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Abstract We modify and generalize the known solution for
the electromagnetic field when a vacuum, stationary, axisym-
metric black hole is immersed in a uniform magnetic field to
the case of nonvacuum black holes (of modified gravity) and
determine all linear terms of the vector potential in powers
of the magnetic field and the rotation parameter.

1 The magnetic field problem

A Killing vector ξμ in vacuum (no stress-energy Tμν ≡ 0)
is endowed with the property of being parallel, that is, pro-
portional, to some vector potential Aμ that solves the source-
less (no currents Jμ = Fμν ;ν = (

√|g|Fμν),ν/
√|g| ≡ 0)

Maxwell field equations. So, ξμ is itself a solution to the
same source-less Maxwell field equations. In Ref. [1], this
property was employed as an ansatz to determine the elec-
tromagnetic field of a vacuum, stationary, axisymmetric,
asymptotically flat black hole placed in a uniform magnetic
field that is asymptotically parallel to the axis of symmetry.
The ansatz stipulates that the vector potential of the solu-
tion be in the plane spanned by the timelike Killing vector
ξ

μ
t = (1, 0, 0, 0) and spacelike one ξ

μ
ϕ = (0, 0, 0, 1) of the

stationary, axisymmetric black hole,

Aμ = Ct (B)ξ
μ
t + Cϕ(B)ξ μ

ϕ . (1)

Since ξ
μ
t and ξ

μ
ϕ are pure geometric objects, they do not

encode information on the applied magnetic field B; such
information is encoded in the coefficients (Ct ,Cϕ). Here B
is taken as a test field, so the metric of the stationary, axisym-
metric black hole too does not encode any information on the
applied magnetic field.

In this work, a spacetime metric has signature (+,−,−,−)
and Fμν = ∂μAν − ∂ν Aμ. For neutral and charged black
holes, Eq. (4.4) of Ref. [1] yields

a e-mail: azreg@baskent.edu.tr

Ct = aB, Cϕ = B
2 , (2)

and

Ct = aB + Q
2M , Cϕ = B

2 , (3)

respectively,1 where B and Q are seen as perturbations, that
is, if the metric of the background black hole is that of Kerr,
then Qξt μ/(2M) is, up to an additive constant, the one-form
Aμdxμ = −Qr(dt − a sin2 θdϕ)/ρ2 of the Kerr–Newman
black hole (with ρ2 = r2 + a2 cos2 θ ). It is important to
emphasize this point: the potential given by (1) and (3) is not
an exact solution to the source-less Maxwell equations,

Fαβ;γ + Fγα;β + Fβγ ;α = 0, Jμ ≡ Fμν ;ν = 0, (4)

if the background metric is that of the charged black hole
itself. Rather, it is a solution to (4) if the background metric
is that of the corresponding uncharged black hole.

For instance, in the Kerr background metric, the potential
given by (1) and (3) is a solution to (4), but in the Kerr–
Newman background metric the nonvanishing electric charge
density J t and the ϕ current density Jϕ expand in powers of
Q as

J t = (
√|g|Ftν),ν√|g| = 2aBQ2(a2 + r2 cos2 θ)

(r2 + a2 cos2 θ)3 + O(Q3),

Jϕ = (
√|g|Fϕν),ν√|g| = BQ2[a2(2+cos2 θ) − r2]

(r2+a2 cos2 θ)3 +O(Q3),

which are zero to first order only. Even if rotation is sup-
pressed (a = 0), J t is still nonzero:

J t = −2Q5

(2Mr − Q2)3r
,

and its integral charge is also nonzero. Where does this elec-
tric charge density come from (the only existing electric

1 The sign “+” in (3) in front of Q is due to our metric-signature choice.
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charge is that of the black hole, which is confined inside the
event horizon)? Because of the conservation of the total elec-
tric charge, the application of a uniform magnetic field does
not generate current densities Jμ outside the event horizon.

