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Abstract We modify and generalize the known solution for C,=aB, Cy,= g, 2)

the electromagnetic field when a vacuum, stationary, axisym-

metric black hole is immersed in a uniform magnetic fieldto  and

the case of nonvacuum black holes (of modified gravity) and

determine all linear terms of the vector potential in powers  Cr =aB + %, Cy=35, (3)

of the magnetic field and the rotation parameter.

1 The magnetic field problem

A Killing vector £# in vacuum (no stress-energy 7,,, = 0)
is endowed with the property of being parallel, that is, pro-
portional, to some vector potential A* that solves the source-
less (no currents J# = F*., = (/Ig[F*").,/+/1g] = 0)
Maxwell field equations. So, £* is itself a solution to the
same source-less Maxwell field equations. In Ref. [1], this
property was employed as an ansatz to determine the elec-
tromagnetic field of a vacuum, stationary, axisymmetric,
asymptotically flat black hole placed in a uniform magnetic
field that is asymptotically parallel to the axis of symmetry.
The ansatz stipulates that the vector potential of the solu-
tion be in the plane spanned by the timelike Killing vector
g/' = (1,0,0,0) and spacelike one &, = (0,0, 0, 1) of the
stationary, axisymmetric black hole,

At = C (B)g" + Cp(B)E)". ()

Since £,/ and E(p” are pure geometric objects, they do not
encode information on the applied magnetic field B; such
information is encoded in the coefficients (C;, Cy). Here B
is taken as a test field, so the metric of the stationary, axisym-
metric black hole too does not encode any information on the
applied magnetic field.

In this work, a spacetime metric has signature (+, —, —, —)
and F,, = 90,A, — 9,A,. For neutral and charged black
holes, Eq. (4.4) of Ref. [1] yields

2 e-mail: azreg@baskent.edu.tr

respectively,! where B and Q are seen as perturbations, that
is, if the metric of the background black hole is that of Kerr,
then Q&; ,,/(2M) is, up to an additive constant, the one-form
Audx?* = —Qr(dt — asin® 0dg)/p? of the Kerr—Newman
black hole (with p2 = r? + a%cos?0). It is important to
emphasize this point: the potential given by (1) and (3) is not
an exact solution to the source-less Maxwell equations,
Fop:y + Fya;p + Fgyia =0, JH=F", =0, “
if the background metric is that of the charged black hole
itself. Rather, it is a solution to (4) if the background metric
is that of the corresponding uncharged black hole.

For instance, in the Kerr background metric, the potential
given by (1) and (3) is a solution to (4), but in the Kerr—
Newman background metric the nonvanishing electric charge
density J? and the ¢ current density J¥ expand in powers of

0 as

g (VIgIF™),,  2aBQ*(a*+ r?cos’0)

= +0(0Y),

Vgl (r2 4+ a? cos? )3
(VIgIF*"),y  BQ*[a?(2+cos? ) — r?] 4
¢ _ Vo
= Vgl N (r24a? cos? 6)3 +O@,

which are zero to first order only. Even if rotation is sup-
pressed (a = 0), J! is still nonzero:

_

© (2Mr — 0%)3r’

and its integral charge is also nonzero. Where does this elec-
tric charge density come from (the only existing electric

Jl‘

! The sign “+” in (3) in front of Q is due to our metric-signature choice.
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charge is that of the black hole, which is confined inside the
event horizon)? Because of the conservation of the total elec-
tric charge, the application of a uniform magnetic field does
not generate current densities J* outside the event horizon.

Thus, as far as Q is considered as a perturbation, the poten-
tial given by (1) and (3) remains a good approximation for
many astrophysical purposes. However, this fails to be the
case if one is interested in the accretion phenomena that take
place in the vicinity of the innermost stable circular orbit
(ISCO) whose radius approaches that of the event horizon,
for there the currents (J?, J¢) cannot be neglected. One of the
purposes of this paper is to provide an “exact” formula for the
vector potential of a vacuum charged black hole immersed
in a uniform magnetic field parallel to its axis of symme-
try. The purpose extends to include nonvacuum charged and
uncharged black holes.

