJ, Rosenfeld MG et al (2011) 9p21 DNA
variants associated with coronary artery disease impair interfer-
on-gamma signalling response. Nature 470:264-268

250 © The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn



New trends in transcriptional regulation

REVIEW

Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing
by a long intronic noncoding RNA. Science 331:76-79

Herold M, Bartkuhn M, Renkawitz R (2012) CTCF: insights into
insulator function during development. Development 139:1045-
1057

Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzel-
mann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M (2010) A large
intergenic noncoding RNA induced by p53 mediates global gene
repression in the p53 response. Cell 142:409-419

lik 1A, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D,
Toscano S, Wan Y, Spitale RC, Luscombe N, Backofen R et al
(2013) Tandem stem-loops in roX RNAs act together to mediate
X chromosome dosage compensation in Drosophila. Mol Cell
51:156-173

Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van
Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS et al
(2010) Mediator and cohesin connect gene expression and
chromatin architecture. Nature 467:430-435

Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS,
Zhang H et al (2013) The imprinted H19 IncRNA antagonizes let-
7 microRNAs. Mol Cell 52:101-112

Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M,
Nakamura M, Nishida H, Yap C, Suzuki M, Kawai J (2005)
Antisense transcription in the mammalian transcriptome. Science
309:1564-1566

Khorasanizadeh S (2004) The nucleosome: from genomic organi-
zation to genomic regulation. Cell 116:259-272

Kimura H (2013) Histone modifications for human epigenome
analysis. J Hum Genet 58:439-445

Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding
RNA gas5 is a growth arrest- and starvation-associated repressor
of the glucocorticoid receptor. Sci Signal 3: ra8

Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene
regulation by the act of long non-coding RNA transcription. BMC
Biol 11:59

Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee
CS, Flockhart RJ, Groff AF, Chow J et al (2013) Control of
somatic tissue differentiation by the long non-coding RNA TINCR.
Nature 493:231-235

Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA,
Shiekhattar R (2013) Activating RNAs associate with Mediator to
enhance chromatin architecture and transcription. Nature
494:497-501

Lam MTY, Li W, Rosenfeld MG, Glass CK (2014) Enhancer RNAs
and regulated transcriptional programs. Trends Biochem Sci
39:170-182

Lee JT (2012) Epigenetic regulation by long noncoding RNAs.
Science 338:1435-1439

Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long
noncoding RNAs in health and disease. Cell 152:1308-1323

Levine M, Tjian R (2003) Transcription regulation and animal
diversity. Nature 424:147-151

Li J, Xuan Z, Liu C (2013a) Long non-coding RNAs and complex
human diseases. Int J Mol Sci 14:18790-18808

Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D,
Zhang J, Ohgi K, Song X et al (2013b) Functional roles of

enhancer RNAs for oestrogen-dependent transcriptional activa-
tion. Nature 498:516-520

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M,
Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner
MO et al (2009) Comprehensive mapping of long-range interac-
tions reveals folding principles of the human genome. Science
326:289-293

Luft FC (2014) Aberrant transcriptional regulation could explain
phenotypic variability in autosomal recessive polycystic kidney
disease. J Mol Med (Berl) 92:1011-1014

Maenner S, Muller M, Frohlich J, Langer D, Becker PB (2013) ATP-
dependent roX RNA remodeling by the helicase maleless
enables specific association of MSL proteins. Mol Cell 51:
174-184

Magistri M, Faghihi MA, St Laurent G Ill, Wahlestedt C (2012)
Regulation of chromatin structure by long noncoding RNAs: focus
on natural antisense transcripts. Trends Genet 28:389-396

Marques AC, Hughes J, Graham B, Kowalczyk MS, Higgs DR,
Ponting CP (2013) Chromatin signatures at transcriptional start
sites separate two equally populated yet distinct classes of
intergenic long noncoding RNAs. Genome Biol 14:R131

Mattick JS (2011) The central role of RNA in human development
and cognition. FEBS Lett 585:1600-1616

Metivier R, Reid G, Gannon F (2006) Transcription in four dimen-
sions: nuclear receptor-directed initiation of gene expression.
EMBO Rep 7:161-167

Millau JF, Gaudreau L (2011) CTCF, cohesin, and histone variants:
connecting the genome. Biochem Cell Biol 89:505-513

Misteli T (2007) Beyond the sequence: cellular organization of
genome function. Cell 128:787-800

Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC,
Feil R, Fraser P (2008) The air noncoding RNA epigenetically
silences transcription by targeting G9a to chromatin. Science
322:1717-1720

Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W,
Laue ED, Tanay A, Fraser P (2013) Single-cell Hi-C reveals cell-
to-cell variability in chromosome structure. Nature 502:59-64

Nakahashi H, Kwon KR, Resch W, Vian L, Dose M, Stavreva D,
Hakim O, Pruett N, Nelson S, Yamane A et al (2013) A genome-
wide map of CTCF multivalency redefines the CTCF code. Cell
Rep 3:1678-1689

Newman JJ, Young RA (2010) Connecting transcriptional control to
chromosome structure and human disease. Cold Spring Harb
Symp Quant Biol 75:227-235

News S (2010) Insights of the decade. Stepping away from the trees
for a look at the forest. Introduction. Science 330:1612-1613

Nickerson JA, Krochmalnic G, Wan KM, Penman S (1989)
Chromatin architecture and nuclear RNA. Proc Natl Acad Sci
USA 86:177-181

Orom UA, Derrien T, Guigo R, Shiekhattar R (2010) Long noncoding
RNAs as enhancers of gene expression. Cold Spring Harb Symp
Quant Biol 75:325-331

Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC,
Jarmuz A, Canzonetta C, Webster Z, Nesterova T et al (2008)
Cohesins functionally associate with CTCF on mammalian
chromosome arms. Cell 132:422-433

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn 251

©
&)
o3
=
(]
e
o
|
o




©
&)
]
=
()
]
o
| 99
o

REVIEW

Jun Cao et al.

Pennisi E (2010) Shining a light on the genome’s ‘dark matter'.
Science 330:1614

Phillips JE, Corces VG (2009) CTCF: master weaver of the genome.
Cell 137:1194-1211

Ptashne M, Gann A (1997) Transcriptional activation by recruitment.
Nature 386:569-577

Quinodoz S, Guttman M (2014) Long noncoding RNAs: an emerging
link between gene regulation and nuclear organization. Trends
Cell Biol 24:651-663

Recillas-Targa F, De La Rosa-Velazquez IA, Soto-Reyes E, Benitez-
Bribiesca L (2006) Epigenetic boundaries of tumour suppressor
gene promoters: the CTCF connection and its role in carcino-
genesis. J Cell Mol Med 10:554-568

Reik W (2007) Stability and flexibility of epigenetic gene regulation in
mammalian development. Nature 447:425-432

Riethoven JJ (2010) Regulatory regions in DNA: promoters, en-
hancers, silencers, and insulators. Methods Mol Biol 674:33-42

Rinn J, Guttman M (2014) RNA function. RNA and dynamic nuclear
organization. Science 345:1240-1241

Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A,
Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS et al
(2010) Preferential associations between co-regulated genes
reveal a transcriptional interactome in erythroid cells. Nat Genet
42:53-61

Schonrock N, Harvey RP, Mattick JS (2012) Long noncoding RNAs
in cardiac development and pathophysiology. Circ Res 111:1349-
1362

Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U,
Dixon J, Lee L, Lobanenkov VV et al (2012) A map of the cis-
regulatory sequences in the mouse genome. Nature 488:116-
120

Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M,
Bowman SK, Kesner BA, Maier VK, Kingston RE, Lee JT (2013)
High-resolution Xist binding maps reveal two-step spreading
during X-chromosome inactivation. Nature 504:465-469

Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E,
van Steensel B, de Laat W (2006) Nuclear organization of active
and inactive chromatin domains uncovered by chromosome
conformation capture-on-chip (4C). Nat Genet 38:1348-1354

Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F,
Galjart N, de Laat W (2006) CTCF mediates long-range
chromatin looping and local histone modification in the beta-
globin locus. Genes Dev 20:2349-2354

Stuwe E, Toth KF, Aravin AA (2014) Small but sturdy: small RNAs in
cellular memory and epigenetics. Genes Dev 28:423-431

Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E,
Sauvageau M, Tazon-Vega B, Kelley DR, Hendrickson DG et al
(2013) Long noncoding RNAs regulate adipogenesis. Proc Natl
Acad Sci USA 110:3387-3392

Takagi Y, Kornberg RD (2006) Mediator as a general transcription
factor. J Biol Chem 281:80-89

Tark-Dame M, Jerabek H, Manders EM, Heermann DW, van Driel R
(2014) Depletion of the chromatin looping proteins CTCF and
cohesin causes chromatin compaction: insight into chromatin
folding by polymer modelling. PLoS Comput Biol 10:e1003877