Thus, as far as Q is considered as a perturbation, the poten-
tial given by (1) and (3) remains a good approximation for
many astrophysical purposes. However, this fails to be the
case if one is interested in the accretion phenomena that take
place in the vicinity of the innermost stable circular orbit
(ISCO) whose radius approaches that of the event horizon,
for there the currents (J t , Jϕ) cannot be neglected. One of the
purposes of this paper is to provide an “exact” formula for the
vector potential of a vacuum charged black hole immersed
in a uniform magnetic field parallel to its axis of symme-
try. The purpose extends to include nonvacuum charged and
uncharged black holes.

2 The solution

2.1 General considerations

The first thing we want to show in this section is that the
expressions (2) are universal leading terms of more elabo-
rate formulas for (Ct ,Cϕ). The determination of these lead-
ing terms is purely geometrical and only depends on the
asymptotic behavior of the metric of a (vacuum or nonva-
cuum), stationary, axisymmetric, asymptotically flat black
hole. Here by asymptotical flatness we mean that, at spa-
tial infinity, Tμν → 0 ensuring Ricci-flatness Rμν → 0
and hence Fμν ;ν → 0. The metric of such a black hole
approaches that of a rotating star as the radial coordinate
tends to infinity

ds2 �
(

1− 2M

r

)
dt2− 1

1−2M/r
dr2 + 4aM sin2 θ

r
dtdϕ

− r2(dθ2 + sin2 θ dϕ2). (5)

Using this, a direct integration of (4) yields the leading terms

Frϕ � −2Cϕr sin2 θ, Fθϕ � −2Cϕr
2 sin θ cos θ, (6)

which were derived previously for the Kerr black hole (Eq. (6)
of Ref. [2]). This behavior is universal and applies to all
(vacuum or nonvacuum), stationary, axisymmetric, asymp-
totically flat black holes. The leading terms proportional to
Ct vanish as 1/r . Equation (6) are the expressions of the elec-
tromagnetic tensor Fμν , expressed in spherical coordinates,
of a uniform magnetic field, of strength B, parallel to the z
axis provided we take

Cϕ = B
2 . (7)

There are three points to emphasize in the above deriva-
tion. First, notice that the derivation of (7) is valid whether the
black hole is neutral or charged, for the presence of a charge,
would certainly modify the expansion in (5), but would not
modify the leading terms in (6). Second, we have made no
assumption on the nature of the electrodynamics (linear or
nonlinear) describing Fμν . Thus, the value of Cϕ = B/2
applies equally to black holes with a linear electromag-
netic source as well as to, generally regular (singularity-
free), charged black holes with a nonlinear electromagnetic
source provided they are asymptotically flat with a vanishing
stress-energy at spatial infinity yielding Rμν → 0, which,
in turn, yields Jμ → 0. Thirdly, we have made no link to
general relativity nor to any of its modifications and exten-
sions. Hence, no matter the theory of relativity describing the
geometry and physics of spacetime and matter, the value of
Cϕ = B/2 applies to all stationary, axisymmetric, asymptot-
ically flat solutions (black holes, wormholes, etc.) if they are
placed in a uniform magnetic field B parallel to the symme-
try axis. An instance of application of these arguments is the
case of a non-Kerr black hole where it was shown that (7)
applies [3].

As for Ct , since we are dealing with asymptotically flat
solutions, we are implicitly assuming that at spatial infinity
linear electrodynamics (4) is sufficient for the description of
the electromagnetic field. The charge of the black hole is
given by the surface integral

Q = 1

8π

∫
∂�

Fμνd�μν, (8)

and this does not depend on the surface ∂�. This is the initial
charge, if any, of the black hole. If ∂� is a surface of fixed
radial coordinate r , then �μν = eμνθϕ

√|g|dθdϕ (where the
totally antisymmetric symbol eμναβ is such that etrθϕ = +1).
In the limit r → ∞, the metric of the black hole (5) is known,
yielding

Q = 2(Ct − aB)M + O(1/r), (9)

where we have used (7). In the limit r → ∞, we rederive
the first equation in (2) [resp. in (3)] if the black hole is not
charged (resp. charged). Corrections to (5) do not affect the
leading term in (9).