2 The solution
2.1 General considerations

The first thing we want to show in this section is that the
expressions (2) are universal leading terms of more elabo-
rate formulas for (C;, Cy). The determination of these lead-
ing terms is purely geometrical and only depends on the
asymptotic behavior of the metric of a (vacuum or nonva-
cuum), stationary, axisymmetric, asymptotically flat black
hole. Here by asymptotical flatness we mean that, at spa-
tial infinity, 7),, — O ensuring Ricci-flatness R, — 0
and hence F*'., — 0. The metric of such a black hole
approaches that of a rotating star as the radial coordinate
tends to infinity

2M 1 4aM sin® 0
ds? ~ (1= 228 ) a2 2 4 2 g
r 1-2M/r
— r2(d6? + sin” 6 dg?). 5)

Using this, a direct integration of (4) yields the leading terms
Fry = —2C,rsin® 0, Fp, = —2C,r’sinfcosd,  (6)

which were derived previously for the Kerr black hole (Eq. (6)
of Ref. [2]). This behavior is universal and applies to all
(vacuum or nonvacuum), stationary, axisymmetric, asymp-
totically flat black holes. The leading terms proportional to
C; vanish as 1/r. Equation (6) are the expressions of the elec-
tromagnetic tensor F),,, expressed in spherical coordinates,
of a uniform magnetic field, of strength B, parallel to the z
axis provided we take

C, = @)

[ST]ee)

@ Springer

There are three points to emphasize in the above deriva-
tion. First, notice that the derivation of (7) is valid whether the
black hole is neutral or charged, for the presence of a charge,
would certainly modify the expansion in (5), but would not
modify the leading terms in (6). Second, we have made no
assumption on the nature of the electrodynamics (linear or
nonlinear) describing F),,. Thus, the value of Cy, = B/2
applies equally to black holes with a linear electromag-
netic source as well as to, generally regular (singularity-
free), charged black holes with a nonlinear electromagnetic
source provided they are asymptotically flat with a vanishing
stress-energy at spatial infinity yielding R, — 0, which,
in turn, yields J* — 0. Thirdly, we have made no link to
general relativity nor to any of its modifications and exten-
sions. Hence, no matter the theory of relativity describing the
geometry and physics of spacetime and matter, the value of
C, = B/2 applies to all stationary, axisymmetric, asymptot-
ically flat solutions (black holes, wormholes, etc.) if they are
placed in a uniform magnetic field B parallel to the symme-
try axis. An instance of application of these arguments is the
case of a non-Kerr black hole where it was shown that (7)
applies [3].

As for Cy, since we are dealing with asymptotically flat
solutions, we are implicitly assuming that at spatial infinity
linear electrodynamics (4) is sufficient for the description of
the electromagnetic field. The charge of the black hole is
given by the surface integral

e AL ®)
T Jax

and this does not depend on the surface d X. This is the initial
charge, if any, of the black hole. If 3 is a surface of fixed
radial coordinate r, then ,,, = e,10¢+/[g]d0dg (Where the
totally antisymmetric symbol e, ,,4p is such that e;.9, = +1).
In the limit » — o0, the metric of the black hole (5) is known,
yielding

Q=2(C;, —aB)M + O/r), ©)

where we have used (7). In the limit » — oo, we rederive
the first equation in (2) [resp. in (3)] if the black hole is not
charged (resp. charged). Corrections to (5) do not affect the
leading term in (9).

2.2 Generalizing the ansatz

In more general situations where the Killing vector £/ is not
a solution to the source-less Maxwell field equations, a linear
combinations of all Killing vector with constant coefficient,
which is also a Killing vector as in (1), may fail to be a
solution to the source-less Maxwell field equations (4). If
the coefficients were taken as functions of the coordinates, it
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would be possible to determine them upon solving (4). This
would allow one to generalize Wald’s formulas (2, 3) and this
is the purpose of this work. These generalizations are useful
for a consistent analysis of (un)charged-particle dynamics
around black holes.