Thijssen PE, Tobi EW, Balog J, Schouten SG, Kremer D, El
Bouazzaoui F, Henneman P, Putter H, Eline Slagboom P,

Heijmans BT et al (2013) Chromatin remodeling of human
subtelomeres and TERRA promoters upon cellular senescence:
commonalities and differences between chromosomes. Epige-
netics 8:512-521

Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a
molecular switch for X chromosome inactivation. Cell 143:390-403

Toscano-Garibay JD, Aquino-Jarquin G (2014) Transcriptional
regulation mechanism mediated by miRNA-DNA*DNA triplex
structure stabilized by Argonaute. Biochim Biophys Acta
1839:1079-1083

Tsompana M, Buck MJ (2014) Chromatin accessibility: a window into
the genome. Epigenet Chromatin 7:33

Ulitsky |, Bartel DP (2013) lincRNAs: genomics, evolution, and
mechanisms. Cell 154:26-46

Visel A, Rubin EM, Pennacchio LA (2009) Genomic views of distant-
acting enhancers. Nature 461:199-205

Wan G, Hu X, Liu Y, Han C, Sood AK, Calin GA, Zhang X, Lu X (2013)
A novel non-coding RNA IncRNA-JADE connects DNA damage
signalling to histone H4 acetylation. EMBO J 32:2833-2847

Wang KC, Chang HY (2011) Molecular mechanisms of long
noncoding RNAs. Mol Cell 43:904-914

Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P,
Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs
allosterically modify RNA-binding proteins in cis to inhibit
transcription. Nature 454:126-130

Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen
Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA (2011a) A long
noncoding RNA maintains active chromatin to coordinate
homeotic gene expression. Nature 472:120-124

Wang X, Song X, Glass CK, Rosenfeld MG (2011b) The long arm of
long noncoding RNAs: roles as sensors regulating gene tran-
scriptional programs. Cold Spring Harb Perspect Biol 3:a003756

Wang XQ, Crutchley JL, Dostie J (2011c) Shaping the genome with
non-coding RNAs. Curr Genomics 12:307-321

Warnefors M, Eyre-Walker A (2011) The accumulation of gene
regulation through time. Genome Biol Evol 3:667-673

Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E,
Tsutsumi S, Nagae G, Ishihara K, Mishiro T et al (2008) Cohesin
mediates transcriptional insulation by CCCTC-binding factor.
Nature 451:796-801

Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs:
functional surprises from the RNA world. Genes Dev 23:1494—
1504

Woodcock CL (2006) Chromatin architecture. Curr Opin Struct Biol
16:213-220

Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing
and localization are mediated by different domains of Xist RNA.
Nat Genet 30:167-174

Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, Zhang S,
Wang HB, Ge J, Lu X et al (2014) Human colorectal cancer-
specific CCAT1-L IncRNA regulates long-range chromatin inter-
actions at the MYC locus. Cell Res 24:513-531

Yang G, Lu X, Yuan L (2014) LncRNA: a link between RNA and
cancer. Biochim Biophys Acta 1839:1097-1109

Zappulla DC, Cech TR (2006) RNA as a flexible scaffold for proteins:
yeast telomerase and beyond. Cold Spring Harb Symp Quant
Biol 71:217-224

252 © The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn



New trends in transcriptional regulation REVIEW

Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, chromosome conformation capture (4C) uncovers extensive
Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. networks of epigenetically regulated intra- and interchromosomal
Mol Cell 51:792-806 interactions. Nat Genet 38:1341-1347

Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S,
Kanduri C, Lezcano M, Sandhu KS, Singh U et al (2006) Circular

©
(&)
o3
=
(]
e
(o]
|
o

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn 253



	Three-dimensional regulation of&#146;transcription
	ABSTRACT
	TRADITIONAL MODEL OF TRANSCRIPTIONAL REGULATION IN EUKARYOTES
	CHROMOSOME INTERACTIONS FUNCTION IN TRANSCRIPTIONAL REGULATION
	LNCRNAS FUNCTIONS IN TRANSCRIPTIONAL REGULATION
	NEW TRENDS IN TRANSCRIPTIONAL REGULATION: THREE-DIMENSIONAL VIEW
	FUTURE DIRECTIONS
	ACKNOWLEDGMENTS
	s13238-015-0135-7
	References