2.2 Generalizing the ansatz

In more general situations where the Killing vector ξμ is not
a solution to the source-less Maxwell field equations, a linear
combinations of all Killing vector with constant coefficient,
which is also a Killing vector as in (1), may fail to be a
solution to the source-less Maxwell field equations (4). If
the coefficients were taken as functions of the coordinates, it
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would be possible to determine them upon solving (4). This
would allow one to generalize Wald’s formulas (2, 3) and this
is the purpose of this work. These generalizations are useful
for a consistent analysis of (un)charged-particle dynamics
around black holes.

It is worth mentioning that some specific generalizations
of Wald’s formulas (2, 3) to metrics not obeying the expan-
sion (5) have been made but no general formulas were
derived. For instance, it was shown [4] that (2) remains valid
for the Kerr–Taub–NUT black hole but neither (2) nor (3)
remains valid for black holes in Hořava–Lifshitz gravity and
in braneworld where extensions to Wald’s formulas (2, 3)
have been performed in [5,6], respectively.

For the remaining part of this section, we rewrite the
ansatz (1) in terms of (ct , cϕ) where Ct = aB + ct and
Cϕ = (B/2) + cϕ

Aμ = [aB + ct (r, θ, a, B)]ξ μ
t + [ B

2 + cϕ(r, θ, a, B)
]
ξ μ
ϕ ,

(10)

where the dependence on θ is not related to that on the rotation
parameter a; that is, if rotation is suppressed (a = 0), the
coefficients (ct , cϕ) may still depend on θ .

Now, we need a metric formula to complete the task of
integrating the source-less equations (4). There is no generic
metric that describes all rotating black holes (and wormholes)
nor a generic metric for static solutions. Nonetheless, the
Gürses–Gürsey metric [18]

ds2 =
(

1 − 2 f

ρ2

)
dt2 − ρ2


dr2 + 4a f sin2 θ

ρ2 dtdϕ

− ρ2dθ2 − � sin2 θ

ρ2 dϕ2, (11)

where

ρ2 = r2 + a2 cos2 θ, (r) = r2 − 2 f + a2,

� = (r2 + a2)2 − a2 sin2 θ, (12)

describes a variety of solutions including (A) Schwarzschild
(a = 0), Reissner–Nordström (a = 0), Kerr, Kerr–Newman
metrics, the Schwarzschild-MOG (a = 0) and Kerr-MOG
black holes of the modified gravity (MOG) [7,8], and their
trivial generalizations the Reissner–Nordström-MOG (a =
0) and Kerr–Newman-MOG, and some phantom Einstein–
Maxwell-dilaton black holes [9,10]. It also includes (B) non-
rotating regular black holes [11–17] and their rotating coun-
terparts [19–21] as well as some nonrotating black holes of
f (R) and f (T ) gravities [22,23].

An important property of the metric (11), (12) is the fol-
lowing. In the most generic case, where f and (ct , cϕ) (10)
are still arbitrary functions and for all values of the rotation

parameter a, the first set of source-less equations (4) and two
equations of the second set are satisfied:

Fαβ;γ + Fγα;β + Fβγ ;α ≡ 0, Frν ;ν ≡ 0, Fθν ;ν ≡ 0,

(13)

leaving only two differential equations to solve:

Ftν ;ν = 0, Fϕν ;ν = 0. (14)

Moreover, if rotation is suppressed (a = 0) then the coeffi-
cient (ct , cϕ) no longer depends on θ .

For the set (A) of singular solutions, the function f (r) is
linear of the form

f (r) = f1r + f2, (15)

where the constants ( f1, f2) do not depend on the rotation
parameter a. Table 1 gives the values of these constants for
the set (A) of black hole solutions.

The electromagnetic field of regular black holes does not
satisfy the linear source-less Maxwell equations (4), except
asymptotically, and their function f admits the expansion:
f1r + f2 + ∑

i=1 ci/r
i . In this work we will not deal with

metrics of regular black holes.

