
ORI GIN AL ARTICLE

Belief Revision and Verisimilitude Based on Preference
and Truth Orderings

Gerard R. Renardel de Lavalette • Sjoerd D. Zwart

Received: 29 April 2010 / Accepted: 16 November 2010 / Published online: 28 June 2011

� The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract In this rather technical paper we establish a useful combination of belief

revision and verisimilitude according to which better theories provide better pre-

dictions, and revising with more verisimilar data results in theories that are closer to

the truth. Moreover, this paper presents two alternative definitions of refined veri-

similitude, which are more perspicuous than the algebraic version used in previous

publications.

1 Introduction

In this paper we develop a formal framework that unifies Darwiche and Pearl’s

iterated belief revision (Darwiche and Pearl 1997) and refined verisimilitude as

defined by Zwart (2001). Both belief revision and verisimilitude profit from the

established unification. On the one hand, the unification provides for an answer to

the epistemic problem of refined verisimilitude; on the other hand, it shows that

belief revision behaves properly under the addition of truth, in the following sense.
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Revising false information of knowledge bases with true information leads to more

verisimilar knowledge basis. It even turns out that revising with better information

leads to more verisimilar theories.

To our knowledge until today no attempt to combine Belief Revision and

Verisimilitude has been successful in the way demanded by Laudan. Laudan (1981,

p. 32) rightly observes:

None of the proponents of realism has yet articulated a coherent account of

approximate truth which entails that approximately true theories will, across

the range where we can test them, be successful predictors.

In this paper we show that a formal framework in terms of preference and

similarity relations on possible worlds helps to establish a coherent answer to

Laudan’s challenge. According to our framework, more verisimilar theories provide

for more successful, i.e. more verisimilar, predictions and explanations. This

‘downward path’ from more general theories towards concrete predictions had been

established already by the definition of refined verisimilitude given in Zwart (2001).

Moreover, in the present framework, revising with even possibly false, but more

verisimilar observations ends up with more verisimilar theories, provided that the

preference relation regarding other possible empirical evidence is similar to the real

verisimilitude order of this evidence. This version of the ‘upward path’ going from

the concrete towards the more general theory, does not provide a certain method to

come closer to the truth, as we are not familiar with the verisimilitude order of

possible empirical evidence. It does, however, formulate and satisfy a welcome

condition for a fruitful combination of verisimilitude and belief revision.

The formal framework used to establish our results is built on finite Boolean

algebras (i.e. Lindenbaum algebras of propositional logic), the atoms of which

correspond to models (possible worlds). We consider linear preorders on the

collection of these worlds. They play the role of preference relations in the

definition of (iterated) belief revision in the AGM style (Sect. 5). In the definition of

(refined) verisimilitude in Sect. 6, we shall use these linear preorders as similarity

functions.

The rest of the paper is structured as follows. In the next section we will first

introduce the main ideas behind research into belief revision and verisimilitude.

Moreover, we describe an example of Sven Ove Hansson which nicely illustrates

the intentions of our exercise. We will return to this example in Sect. 7 to illustrate

the mechanisms of our framework. Section 3 is mainly dedicated to the introduction

of propositional logic in the form of Boolean algebra, the basic framework of our

work. In Sect. 4 we introduce the main formal apparatus of the paper: preferences

and preference orders (a dual of epistemic entrenchment). In the subsequent Sects. 5

and 6 we show how (iterated) belief revision and (refined) verisimilitude are defined

in our framework. Especially, the new definitions of refined verisimilitude as

previously defined in Zwart (2001) turn out to be useful. Finally in the penultimate

Sect. 7, we show how neatly existing belief revision and refined verisimilitude fit

together and successfully fulfill Laudan’s challenge. We end in Sect. 8 with the

conclusions and describe prospects of future research.
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2 Informal Exposition of Verisimilitude and Belief Revision

Investigations into verisimilitude started within the school of scientific realism in

philosophy of science. In 1963, Popper proposed a formal definition of the idea that

a given (possibly false) theory can be more similar to ‘‘the true theory’’ than

another, competing (possibly false) theory. The research project of verisimilitude

really got off the ground only when it was discovered that Popper’s definition in fact

failed to compare any two nonequivalent false theories—which had precisely been

the main aim of the definition.

The main subject of the verisimilitude project is formulated in relation to a

formal language that is assumed to include a (usually) complete empirical truth s. If

s is complete, any synthetic sentence is either a consequence of s, or implies :s:
Within the context of classical, non-modal logic, empirical incompleteness of s
implies that the underlying language comprises non-referring propositional

variables. Given a language, verisimilitude investigations concern two questions.

The first question reads: How are we to define the similarity between an arbitrary

theory in the language and its true theory s? Answering this question about the

definition of verisimilitude, we may assume to be familiar with s. The second

question about verisimilitude reads: when confronted with two different (scientific)

theories, how are we to find out which of the two theories is more verisimilar or

closer to the truth s? This epistemic question of verisimilitude is the more practical

one. Obviously, when we formulate the answer to the epistemic question, we may

not assume that we know the true theory s. When we have to decide whether the

mechanics of Descartes rather than that of Newton is more verisimilar we do not

know the full truth, although, perhaps, we know some elements in it, e.g. some very

reliable observations made by different researchers. Until today, no generally

accepted solution to the epistemic problem of verisimilitude exists. In the present

paper we will show that belief revision provides an appropriate answer to the

epistemic question of the refined verisimilitude.

The study of belief revision is rooted in the holistic or coherentist tradition of

Duhem (1954) and Quine and Ullian (1978). Its main objective has been to answer

the question how to revise an existing body of knowledge K when confronted with

new evidence u that may contradict K. In Alchourrón et al. (1985), formulated

postulates that turned out to be an important part of the answer to the revision

question. The AGM-postulates put constraints on how to revise K into a new

knowledge set K � u; but do not uniquely determine one revision operator.