It is worth mentioning that some specific generalizations
of Wald’s formulas (2, 3) to metrics not obeying the expan-
sion (5) have been made but no general formulas were
derived. For instance, it was shown [4] that (2) remains valid
for the Kerr—Taub—NUT black hole but neither (2) nor (3)
remains valid for black holes in Hofava—Lifshitz gravity and
in braneworld where extensions to Wald’s formulas (2, 3)
have been performed in [5,6], respectively.

For the remaining part of this section, we rewrite the
ansatz (1) in terms of (¢;, ¢y) where C; = aB + ¢; and
Cy=(B/2)+cy

A" =[aB +¢,(r.0.a, B)IE" +[5 +c,(r.0.a, B)] &},
(10)

where the dependence on 6 is not related to that on the rotation
parameter a; that is, if rotation is suppressed (@ = 0), the
coefficients (c;, ¢,) may still depend on 6.

Now, we need a metric formula to complete the task of
integrating the source-less equations (4). There is no generic
metric that describes all rotating black holes (and wormholes)
nor a generic metric for static solutions. Nonetheless, the
Giirses—Giirsey metric [18]

2 2 4af sin% 6

ds? = (1 - p-f) dr* — %drz—f—af%dtdq)

> sinZ 6
02

— p2do? — de?, (11)

where

p2 =2 +a%cos’ 0, A(r) =r2—2f+a2,
Y = (> +a?)? — a*Asin? 6, (12)

describes a variety of solutions including (A) Schwarzschild
(a = 0), Reissner—Nordstrom (a = 0), Kerr, Kerr—-Newman
metrics, the Schwarzschild-MOG (¢ = 0) and Kerr-MOG
black holes of the modified gravity (MOG) [7,8], and their
trivial generalizations the Reissner—Nordstrom-MOG (a =
0) and Kerr—-Newman-MOG, and some phantom Einstein—
Maxwell-dilaton black holes [9, 10]. It also includes (B) non-
rotating regular black holes [11-17] and their rotating coun-
terparts [19-21] as well as some nonrotating black holes of
f(R) and f(T) gravities [22,23].

An important property of the metric (11), (12) is the fol-
lowing. In the most generic case, where f and (c;, ¢y) (10)
are still arbitrary functions and for all values of the rotation

parameter a, the first set of source-less equations (4) and two
equations of the second set are satisfied:

Fupiy + Fyaip + Fgpg =0, F™,, =0, F%., =0,
13)

leaving only two differential equations to solve:
F"., =0, F%.,=0. (14)

Moreover, if rotation is suppressed (a = 0) then the coeffi-
cient (¢, ¢, ) no longer depends on 6.

For the set (A) of singular solutions, the function f(r) is
linear of the form

fr)y= fir+ fa, 15)

where the constants (f1, f2) do not depend on the rotation
parameter a. Table 1 gives the values of these constants for
the set (A) of black hole solutions.

The electromagnetic field of regular black holes does not
satisfy the linear source-less Maxwell equations (4), except
asymptotically, and their function f admits the expansion:
fir + fo+ Y, ci/r". In this work we will not deal with
metrics of regular black holes.

3 The nonrotating case: a = (0

We will first deal with the nonrotating case, where the black
hole has the spherical symmetry, settinga = 0 the ansatz (10)
reduces to

AF = ci(r, BYE" + [ 5 +co(r, BY]E), (16)
for (¢, ¢p) do not depend on 6. With this last form of the
ansatz, F™.,, = 0 implies

r2r* = 2f)c) +2r(r* + 2f —2rf')c;
=22f = r@f' = rf"le =0, (17)

where the prime denotes derivative with respect to . This is
solved by

Kir Kor? K K
=2 STl 22 =+
re=2f re=2f "8t 8t

(18)

Ct

where (K, K»>) are integration constants. Independently of
the value of K7, the integral (8) performed on a sphere of
radius r yields K1 = —Q if the black hole is charged or
K = 0 if the black hole is neutral. We can take K, = 0, for
this is an additive constant in the expression of the one-form
Ay dx* = —(Q/r)dt + K»dt+ terms proportional to de.