3 The nonrotating case: a = 0

We will first deal with the nonrotating case, where the black
hole has the spherical symmetry, settinga = 0 the ansatz (10)
reduces to

Aμ = ct (r, B)ξ
μ
t + [ B

2 + cϕ(r, B)
]
ξ μ
ϕ , (16)

for (ct , cϕ) do not depend on θ . With this last form of the
ansatz, Ftν ;ν = 0 implies

r2(r2 − 2 f )c′′
t + 2r(r2 + 2 f − 2r f ′)c′

t

−2[2 f − r(2 f ′ − r f ′′)]ct = 0, (17)

where the prime denotes derivative with respect to r . This is
solved by

ct = K1r

r2 − 2 f
+ K2r2

r2 − 2 f
= K1

rgtt
+ K2

gtt
, (18)

where (K1, K2) are integration constants. Independently of
the value of K2, the integral (8) performed on a sphere of
radius r yields K1 = −Q if the black hole is charged or
K1 = 0 if the black hole is neutral. We can take K2 = 0, for
this is an additive constant in the expression of the one-form
Aμdxμ = −(Q/r)dt + K2dt+ terms proportional to dϕ.
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Table 1 The constants ( f1, f2) defining the function f (r) (15) for the
set (A) of singular nonrotating and rotating (vacuum and nonvacuum)
black holes in terms of the mass M , the electric charge Q, and the
universal ratio κ of the scalar charge Qs to the mass (of any particle
and, particularly, of the MOG black hole). The Newtonian gravitational
constant GN = 1. The black hole named “Reissner–Nordström-MOG”
and “Kerr–Newman-MOG” were not derived in Ref. [7] since the author

was not interested in astrophysical electrically charged solutions; these
are trivial generalizations of the Schwarzschild-MOG and Kerr-MOG
derived in Eqs. (11) and (35) of Ref. [7], respectively. Nomenclature:
“V” for “vacuum solution” (Ricci-flat: Rμν = 0), “NV” for “nonvac-
uum solution” (non-Ricci-flat: Rμν �= 0), “N” for “neutral” (electrically
uncharged), and “C” for “electrically charged”

Black hole f1 f2 State

Schwarzschild M 0 V, N

Reissner–Nordström M −Q2/2 NV, C

Kerr M 0 V, N

Kerr–Newman M −Q2/2 NV, C

Schwarzschild-MOG (1 + κ2)M −(1 + κ2)κ2M2/2 NV, N

Reissner–Nordström-MOG (1 + κ2)M −(1 + κ2)(κ2M2 + Q2)/2 NV, C

Kerr-MOG (1 + κ2)M −(1 + κ2)κ2M2/2 NV, N

Kerr–Newman-MOG (1 + κ2)M −(1 + κ2)(κ2M2 + Q2)/2 NV, C

Phantom Reissner–Nordström M Q2/2 NV, C

The result (18) was expected and constitutes a correction to
Wald’s term Q/(2M) in (3).

Now, Fϕν ;ν = 0 reduces to the two equivalent differential
equations

(r4 − 2r2 f )c′′
ϕ + (4r3 − 4r f − 2r2 f ′)c′

ϕ + 4( f − r f ′)cϕ

= 2B(r f ′ − f ), (19)

4( f − r f ′)Cϕ + [(r4 − 2r2 f )C ′
ϕ]′ = 0, (20)

whereCϕ = (B/2)+cϕ , as defined earlier (10). In the generic
case, where f is any function of r , a closed-form solution
to (20) does not exist. For f linear (15), we obtain the solution

Cϕ = L1(r2 + 2 f2)

2r2

+
L2(r2+2 f2)

[√
f 2
1 +2 f2(r+ f1)

r2+2 f2
− 1

2 ln

(
r+

√
f 2
1 +2 f2− f1

r−
√

f 2
1 +2 f2− f1

)]

8( f 2
1 + 2 f2)3/2r2

,

(21)

where (L1, L2) are integration constants. We immediately
get rid of L2, for the physical electromagnetic tensor Fμν

would diverge at the horizons r± = f1 ±
√

f 2
1 + 2 f2. At

spatial infinity, Cϕ reduces to B/2 (7) yielding L1 = B and

Cϕ = B

2
+ B f2

r2 . (22)