Alchourrón et al. (1985, p. 88) claim that their postulates

… exhaust what can be said about revisions and contraction in logical and set-

theoretical terms only. This means that we must seek further information about

the epistemic status of the elements of a knowledge state to solve the

uniqueness problem.

The problem with the AGM postulates is that they only provide one-step revisions.

After a revision of K by u has taken place, the AGM-postulates fail to give

indications how one should come to a new entrenchment relation 6K�u: They fail
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therefore to indicate how to execute a next revision of K � u by w. This drawback of

the AGM approach was readily remarked and in 1954, Darwiche and Pearl added

four postulates for iterated revisions.

For our purposes iterated revisions are unavoidable. The gist of combination of

belief revision and verisimilitude is the answer to the question how theories behave

under revisions on the long run, and then one-step revisions are insufficient. What

we want is to show that iterated truthful revisions of theories far from the truth

eventually end up with theories that are much closer to the truth.

For the purposes mentioned, we prefer to use the formulation of belief revision in

terms of preferences as presented by Grove (1988). This approach is dual to

entrenchment: u is preferred to wðu\wÞ iff :w is better entrenched than

:uð:u\e:wÞ.
Let us consider a simple example, due to Sven Ove Hansson (private

conversation), to illustrate how the result of belief revision depends on the

preference.

Example 1 (Hansson) Let the present body of knowledge j be P0 ^ :P1: How are

we to revise j when confronted with new evidence u ¼ P0 $ P1? Here the idea of

preference (or its dual, epistemic entrenchment) comes in. If (i) :P0 ^ :P1 is

preferred to P0 ^ P1, i.e. :P0 ^ :P1\P0 ^ P1; then j � u ¼ :P0 ^ :P1; but if (ii)

P0 ^ P1\:P0 ^ :P1 then j � u ¼ P0 ^ P1: And if (iii) P0 ^ P1 and :P0 ^ :P1 are

equally preferred, then j � u ¼ P0 $ P1: Now if the truth is supposed to be P0 ^
P1, then revision (ii) is better than (i), since it leads us closer to the truth.

The example concerns only a one-step revision, but is readily expanded to

iterated revisions. To handle iterated revisions, one should indicate how existing

preference relations should be updated after a revision. It turned out that the most

practical way to formulate the combination of iterated revisions and verisimilitude

was in terms of preference relations. The reason of cause being that iterated

revisions and verisimilitude all come down to the comparison of orders and the

revisions of orders into new ones.

3 Formal Preliminaries

As our logical basis, we take classical (two-valued) propositional logic over a finite

collection of propositional variables PVAR ¼ fP0; . . .;Pn�1g. On the collection

FORM of formulae, we have the usual entailment relation ‘ and the logical

equivalence relation :. In the sequel, language L refers to the triple hFORM;‘;�i:
As is well known, FORM is (modulo logical equivalence) isomorphic to the

Boolean algebra BAðnÞ over n generators. Recall that BAðnÞ is finite but large,

having 22n

elements. Since FORM is finite (modulo logical equivalence), every

knowledge base or theory, i.e. every collection of formulae, is equivalent with a

single formula: the conjunction of its (finitely many non-equivalent) elements. We

will use this property throughout this paper, representing theories cq. knowledge

bases by single formulae.

240 G. R. Renardel de Lavalette, S. D. Zwart

123



The collection ATOM of atoms of BAðnÞ contains the 2n formulae of the form

ð:ÞP0 ^ . . . ^ ð:ÞPn�1 : they are the minimal elements of BAðnÞ � f?g. (NB:

observe that, in general, an atom is not an atomic formula!) Atoms are interesting

formulae, as they can be seen as models for propositional logic: u holds in the

model corresponding to atom a iff a ‘ u: As is well known, every formula in BAðnÞ
can be written uniquely as a disjunction of atoms: u ¼

W
atomðuÞ; where

atomðuÞ ¼ fa 2 ATOM j u ‘ ag: Some properties of atoms are:

u ‘ w iff atomðuÞ � atomðwÞ
atomð>Þ ¼ ATOM

atomð?Þ ¼ ;
atomð:uÞ ¼ ATOM� atomðuÞ
atomðu ^ wÞ ¼ atomðuÞ \ atomðwÞ
atomðu _ wÞ ¼ atomðuÞ [ atomðwÞ

4 Preferences

Some situations are preferred to others: this simple consideration is the basis for

preferences. We identify situations with models, hence with atoms, so preference

can be modeled as an order relation 6 on atoms.1

The preference orders considered in this paper are total preorders on ATOM; i.e.

they are reflexive, transitive and connected:

8aða6 aÞ
8abcða6 b & b6 c) a6 cÞ
8abða6 b or a ¼ b or b6 aÞ

Given a preference order 6, the strict preference order \ is defined by a\ b iff

b 6 6 a; and the preference equivalence % by a % b iff a6 b & b6 a:
Preference orders on a finite domain can be represented by preference functions

p : ATOM! N: The idea is that p(a) indicates the degree of preference of a: a\p

b, i.e. p prefers a to b, whenever p(a) \ p(b). Conversely, the preference function

p6 of a preference order 6 can be defined by

p6 ðaÞ ¼ maxfk j k ¼ 0 or 9b1; . . .; bk ðb1\ � � �\bk\aÞg

The collection of preference functions is called PREF: Different preference

functions may lead to the same preference order, e.g. p and ka.p(a) ? 1. There is,

however, a one-to-one correspondence between preference orders and normal
preference functions p 2 NPREF that have an initial segment [0, n] as their range.