@ Springer
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Table 1 The constants (fj, f>) defining the function f(r) (15) for the
set (A) of singular nonrotating and rotating (vacuum and nonvacuum)
black holes in terms of the mass M, the electric charge Q, and the
universal ratio « of the scalar charge Q; to the mass (of any particle
and, particularly, of the MOG black hole). The Newtonian gravitational
constant Gy = 1. The black hole named “Reissner—-Nordstrom-MOG”
and “Kerr—Newman-MOG” were not derived in Ref. [ 7] since the author

was not interested in astrophysical electrically charged solutions; these
are trivial generalizations of the Schwarzschild-MOG and Kerr-MOG
derived in Egs. (11) and (35) of Ref. [7], respectively. NOMENCLATURE:
“V” for “vacuum solution” (Ricci-flat: R, = 0), “NV” for “nonvac-
uum solution” (non-Ricci-flat: R;,,, # 0), “N” for “neutral” (electrically
uncharged), and “C” for “electrically charged”

Black hole f f State

Schwarzschild M 0 V,N

Reissner—Nordstrom M — Q2 /2 NV, C
Kerr M 0 V,N

Kerr—Newman M —-0%)2 NV, C
Schwarzschild-MOG A4+ «>HM —(1 4 «HK>M?)2 NV, N
Reissner—Nordstrom-MOG (1 +xHM —(14+«DH2M? + Qz)/2 NV, C
Kerr-MOG A4+ «>HM —(1 +«HKk2M?/2 NV, N
Kerr—Newman-MOG (1 +xHM —(1+ &2 K2M? + 0%))2 NV, C
Phantom Reissner—Nordstrom M Q2 /2 NV, C

The result (18) was expected and constitutes a correction to
Wald’s term Q/(2M) in (3).

Now, F?¥., = O reduces to the two equivalent differential
equations

= 2r f)cly + @ —arf =2 ), + 4(f = rf)e,
=2B(rf" = /). (19)
A(f = rfCy + 10" =27 )C,) =0, (20)

where C, = (B/2)+cy, as defined earlier (10). In the generic
case, where f is any function of r, a closed-form solution
to (20) does not exist. For f linear (15), we obtain the solution

LGP +2f)

C(/) -
2r2
) VIR0 (e P2 f
L2(r +2f2) 2+2f —fln
N TR r—\ fi2f~fi

8(fE +2/2)3/2r2
1)

where (L1, L») are integration constants. We immediately
get rid of L;, for the physical electromagnetic tensor Fj,

would diverge at the horizons ry = f; £,/ f12 +2f. At
spatial infinity, C, reduces to B/2 (7) yielding L1 = B and

B B
+f2

Cop=—+ —. 22
1 2 r2 (22)

For the linear case (15), we have obtained the solution for
the vector potential

B 2
Al = —%gt“ += <1 + r—’?) £) (23)

@ Springer

For the Schwarzschild, normal or phantom Reissner—
Nordstrom, Schwarzschild-MOG, and Reissner—Nordstrom-
MOG black holes we obtain, respectively,

Al = 28, (24)
Al = —,g%étu +2 (1 - (;2—22) S (25)
Ar =5 (1 _ (K2+1r)2K2M2> o, 26)
Mo B g (1o

Notice that it is the correction inside the parentheses, with
respect to Wald’s formula 3, that ensures the satisfaction of
the source-less Maxwell equations (4). According to MOG
theory [7,8], « is the ratio of the scalar charge Q; of any
particle to its mass m: k = Qg /m. This ratio is postulated to
be universal and it is the same for all particles and massive
bodies as black holes.

There is a couple of facts and conclusions to draw
from (23).

1. We assume that the applied magnetic field is directed in
the positive z axis (B > 0) and consider an uncharged
black hole. On a charged particle, of electric charge ¢, the
applied Lorentz magnetic force in the ¢ direction takes
the form
qF, Y =18 & 4 gBcoto £ + —2qBC22C°t€ @,

(28)

The third term is an extra term that would be missing had
we applied Wald’s formula (2). Recall that Wald’s for-
mulas (2) and (3) apply only to Schwarzschild and Kerr
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black holes. Notice that this extra force exists for neutral
black holes of the MOG theory where f> # 0 (Table 1).
Since f> < 0, the extra force drives positively charged
particles to accelerate (respectively, negatively charged
particles to decelerate) in the increasing ¢ direction if
they are approaching the axis of symmetry (d6/ds < 0).
This effect is new and cannot be neglected in the vicinity
of the event horizon or the ISCO.