For the linear case (15), we have obtained the solution for
the vector potential

Aμ = − Q

rgtt
ξ

μ
t + B

2

(
1 + 2 f2

r2

)
ξ μ
ϕ . (23)

For the Schwarzschild, normal or phantom Reissner–
Nordström, Schwarzschild-MOG, and Reissner–Nordström-
MOG black holes we obtain, respectively,

Aμ = B
2 ξ μ

ϕ , (24)

Aμ = − Q
rgtt

ξ
μ
t + B

2

(
1 − Q2

r2

)
ξ μ
ϕ , (25)

Aμ = B
2

(
1 − (κ2+1)κ2M2

r2

)
ξ μ
ϕ , (26)

Aμ = − Q
rgtt

ξ
μ
t + B

2

(
1 − (κ2+1)(κ2M2+Q2)

r2

)
ξ μ
ϕ . (27)

Notice that it is the correction inside the parentheses, with
respect to Wald’s formula 3, that ensures the satisfaction of
the source-less Maxwell equations (4). According to MOG
theory [7,8], κ is the ratio of the scalar charge Qs of any
particle to its mass m: κ ≡ Qs/m. This ratio is postulated to
be universal and it is the same for all particles and massive
bodies as black holes.

There is a couple of facts and conclusions to draw
from (23).

1. We assume that the applied magnetic field is directed in
the positive z axis (B > 0) and consider an uncharged
black hole. On a charged particle, of electric charge q, the
applied Lorentz magnetic force in the ϕ direction takes
the form

qFσ
ϕ dxσ

ds = qB
r2

dr
ds + qB cot θ dθ

ds + 2qB f2 cot θ
r2

dθ
ds .

(28)

The third term is an extra term that would be missing had
we applied Wald’s formula (2). Recall that Wald’s for-
mulas (2) and (3) apply only to Schwarzschild and Kerr
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black holes. Notice that this extra force exists for neutral
black holes of the MOG theory where f2 �= 0 (Table 1).
Since f2 < 0, the extra force drives positively charged
particles to accelerate (respectively, negatively charged
particles to decelerate) in the increasing ϕ direction if
they are approaching the axis of symmetry (dθ/ds < 0).
This effect is new and cannot be neglected in the vicinity
of the event horizon or the ISCO.
There is a similar extra magnetic term,

− 2qB f2 sin θ cos θ

r2
dϕ
ds , (29)

in the applied Lorentz magnetic force in the θ direction.
These extra forces are attributable to the minimum cou-
pling of the magnetic field, via the covariant deriva-
tive (4), to the stress-energy.

2. In fact, this effect, which was masked by the approxi-
mation made in (3), exists for all nonvacuum charged
black holes no matter the nature of the stress-energy
is. In our restriction (11), this effect has been derived
in the linear case (15) but it should apply to neutral or
charged generic configurations too where f expands as
f1r + f2 + power series in 1/r , as are the cases with the
Ayón-Beato–García static black hole [12], the solutions
derived in [17,24], and the black holes of the f (T ) [23]
and f (R) [25] gravities.

3. In the derivation of both formulas (3) and (23) it was
assumed that the magnetic field is a test field, thus
neglecting its backreaction. The Einstein field equations
are only approximately satisfied. If Tμ

ν (0) is the stress-
energy corresponding to B = 0, then, for instance, in
the nonrotating case all the new electromagnetic extra
terms,2 Tμ

ν EM, added to Tμ

ν (0), when B is applied,

are proportional to B2, if the background black hole is
uncharged. The linear approximation (23) is valid if the
end-behavior as r → ∞ of Tμ

ν EM is much smaller than
that of Tμ

ν (0) yielding the constraints

B2| f2|r2 	 | f2|, B2 f1r
3 	 | f2|. (30)

While the intergalactic magnetic field is supposed to be
weak but these constraints show that (23) fails to pro-
vide a valid approximation as r → ∞. This very con-
clusion was stated in Ref. [26] concerning Wald’s linear
approximation (3): “... Wald’s solution must break down
as r → ∞, since the linearized solution is asymptotically
flat, ...”. This conclusion extends also to charged solutions
where, besides the constraint T t

ϕ EM ∝ BQ/r 	 1, we
have similar constraints to (30)

B2| f2|r2 	 | f2| + Q2

2 , B2 f1r
3 	 | f2| + Q2

2 . (31)

2 Tμ
ν EM = − 1

4π

(
FμαFνα − 1

4 δ
μ
νFαβFαβ

)
.