Every preference function can be normalized by the mapping norm; defined by

1 Of course, we are well aware of the examples of Miller (1974) showing that preferences of models are

not absolute, but depend on the choice of atomic propositions used to identify the models or possible

worlds. For more details the reader is referred to Zwart (2001, Chap. 5).
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normðpÞðaÞ ¼ #fk j 9b 2 ATOM pðbÞ ¼ k\pðaÞg

where #X denotes the number of elements of X. So a preference order and its

corresponding normal preference function are two sides of the same coin, and we

shall use these two representations interchangeably in this paper.

A preference function p on atoms can be extended to a mapping p : FORM! N

on all formulae by

pðuÞ ¼ minfpðaÞ j a 2 atomðuÞg if u 6� ?
pð?Þ ¼ maxðpÞ þ 1

where maxðpÞ ¼ maxfpðaÞ j a 2 ATOMg (and similarly for min(p), to be used

later). A preference order 6 on atoms is extended to formulae by

u6w iff 8a 2 atomðwÞ 9b 2 atomðuÞ b6 a

alternatively, it can be obtained from p : FORM! N by u6p w, pðuÞ6 pðwÞ: A

preference order on FORM has the following properties:

6 is a total preorder;

6 subsumes a (the inverse of ‘): u ‘ w implies w6u;
6 is disjunctive: u6u _ w or w6u _ w;
6-maximal formulae are inconsistent: if w6u for all w, then u ‘ ?:

The disjunctivity property of 6 is a consequence of the use of the minimum

operator in the definition of pðuÞ: It is not hard to see that every relation on formulae

that satisfies these properties is fully determined by its behaviour on atoms.

A formula u can also be seen as a preference: atoms in atomðuÞ are preferred to

atoms not in atomðuÞ: Going in the other direction, we can reduce a preference to a

formula consisting of the most preferred atoms. So we define form : PREF!
FORM and pref : FORM! PREF by

formðpÞ ¼
_
fa j pðaÞ ¼ minðpÞg

prefðuÞ ¼ ka:ðif a ‘ u then 0 else 1Þ

So prefðuÞðaÞ ¼ 0 if a ‘ u; and prefðuÞðaÞ ¼ 1 if a 6‘ u: We have that form and

pref are antimonotonic in the following sense:

p6 q) formðqÞ ‘ formðpÞ ðp; q 2 NPREFÞ
u ‘ w) prefðwÞ6 prefðuÞ

Now that we know what preferences are, the question remains how we may obtain

them. One way to obtain a preference is via a distance function d : ATOM2 ! N

satisfying

dða; bÞ ¼ 0 iff a ¼ b (identity)

dða; bÞ ¼ dðb; aÞ (symmetry)

dða; bÞ þ dðb; cÞ6 dða; cÞ (triangle inequality)

Such a distance function can be generalized to all formulae by
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dðu;wÞ ¼ minfdða; bÞ j a 2 atomðuÞ; b 2 atomðwÞg

observe that this generalization d : FORM2 ! N is only a weak distance function,

satisfying symmetry and the triangle inequality but not the identity property.

Given a weak distance function d defined on formulae and a formula u; we can

define a preference function prefðd;uÞ :

prefðd;uÞðaÞ ¼ dða;uÞ

so the degree of preference of a corresponds with the distance from u: We have

u ‘ w ) prefðd;uÞ>prefðd;wÞ

Observe that the unary function pref defined earlier is a special case of the binary

pref; based on the trivial distance function d defined by d(a,a) = 0 and d(a,b) = 1

if a = b.

A particular example of a distance function on atoms is the Hamming distance
dH, which counts the number of propositional variables on which the two atoms

differ:

dHða; bÞ ¼ #fP 2 PVAR j a ‘ P xor b ‘ Pg

We shall use this distance function when discussing verisimilitude.

5 Belief Revision

Traditionally (see Alchourrón et al. (1985)), belief revision is defined in terms of an

epistemic entrenchment order 6e: The idea is that the degree of epistemic

entrenchment determines which of two beliefs u and w has to be given up when

their combination has become untenable: in a situation where u ^ w is inconsistent

and u\ew (i.e. w is more entrenched that u), it is preferred to give up u and retain

w. The knowledge set K associated with 6e is defined as the collection of the non-

6
e-minimal formulae.

In the case of a finite logic, 6e can be defined straightforwardly in terms of the

dual atoms (i.e. negations of atoms). This approach has been dualized by Grove

(1988), replacing dual atoms by atoms, and 6e by its dual: a preference order 6 as

described in Sect. 4 that satisfies u6ew iff :u6:w: Since the use of atoms is (in

our eyes) more intuitive than dual atoms, we adopt Grove’s representation of belief

revision based on preference order and preference functions. Since our logic is

finite, the knowledge set K can be replaced by its conjunction j ¼
V

K: When 6

equals 6p, the preference order generated by preference function p, then the

conjunction j = jp of the knowledge set associated with 6p equals formðpÞ; the

disjunction of the most preferred atoms (i.e. with minimal p-value).

The theory of belief revision usually proceeds by defining belief revision as an

operation on formulae: j � u is the revision of j with evidence u: When working

with preferences, the revision of j ¼ jp ¼ formðpÞ with u can be defined as the

disjunction of all atoms in atomðuÞ that are most preferred by p:
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jp � u ¼
_
fa j a ‘ u & pðaÞ ¼ pðuÞg ð1Þ

(recall that pðuÞ is defined as the minimum of the preference of the atoms in

atomðuÞ). When jp and u are consistent, atomðjpÞ and atomðuÞ have one or more

atoms a in common: they satisfy p(a) = 0 and a ‘ u; so pðuÞ ¼ minfpðaÞ j a ‘
ug ¼ 0: In this case we have a conservative revision jp � u ¼ jp ^ u: However,

when jp ^ u ‘ ?; we have jp � u ¼
W
fa j a ‘ u & pðaÞ ¼ kg for some k [ 0,

which we call a Popperian revision.