4. Ernst devised a procedure for generating Melvin-type
magnetic universes from Einstein–Maxwell solutions [27].
Being non-flat with a Melvin [28] asymptotic behavior,
these solutions are useless for many astrophysical appli-
cations except in regions with strong magnetic field. The
substitutes to Ernst’s universes are the asymptotically flat
solutions immersed in weak magnetic fields with linear
vector potentials (3) and (23). All linear terms in pow-
ers of B have been determined in (23), however, we do
not expect the next quadratic corrections to have simple
mathematical structures even in the nonrotating case.

4 The rotating case: a �= 0

This case is more involved. First of all, note that rotation
mixes the electric field of the background black hole with the
test magnetic field [30]. In this case it would not be possible
to set the conditions constraining the test magnetic field, as
we did in (30) and (31), unless the effects of rotation are
weak, in which case the two constraints (30) and (31) remain
valid to the linear approximation in the rotation parameter a.
On the other hand, if the sources of the test magnetic field
carry an electric charge density ρ, the dragging effects, which
are proportional to a, cause the sources to accelerate in the
geometry of the background black hole and thus enhance
the magnetic field they generate.3 Since in this work we are
performing a general analysis in which we ignore the sources
of the test magnetic field, it is safe to perform the analysis to
the linear approximation in a to ensure that the generated B
remains small, and the analysis remains valid, in all cases.

We seek a linear solution in a of the form (10),

Aμ =
[ −Qr

r2 − 2 f
+ a[B + T (r, θ, B)]

]
ξ

μ
t

+
[
B

2

(
1 + 2 f2

r2

)
+ a�(r, θ, B)

]
ξ μ
ϕ , (32)

where we have written (ct , cϕ) and as sums of the new
nonrotating contributions (23) and linear terms in a. It is
understood from (32) that we restrict ourselves to the case
f (r) = f1r + f2 (15).

The equations to solve (14) take the following forms in
the a-linear approximation:

Ftν ;ν ∝ [12B f2( f1r+2 f2)−4B f2(r
2+3 f1r+6 f2) cos2 θ

+ r4(r2−2 f )T (2,0)+r4 sin2 θT (0,2)+2r3(r2 + 2 f2)T
(1,0)

− 2r4 cos θT (0,1) − 4 f2r
2T ]a + O(a2), (33)

3 It is well known that a charged rotating disk generates at its center a
magnetic field linearly proportional to the disk’s angular velocity. This
extends to the case of an electromagnetic field around a Kerr black hole
where the magnetic field, Eq. (29) of Ref. [30], is proportional to aq
with q being the total charge of the electromagnetic source.
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Fϕν ;ν ∝
[

2Q( f1r3+6 f2r2−6 f1 f2r−4 f 2
2 )

r3(r2−2 f )2 + (r2 − 2 f )�(2,0)

+ sin2 θ�(0,2) +
(

4r − 6 f1 − 4 f2
r

)
�(1,0)

− 4 cos θ�(0,1) + 4 f2�

r2

]
a + O(a2), (34)

where, for instance, T (m,n) ≡ ∂m+nT
∂rm∂xn with x ≡ cos θ . Look-

ing for solutions of the form

T = T1(r)P0(x) + T2(r)P2(x) and � ≡ �1(r)P0(x),

where P0(x) = 1 and P2(x) = − 1
2 + 3x2

2 are the Legendre
polynomials, we were lead to the particular solutions4

T (r, θ) = B f2 sin2 θ

r2 , �(r) = − Q

r(r2 − 2 f )
. (35)

Finally, the expression of Aμ takes the form

Aμ =
[ −Qr

r2 − 2 f
+ aB

(
1 + f2 sin2 θ

r2

)]
ξ

μ
t

+
[
B

2

(
1 + 2 f2

r2

)
− Qa

r(r2 − 2 f )

]
ξ μ
ϕ . (36)

To the linear approximation in a, the nonvanishing compo-
nents of the electromagnetic tensor remain finite on the hori-
zons

Ftr = − Q
r2 − Ba[4 f2+3 f1r+(4 f2+ f1r) cos 2θ]

2r3 ,

Ftθ = − Ba(2 f2+ f1r) sin 2θ

r2 ,

Frϕ = −Br sin2 θ − Qa sin2 θ

r2 ,

Fθϕ = − B
2 (2 f2 + r2) sin 2θ + Qa sin 2θ

r ,

(37)

and

Ftr = Q
r2 + Ba(2 f2+ f1r)(1+3 cos 2θ)

2r3 ,

Ftθ = Ba f2 sin 2θ

r4 ,

Frϕ = − B(r2−2 f )
r3 − Qa

r4 ,

Fθϕ = − B(2 f2+r2) cot θ
r4 + 2Qa cot θ

r5 .

(38)

4 By particular solutions we mean we have set the integration constants
to their specific values so that the r.h.s. of (8) reduces to Q + O(a2).
For instance, the expression

T (r, θ) = B f2 sin2 θ

r2 + cr

r2 − 2 f
,

which is a solution to (33), would yield Q − ca + O(a2), so we had to
choose c = 0.

Using these expressions, it is straightforward to check that
the r.h.s. of (8) reduces to Q + O(a2). The two invariants of
the electromagnetic field,

FμνF
μν = − Q2

r4 + B2[r4− f1r3+ f2r2+2 f 2
2 +( f1r3+3 f2r2+2 f 2

2 ) cos 2θ ]
r4

− QBa[r2+3 f1r+8 f2+(3r2+ f1r+8 f2) cos 2θ ]
r5 , (39)

∗FμνF
μν = − 4BQ(r2+2 f2) cos θ

r4 + 8Q2a cos θ

r5

− 2B2a[ f1r3+6 f1 f2r+8 f 2
2 +(3 f1r3+8 f2r2+2 f1 f2r+8 f 2

2 ) cos 2θ ] cos θ

r5

(40)

(where *Fμν = 1
2εμναβFαβ and εμναβ = eμναβ

√|g| is the
totally antisymmetric tensor) too remain finite to the linear
approximation in a.

As explained in the introduction Sect. 1, Wald’s formu-
las (2) and (3) apply only to Schwarzschild and Kerr black
holes where f (r) = f1r = Mr . However, had we tried to
apply (3) to charged black holes with f (r) = Mr + f2 (15)
and metric of the form (11, 12), we would obtain

Ftr
W

= Q
r2 + 2 f2Q

Mr3 + Ba[4 f2+Mr+(4 f2+3 f1r) cos 2θ]
2r3 ,

Ftθ
W

= 0,

Frϕ
W

= − B(r2−2 f )
r3 − Qa(2 f2+Mr)

Mr5 ,

Fθϕ
W

= − B cot θ
r2 + 2Qa( f2+Mr) cot θ

Mr6 .

(41)

Now if we set f1 = M in (38), we see that the terms propor-
tional to M in both expressions (38) and (41) are the same.
In the case of the Reissner–Nordström black hole with a = 0
and f2 = −Q2/2, however, Eq. (41) contains an extra term,
−Q3/(Mr3), in Ftr and in the case of the Kerr–Newman
black hole with a �= 0 and f2 = −Q2/2, Eq. (41) fails to
produce the term, BQ2 cot θ/r4, in Fθϕ . Even if B is taken
as a test field, this last term cannot be neglected near the axis
of symmetry and in the vicinity of the horizon. As shown
in (28), this produces the non-negligible extra magnetic force
on a charged particle,

− qQ2B cot θ
r2

dθ
ds . (42)

This shows that the case of charged black holes lies beyond
the realm of applicability of Wald’s formula (3).