Observe that, in (1), the revision operator * is in fact an operation on a preference

p and a formula u; although the notation jp � u suggest that it is a binary operation

on formulae. As a consequence, belief revision in this form cannot be iterated: for

the proper definition of ðjp � uÞ � w; the preference function associated with jp � u
is required.

To deal with this, we shall generalize (1) in two steps. The first is to lift revision

of formula j with formula u as defined in (1) to a revision of preference p with u:
This leads to the preference p � u; which should satisfy jp�u ¼ jp � u: Now iterated

belief revision ðp � uÞ � w is possible. This idea is pursued by Darwiche and Pearl

(1997), where the following postulates on iterated revision are put forward:

u ‘ w ) ðp � wÞ � u ¼ p � u

u ‘ :w ) ðp � wÞ � u ¼ p � u

Kp�u ‘ w ) Kðp�wÞ�u ‘ w

Kp�u 6‘ :w ) Kðp�wÞ�u 6‘ :w

We go one step further, and lift revision to a revision operator � : PREF2 ! PREF
on preference functions. A related approach is described by Nayak (1994), where

the revision of an entrenchment order with another entrenchment order is defined.

We consider some candidates for the definition of preference revision:

ðp �1 qÞðaÞ ¼ pðaÞ þ ðmaxðpÞ þ 1Þ � qðaÞ

ðp �2 qÞðaÞ ¼ 0 if qðaÞ ¼ 0 & pðaÞ ¼ pðformðqÞÞ
¼ pðaÞ þ 1 elsewhere

ðp �3 qÞðaÞ ¼ 0 if qðaÞ ¼ 0 & pðaÞ ¼ pðformðqÞÞ
¼ qðaÞ if qðaÞ[ 0 & pðaÞ ¼ 0

¼ pðaÞ elsewhere

ðp �4 qÞðaÞ ¼ pðaÞ � pðformðqÞÞ if qðaÞ ¼ 0

¼ pðaÞ þ qðaÞ elsewhere

For the first two candidates, there is an alternative definition possible in terms of

preference orders:
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a6p�1qb iff a\qb or ða ffiq b & a6p bÞ

a6p�2q b iff a6p b or ðqðaÞ ¼ 0 & pðaÞ ¼ pðformðqÞÞÞ

Observe that 6p�1q is the lexicographical combination of 6p and 6q; p *2 q can be

paraphrased as ‘follow p as much as possible’.

Traditional belief revision as defined in (1) can be defined in terms of preference

revision by jp � u ¼ formðpÞ � u ¼ formðp �i prefðuÞÞ ði ¼ 1; 2; 3; 4Þ, where the

result does not depend on i: we have in all cases jp � u ¼
W
fa j a ‘ u &

pðaÞ ¼ pðuÞg:
Preference revision with a formula is obtained by p �i u ¼ p �i prefðuÞ

ði 2 f1; 2; 3; 4gÞ. This leads to

ðp �1 uÞðaÞ ¼ pðaÞ if a ‘ u
¼ pðaÞ þmaxðpÞ þ 1 if a 6‘ u

ðp �2 uÞðaÞ ¼ 0 if a ‘ u and pðaÞ ¼ pðuÞ
¼ pðaÞ þ 1 if a 6‘ u or pðaÞ 6¼ pðuÞ

and similar for *3 and *4. In all cases, the Darwiche-Pearl postulates hold.

6 Verisimilitude

The starting point for verisimilitude is the strongest empirically true theory s
expressible in L . Normally, s is assumed to be complete, in the sense that any

contingent sentence is either a consequence of s, when it is empirically true, or

implies :s when it is false. To stay as general as possible, however, our formal

framework does allow for the degenerated case in which the truth is incomplete and

s 62 ATOM: Note that in such cases, language L is inadequate in the sense that it

comprises propositional variables which nature does not verify nor falsify. After

fixing L and its strongest empirical truth s, we set out to obtain a relation 6v (and its

strict version \v) of verisimilitude, where u\vw expresses that u is more

verisimilar (‘closer to the truth’) than w.

As for similarity between atoms, we shall obtain a verisimilitude order on FORM
from a total preorder on atoms. So let some similarity function t : ATOM! N be

given. We assume that the t-minimal atoms are precisely the atoms of s, i.e.

atomðsÞ ¼ fa j tðaÞ ¼ 0g. A natural example of a similarity based on s is t = k a.

dH(a, s) where dH is the Hamming distance between atoms, introduced at the end of

Sect. 4. So t(a) = 0 if a 2 atomðsÞ; in general, t(a) is the minimal number of

changes in a (i.e. adding or removing a negation sign) required to obtain an atom in

s.

Given t and s ¼
W
fa j tðaÞ ¼ 0g, we formulate some requirements on the

verisimilitude relation ð6vÞ ¼ ð6v
t Þ associated with t:

6
v is a preorder, i.e. reflexive and transitive ð2Þ
u ‘ w _ s) u6v w (content condition) ð3Þ
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tðaÞ6 tðbÞ ) a6v b for atoms a; b (likeness condition) ð4Þ

6
v commutes with ‘ and with a , i.e.

ð6v� ‘Þ ¼ ð‘ �6vÞ and ð6v� aÞ ¼ ða �6vÞ ð5Þ

u6v w , :w6v :u (contraposition) ð6Þ

Here a is the inverse of ‘; and � denotes composition of relations: xR � Sy iff there is

a z with xRz and zSy.

Requirement (2) is a rather natural requirement for a ordering relation. The

content condition (3) and the likeness condition (4) have been discussed extensively

in Zwart (2001), Zwart and Franssen (2007). Niiniluoto (1987, p. 233) introduces

the truth content criterion M7, which comes down to the content condition (3)

restricted to false sentences w. In addition, Niiniluoto introduces the similarity
condition M6, being very similar to (4): if the similarity between atom a and the

truth is larger than that of b and the truth, the former is more verisimilar. This

natural condition lies at the heart of likeness approaches, such as Niiniluoto’s

minsum measure in Niiniluoto (1987).