In the case of the Kerr–Newman black hole, besides what
we just mentioned in the previous paragraph, Wald’s for-
mula 3 produces wrong and extra terms proportional to
f2a = −Q2a/2 in Ftr , Frϕ , and Fθϕ , and it yields a vanish-
ing Ftθ . Thus, the formulas (38) modify greatly the expres-
sions of the forces acting on a charged particle and add extra
terms to them. For instance, the force qFσ

ϕ(dxσ /ds will still
have the third extra term in (28) and the force qFσ

θ (dxσ /ds
will have two extra terms due to Ftθ :

123
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qFtθ
(
gtt

dt
ds + gtϕ

dϕ
ds

)
. (43)

Dropping the second term proportional to a2, there remains
the term

− qQ2Ba sin 2θ

2r4 gtt
dt
ds , (44)

which, for all θ and gtt > 0, drives positively (resp. neg-
atively) charged particles to (resp. away from) the axis of
symmetry.

Other more important applications will be given else-
where [29].

Electromagnetic fields around rotating black holes

As mentioned in Sect. 1, the electromagnetic field is taken as
a test field in a given background metric; that is, the presence
of the field does not modify the background metric. This
approximation results in the two constraints (30) and (31).

To the best of our knowledge, there are no available
exact, asymptotically flat, solutions to electromagnetic fields
around (non)rotating black holes where the stress-energy
of the electromagnetic field is taken into consideration
except the well-known Kerr and Kerr–Newman solutions.
Among existing approximate solutions, we find the stationary
axisymmetric given in Refs. [30–34]. Exact solutions with a
Melvin asymptotic behavior do, however, exist [26,27].

In Ref. [30], stationary axisymmetric electromagnetic
fields surrounding a Kerr black hole were determined analyt-
ically. It was implicitly assumed that the stress-energy of the
electromagnetic field is negligible not to affect the geometry
of the background Kerr metric. Recall that the Kerr black
hole has f (r) = Mr ( f1 = M and f2 = 0), so these
field solutions do not extend to include the Kerr–Newman
black hole nor more general black holes of the form (11)
with f2 �= 0. In order to compare these field solutions
with (37) we take Q = 0 in Eq. (29) of Ref. [30], which
is the charge of the electromagnetic source (the background
Kerr black hole is uncharged) and take Q = 0 in (37), which
is the charge of the background black hole. Now, if we fix
the remaining constants in Eq. (29) of Ref. [30] such that
αi

1 = −B
√
M2 − a2/2 (� −BM/2 if a small), αr

l = 0,
αi
l = 0 (l �= 1), βr

l = 0, and β i
l = 0, this produces the

leading terms proportional to r and r2 in (37).

5 Conclusion

We have derived expressions for the vector potential and
electromagnetic field of a rotating and nonrotating charged
black hole immersed in a uniform magnetic field. The expres-
sions are exact within the linear approximation and include

all linear terms in both the rotation parameter and the mag-
netic field, thus introducing corrections to Wald’s formulas.
Since we have considered exact background black hole solu-
tions, no special assumptions constraining the electric charge
and the mass have been made. We have, however, made the
implicit assumptions that the mass, electric charge, and rota-
tion parameter are such that the solution is a black hole (not a
naked solution without horizon(s)). The expressions apply to
a variety of vacuum and nonvacuum solutions provided they
satisfy asymptotically the linear Maxwell field equations.

As a first application we have observed the emergence of
new extra force terms and evaluated some of them. Other
applications will follow [29]. The generalization along with
the corrections made to Wald’s formulas are crucial for a
consistent analysis of (un)charged-particle dynamics around
black holes [4–6,35–38], to mention but a few. From this
point of view, some particle-dynamics analyses made in the
literature have relied on Wald’s formulas in cases where they
do not apply.

The Kerr–Sen and Kerr–Newman–Taub–NUT black holes
are charged solutions having dilaton fields resulting from
dimensional reductions. Due to dilatons, the vacuum electro-
magnetic field equations (4) no longer describe the motion of
Fμν . Moreover, their metrics diverge from the form (11). It
is another interesting topic to determine the vector potential
of these black holes when they are immersed in a uniform
magnetic field parallel to the axis of symmetry.
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