The commutation requirement (5) is related to Laudan’s challenge, as quoted in

the Introduction. To see this, we formulate the following consequence of (5), where

T and T0 are theories (denoted as formulae):

if T6vT 0; then (i) for every consequence u0 of T0 there is a consequence u of T
with u6v u0; and (ii) for every consequence u of T there is a consequence u0

of T0 with u6v u0:

In slogan: the better theory has the better consequences. As (5) is a necessary

condition for a successful acceptance of Laudan’s challenge, it is a desirable

property for verisimilitude. In our framework of a Boolean algebra, empirical

predictions may be represented by the weakest nontrivial consequences of a theory,

viz. its dual atoms d ¼ ð:ÞP0 _ . . .ð:ÞPn�1: This enables us to show that the better/

worse theory simply has the better/worse consequences, even in the sense that the

better of false theories has the better dual atoms, i.e. empirical consequences.

Something similar is out of reach of other content definitions of verisimilitude such

as those of Miller’s (1978) and Kuipers’ symmetric difference definition (Kuipers

2000, p. 151): in their definitions, all false atoms (i.e. atoms not in atomðsÞ) are

incomparable regarding their similarity with the truth.

Finally, let us consider contraposition (6). In Zwart and Franssen (2007), it turned

out that contraposition defines an important watershed in the verisimilitude

literature. It forces :s to be the worst sentence if s is the truth, such that s and :s
become the lower and upper limit of all sentences in the language. By doing so,

contraposition demarcates the differences between likeness and content definitions

of verisimilitude, since according to likeness definitions this upper limit is s*, which

is the atom of the language with maximal distance from s. Consequently,

contraposition (6) is a desirable property for content definitions of verisimilitude.

Here, it turns out to be one of the reasons for refined verisimilitude to fit closely to

the framework of belief revision.

246 G. R. Renardel de Lavalette, S. D. Zwart

123



In a first attempt to satisfy these properties, we define two order relations. The

first is an attempt to realize the content condition (3), the second aims to satisfy the

likeness condition (4).

Definition 1 (content and likeness order) The content order Y is defined by:

uYw , u ‘ w _ s

and the likeness order 4 by:

u4w , 9t-increasing bijection f : atomðu ^ :wÞ ! atomðw ^ :uÞ ð7Þ

Here t-increasing means: if a 2 domðf Þ then tðaÞ6 tðf ðaÞÞ. We call the f in (7) a

witness for u4w:

Remark The original definition of the likeness order in Zwart (2001) reads

u4w , 9t -increasing bijection g : atomðuÞ ! atomðwÞ ð8Þ

where t is defined by the Hamming distance from the formula s, i.e. t(a) = dH(s, a).

Apart from the specific choice of t, both definitions of the likeness order are

equivalent. For if f satisfies (7) then g defined by

gðaÞ ¼ f ðaÞ if a 2 atomðu ^ :wÞ
¼ a if a 2 atomðu ^ wÞ

satisfies (8); and if g satisfies (8) then f, defined by

f ðaÞ ¼ gnðaÞ if a 2 atomðu ^ :wÞ;
where n ¼ 1þmaxfk j gkðaÞ 2 atomðuÞg

satisfies (7). Here gn denotes n-times iterated application of g: g1(a) = g(a), g2(a) =

g(g(a)), etc. In the sequel, we shall use (7) or (8) as the definition of 4; whatever

suits best.

Lemma 1 (properties of Y and 4) Y and 4 are preorders, satisfy contraposition,
and commute with ‘ and a : Moreover, Y satisfies the content condition and 4 the
likeness condition, but not the other way round.

Proof See the Appendix. h

So neither Y nor 4 satisfies all requirements (2–6). Let us try to combine both

candidates. The next lemma says that the order of composition is irrelevant.

Lemma 2 (commuting relations) Y and 4 commute, i.e. ðY �4Þ ¼ ð4 �YÞ:

Proof See the Appendix. h

Lemma 2 enables us to combine Y and 4 into a stronger overarching

verisimilitude concept.

Definition 2 (refined verisimilitude) Refined verisimilitude is defined by 6rv ¼
ð4 �YÞ; i.e.
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u6rv v , there is a w with u4wYv

Since both Y and 4 are reflexive, they are both subsumed in 6rv: Moreover, this

notion of verisimilitude has all desired properties:

Theorem 1 (properties of refined verisimilitude) 6rv is a preorder that satisfies
the content and the likeness condition, contraposition, and commutes with ‘ and a :

Proof Y and 4 are reflexive, so we have ðYÞ [ ð4Þ � ð6rvÞ: As a consequence,

6
rv inherits reflexivity and the content condition from Y; and the likeness condition

from 4: Transitivity, contraposition and commuting with ‘ and a follow from

Lemma 2 and the corresponding properties of Y and 4: h

We give two alternative definitions of 6rv:

Lemma 3 (alternative definitions of refined verisimilitude)

1. u6rv
t w iff there is a t-increasing injection f : atomðu ^ :w ^ :sÞ !

atomðw ^ :u ^ :sÞ:
2. 6rv

t is the least relation 60 satisfying

u ‘ s) u is 60-minimalði.e. u60w for all wÞ ð9Þ
for all atoms a; b : tðaÞ6 tðbÞ ) a60b ð10Þ

if u60 w;u060 w and w ^ w0 ‘ ? then u _ u060 w _ w0 ð11Þ

Proof See the Appendix. h

7 Combining Belief Revision and Verisimilitude

The basic idea of the combination of belief revision and verisimilitude comes down to

the following. Revising a knowledge base or theory by replacing unsuccessful

content, which is less verisimilar, with content that is more verisimilar, and therefore

more successful, must end up with a new theory that is more verisimilar. The problem

is of course that in scientific practice the measure of verisimilitude of data and theories

is unknown. Intuitively, an important adequacy constraint therefore reads:

If one’s preference order is similar to the verisimilitude order,

then the theory after revision must be more verisimilar than

before the revision:

ð12Þ

Let us spell out what (12) comes down to in our framework. Suppose that we

have an objective similarity t and a subjective preference p: t is the basis for the

truth s ¼ formðtÞ and for the verisimilitude relation ð6rvÞ ¼ ð6rv
t Þ; while p is

subjected to revision with u: Now the question is: when is the revision formðp � uÞ
more verisimilar than formðpÞ; i.e. when do we have
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formðp � uÞ6rv
t formðpÞ ð13Þ

In other words: when is the revision p � u a step in the right direction? The con-

ditions for (13) spell out the similarity condition of (12). By Lemma 3, these

conditions come down to the existence of a t-increasing injective function f with

domðf Þ ¼ atomðformðp � uÞ ^ :formðpÞ ^ :sÞ
¼ fa j a ‘ u & pðaÞ ¼ pðuÞ[ 0 & tðaÞ[ 0g

rgðf Þ ¼ atomð:formðp � uÞ ^ formðpÞ ^ :sÞ
¼ fa j pðaÞ ¼ 0 & tðaÞ[ 0 & ða 6‘ u or pðuÞ[ 0Þg

When the revision is conservative (i.e. formðpÞ ^ u 6‘ ? and pðuÞ ¼ 0), then

domðf Þ ¼ ; and (13) is obvious. Let us consider the three more interesting cases of

Popperian revision where pðuÞ[ 0:

1. If theory formðpÞ and evidence u are false (i.e. s ‘ :formðpÞ and s ‘ :u), then

according to Lemma 3 the similarity condition of (12) simply reduces to the

existence of a t-increasing injection f : atomðformðp � uÞÞ ! atomðformðpÞÞ:
2. If theory formðpÞ is false but evidence u is true (i.e. s ‘ :formðpÞ and s ‘ u), then

according to Lemma 3 the similarity condition of (12) reduces to the existence of a

t-increasing injection f : atomðformðp � uÞ ^ :sÞ ! atomðformðpÞÞ:
3. If, on the contrary, theory formðpÞ is true and evidence u is false (i.e. s ‘

formðpÞ and s ‘ :u), then according to Lemma 3 the similarity condition of

(12) equals to the existence of a t-increasing injection f : atomðformðp � uÞÞ !
atomðformðpÞ ^ :sÞ:

The previous cases spell out the exact sense in which one’s preference order should

be similar, in the sense of having resemblance or likeness, to the verisimilitude order

to guarantee improvement of verisimilitude after revision. Perhaps the second case fits

best the situation of actual scientific research, where the theory used is probably false

but the observations may be (approximately) true due to careful measurements. To

illustrate this case let us reconsider Hansson’s example of Sect. 1.

Example 2 (Hansson’s example reconsidered) In Hansson’s example the theory

(cq. body of knowledge) formðpÞ ¼ P0 ^ :P1 was confronted with new evidence

u ¼ P0 $ P1 under the assumption that the truth s equals the atom P0 ^ P1.

Additionally, the various preference orders p1, p2, p3 corresponding with (i), (ii),

(iii) of Example 1, are defined by

P0 ^ P1 P0 ^ :P1 :P0 ^ P1 :P0 ^ :P1

t 0 1 1 2

p1 1 0 2 or 3 2

p2 2 0 2 or 3 1

p3 1 0 2 or 3 1

u 0 1 1 0
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It follows that formðpiÞ ¼ P0 ^ :P1 for i = 1, 2, 3, and formðp1 � uÞ ¼ P0 ^
P1; formðp2 � uÞ ¼ :P0 ^ :P1 and finally formðp3 � uÞ ¼ P0 $ P1: The injection

f : atomðformðp1 � uÞ ^ :sÞ ! atomðformðp1ÞÞ is an empty function and hence t-
increasing, so formðp1 � uÞ6rv formðp1Þ; i.e. the revision is at least as verisimilar as

the original theory. For i = 2, 3, there is no t-increasing injection f : atomðformðpi �
uÞ ^ :sÞ ! atomðformðpiÞÞ; since tð:P0 ^ :P1Þ ¼ 2 [ 1 ¼ tðP0 ^ :P1Þ.

Returning to the start of the present section, one might ask what can be said more

in general about conditions for (13) in terms of the domain and the range of the

injective function f? The injectivity of f can be guaranteed by e.g.

#atomðu ^ :sÞ6#atomðformðpÞ ^ :sÞ; ð14Þ

and the t-increasingness of f follows from e.g.

8aða ‘ u ^ :s ) tðaÞ6tðformðpÞ ^ :sÞÞ ð15Þ

We may summarize the conjunction of (14) and (15) in the following way.

The revision p 7!p � u is a step in the good direction (formðp � uÞ6rv
t formðpÞ)

when the number of :s-models of u is at most the number of :s-models of

formðpÞ; and they are t-preferred to them.

We observe that the conclusion holds trivially when u has no models of :s; i.e.

when u ‘ s: But when u 6‘ s; (13) requires that there are only few :s-models for u
and that they are preferred to the :s-models of formðpÞ:

With similar reasoning, we have the following.

The revision p 7!p � u is a step in the wrong direction (formðpÞ\rv
t

formðp � uÞ) when the number of models of formðpÞ is smaller than the

number of :s-models of u; and they are t-preferred to them.

Finally, we look at the situation that t = p, so formðpÞ ¼ s: In that case formðt �
uÞ6rv

t s iff the revision is conservative, i.e. u ^ s 6‘ ? and hence formðt � uÞ ¼
s ^ u:

8 Discussion and Conclusions

In the foregoing we have seen that (iterated) AGM belief revision and refined

verisimilitude fit reasonably well together. What does this mean philosophically?

From the viewpoint of belief revision this means that the epistemic entrenchment

approach is in a good position to be extended with considerations of truth and even

verisimilitude. For refined verisimilitude our results imply that it has found an

established and well-studied answer to its accompanying epistemic question. Our

approach even puts forward a formal underpinning of the intuitively plausible idea

that the better theory has the better consequences and doing so it successfully

accepted Laudan’s challenge. What is the reason for the two approaches to fit so

well in contrast to other attempts to combine verisimilitude and belief revision? The

answer to this question is connected to the way refined verisimilitude and AGM
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belief revision are constructed. Content definitions of verisimilitude are defined in

terms of logical content and truth-value and the same holds true AGM-belief

revisions. In both approaches strength prevails over the ordering of worlds. The

described match between belief revision and refined verisimilitude provides an

important external argument in favor of the refined content approach.2

Future research in this direction has to address at least the following three issues.

Firstly we would like to explore more extensively the differences between the four

rules of iterated belief revision (see Sect. 5), and the different ways in which they

approach the truth. Secondly we would like to investigate whether our framework

can be extended to languages with infinitely many formulae. Thirdly, we would like

to address the question of the completeness of the empirical truth (in other words:

whether s is an atom or not). We observe that our results do not require the truth to

be complete. If the truth is incomplete, some sentences do not acquire a definite

truth-value. We would like to find out whether this lack of truth-value of some

sentences together with the application of iterative belief revision to refined

verisimilitude could assist in deciding between the appropriateness of languages for

some area of research.

Open Access This article is distributed under the terms of the Creative Commons Attribution

Noncommercial License which permits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

Appendix

Proofs

In the proofs, we use the notation f ½u� to abbreviate
W

f ½atomðuÞ�; i.e.
W
ff ðaÞ j a 2 atomðuÞg; and f�1½u� to denote

W
fa j f ðaÞ 2 atomðuÞg.

Lemma 1 Y and 4 are preorders, satisfy contraposition and commute with ‘ and
a : Moreover, Y satisfies the content condition and 4 the likeness condition, but
not the other way round.

Proof It is easily checked that Y is reflexive, transitive, satisfies the content

condition and contraposition. To see that Y and ‘ commute, observe that if uYw ‘
v; then u ‘ ðw _ sÞYv; and if u ‘ hYv then uYðh ^ :sÞ ‘ v: Finally Y and a
commute, for both Y� a and a �Y are the full relation on FORM: The likeness

condition fails for Y : if a = b and minðtÞ\tðaÞ6tðbÞ then a 6Yb:

For 4; reflexivity is easy (with the empty function as witness), and transitivity

follows straightforwardly with definition (8) and composition of the witnessing

functions. For contraposition, we use definition (7), observing that a witness for

u4w is also a witness for :w4:u: A counterexample for the content condition for

4 is provided by a, b with a = b, for then a ‘ ða _ bÞ _ s; but a 6 4ða _ bÞ:

2 For more information about the distinction between likeness and content verisimilitude definitions, see

Zwart and Franssen (2007).
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We now show that ð4� ‘Þ ¼ ð‘ �4Þ; and start with the � part. Assume u4w ‘ v;
then there is a t-increasing bijection f : atomðu ^ :wÞ ! atomðw ^ :uÞ: Define

h ¼ u _ ðv ^ :f ½u ^ :v�Þ
g ¼ f �atomðu ^ :vÞ

then one easily checks that u ‘ h and g is a t-increasing bijection g : atomðh ^
:vÞ ! atomðv ^ :hÞ; so h4v; which proves the � part.

For the 	 part, we reason as follows. Assume u ‘ w4v; then via contraposition

:v4:w ‘ :u; so (using the property ð4� ‘Þ � ð‘ �4Þ that we just proved) there is

a h with :v ‘ h4:u; and via contraposition we get u4:h ‘ v: This yield the 	
part, so we have proved that 4 and ‘ commute.

Finally we show that ð4� aÞ ¼ ða �4Þ; and begin again with the � part. Assume

u4w a v; then v ‘ w and there is a t-increasing bijection f : atomðu ^ :wÞ !
atomðw ^ :uÞ: Define

h ¼ ðu ^ vÞ _ f�1½v ^ :u�
g ¼ f �atomðf�1½v ^ :u�Þ

then h ‘ u and g is a t-increasing bijection g : atomðh ^ :vÞ ! atomðv ^ :hÞ; so

h4v; and we have proved the � part. The other direction is now proved with help of

contraposition, as above. h

Lemma 2 Y and 4 commute, i.e. ðY �4Þ ¼ ð4 �YÞ:

Proof For increasing bijective functions f, we have:

f ½u0� ‘
_

rgðf Þ ð16Þ

f ½u0 ^ u00� � f ½u0� ^ f ½u00� ð17Þ
f ½:s� ‘ :s ð18Þ

The first property is evident, the second follows from the injectivity of f, and the

third uses that f is increasing and that, for all atoms a 2 atomðsÞ and b 62
atomðsÞ; tðaÞ\tðbÞ: We shall use these properties in the proof.

Now we demonstrate ðY �4Þ � ð4 �YÞ: So assume uYw4v; i.e. u ‘ w _ s
and there is an increasing bijection f : atomðw ^ :vÞ ! atomðv ^ :wÞ: Define

u1 ¼ u ^ :v ^ :s
u2 ¼ u ^ ðv _ sÞ
h ¼ f ½u1� _ u2

g ¼ f �atomðu1Þ
First we establish hYv; i.e. h ‘ v _ s : this follows from the definition of h and

the fact that f ½u1� ‘
W

rgðf Þ ‘ v:
Now we shall show that g witnesses u4h: It follows directly from the definition

of g that it is increasing and injective, so it remains to be shown that domðgÞ ¼
atomðu ^ :hÞ and rgðgÞ ¼ atomðh ^ :uÞ: Using u ‘ w _ s; we observe that

atomðu1Þ � atomðw ^ :vÞ ¼ domðf Þ; so domðgÞ ¼ atomðu1Þ: Furthermore, it is
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obvious that u1;u2 is a partition of u; i.e. u1 ^ u2 ‘ ? and u1 _ u2 � u:
Moreover, we have f ½u1� ^ u ‘ ? (using rgðf Þ � atomð:wÞ; f ½:s� ‘ :s and

u ‘ w _ s). So u1;u2 and f ½u1� are mutually disjoint. Hence u ^ :h � u1 and

h ^ :u � f ½u1�: Using u ‘ w _ s again, we observe that atomðu1Þ � atomðw ^
:vÞ ¼ domðf Þ; so we obtain domðgÞ ¼ atomðu1Þ ¼ u ^ :h: Furthermore

rgðgÞ ¼ atomðf ½u1�Þ ¼ atomðh ^ :uÞ:
So we have established ðY �4Þ � ð4 �YÞ: For the other way round, we argue as

in the proof of Lemma 1. Assume u4wYv; then by contraposition :vY:w4:u;
and by the result just proved we obtain a h with :v4hY:u; so again by

contraposition uY:h4v: This demonstrates ð4 �YÞ � ðY �4Þ; which ends the

proof. h

Lemma 3

1. u6rvw iff there is an increasing injection f : atomðu ^ :w ^ :sÞ !
atomðw ^ :u ^ :sÞ:

2. 6rv is the least relation 60 satisfying

u ‘ s) u is 60-minimal ði.e. u60w for all wÞ ð9Þ
for all atoms a; b : tðaÞ6tðbÞ ) a60b ð10Þ

ifu60w;u060w and w ^ w0 ‘ ? then u _ u060w _ w0 ð11Þ

Proof

1. ): If u6rvw then uYh4w for some h, i.e. u ‘ h _ s and there is an increasing

bijection g : atomðh ^ :wÞ ! atomðw ^ :hÞ: Define f :¼ g�atomðu ^ :w ^
:sÞ: By u ‘ h _ s we have u ^ :w ^ :s ‘ h ^ :w; so domðgÞ ¼ atomðu ^
:w ^ :sÞ; and rgðgÞ � atomðw ^ :u ^ :sÞ follows from u ‘ h _ s and

f ½:s� ‘ :s (which we demonstrated in the proof of Lemma 2).

(: Let f : atomðu ^ :w ^ :sÞ ! atomðw ^ :u ^ :sÞ be an increasing

injection. Define h :¼
W

rgðf Þ _ ðu ^ ðw _ sÞÞ; then u ^ :h � u ^ :w ^ :s
and h ^ :u �

W
rgðf Þ; so f : atomðu ^ :hÞ ! atomðh ^ :uÞ is bijective, so

u4h: Also h ‘ w _ s; so hYw: By Lemma 2 we now have u6rvw:
2. First we show that 6rv satisfies the three conditions, using the characterization

of 6rv proved in the first part of this lemma. If u ‘ s; then atomðu ^ :w ^
:sÞ ¼ ; for all w, so the empty function witnesses u6rvw for all w, i.e. (9). If

tðaÞ6tðbÞ, then either f = {(a, b)} (if a 6‘ b _ s) or f ¼ ; witnesses that a6rvb;
establishing (10). Finally, if u6rvw and u06rvw0 then we have increasing

injections f : atomðu ^ :w ^ :sÞ ! atomðw ^ :u ^ :sÞ and f 0 : atomðu0 ^
:w0 ^ :sÞ ! atomðw0 ^ :u0 ^ :sÞ: Define g ¼ f [ ðf 0�ðdomðf 0Þ � domðf ÞÞÞ:
Injectivity of g follows from w ^ w0 ‘ ?; and we see that g witnesses that

u _ u06rvw _ w0; i.e. (11). It remains to show that 6rv is the least relation that

satisfies the thee conditions. So let 60 satisfy the conditions: we shall show

that 6rv is a subrelation of 60, i.e. u60w ) u6rvw for all u;w: Assume that
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u6rvw; then by the first part of this lemma there is an increasing injection

f : atomðu ^ :w ^ :sÞ ! atomðw ^ :u ^ :sÞ: By (11), u60w follows from

u ^ w60u ^ w

u ^ :w ^ :s60
_

rgðf Þ

u ^ s60w ^ :u ^ :
_

rgðf Þ

for u � ðu ^ wÞ _ ðu ^ :w ^ :sÞ _ ðu ^ sÞ;w � ðu ^ wÞ _ ð
W

rgðf ÞÞ _ ðw ^
:u ^ :

W
rgðf ÞÞ (use that

W
rgðf Þ ‘ w); moreover, u ^ w;

W
rgðf Þ and w ^ :u ^

:
W

rgðf Þ are mutually disjoint (use that
W

rgðf Þ ‘ :u).

We set out to prove these three inequalities. By (10) we have a60a for all atoms

a, and b60f ðbÞ for all atoms b 2 domðf Þ (for f is t-increasing). By repeated

application of (11), we get u ^ w60u ^ w and u ^ :w ^ :s ¼
W

domðf Þ60
W

rgðf Þ:
Finally, u ^ s60 w ^ :u ^ :

W
rgðf Þ follows from (9). We conclude that u60w; so

we have proved that 6rv is a subrelation of 60. h
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