There is a similar extra magnetic term,

2gBf>sinf cosf d
—2gBhi10c0s6 dp (29)

in the applied Lorentz magnetic force in the 6 direction.
These extra forces are attributable to the minimum cou-
pling of the magnetic field, via the covariant deriva-
tive (4), to the stress-energy.

2. In fact, this effect, which was masked by the approxi-
mation made in (3), exists for all nonvacuum charged
black holes no matter the nature of the stress-energy
is. In our restriction (11), this effect has been derived
in the linear case (15) but it should apply to neutral or
charged generic configurations too where f expands as
fir + f> +power series in 1/r, as are the cases with the
Ayoén-Beato—Garcia static black hole [12], the solutions
derived in [17,24], and the black holes of the f(T) [23]
and f(R) [25] gravities.

3. In the derivation of both formulas (3) and (23) it was
assumed that the magnetic field is a test field, thus
neglecting its backreaction. The Einstein field equations
are only approximately satisfied. If T’]f ©) is the stress-
energy corresponding to B = 0, then, for instance, in
the nonrotating case all the new electromagnetic extra
terms,” T4 .\, added to T" (0> When B is applied,
are proportional to B2, if the background black hole is
uncharged. The linear approximation (23) is valid if the
end-behavior as r — oo of T"f gy 1S much smaller than
that of T"f ©) yielding the constraints
B folr® <1 fal. B2 fir’ < fal. (30)

While the intergalactic magnetic field is supposed to be

weak but these constraints show that (23) fails to pro-

vide a valid approximation as r — oo. This very con-
clusion was stated in Ref. [26] concerning Wald’s linear
approximation (3): “... Wald’s solution must break down
asr — 00, since the linearized solution is asymptotically
flat, ...”. This conclusion extends also to charged solutions
where, besides the constraint thp M X BO/r <1, we
have similar constraints to (30)

2 2
BIpirt «ipl+%, BAR < Ipl+S%. 3D

2T om = — 2= (FMFoq — 385 FP Fp) .

v

4. Ernst devised a procedure for generating Melvin-type
magnetic universes from Einstein—-Maxwell solutions [27].
Being non-flat with a Melvin [28] asymptotic behavior,
these solutions are useless for many astrophysical appli-
cations except in regions with strong magnetic field. The
substitutes to Ernst’s universes are the asymptotically flat
solutions immersed in weak magnetic fields with linear
vector potentials (3) and (23). All linear terms in pow-
ers of B have been determined in (23), however, we do
not expect the next quadratic corrections to have simple
mathematical structures even in the nonrotating case.

4 The rotating case: a # 0

This case is more involved. First of all, note that rotation
mixes the electric field of the background black hole with the
test magnetic field [30]. In this case it would not be possible
to set the conditions constraining the test magnetic field, as
we did in (30) and (31), unless the effects of rotation are
weak, in which case the two constraints (30) and (31) remain
valid to the linear approximation in the rotation parameter a.
On the other hand, if the sources of the test magnetic field
carry an electric charge density p, the dragging effects, which
are proportional to a, cause the sources to accelerate in the
geometry of the background black hole and thus enhance
the magnetic field they generate.? Since in this work we are
performing a general analysis in which we ignore the sources
of the test magnetic field, it is safe to perform the analysis to
the linear approximation in a to ensure that the generated B
remains small, and the analysis remains valid, in all cases.
We seek a linear solution in a of the form (10),

Al = [% +alB+T(r,0, B)]i| Ezu

B 2
+ [_ (1 + ﬁ) +ad(r, 6, B)] K, (32)
2 r2 ¢
where we have written (c;, ¢,) and as sums of the new
nonrotating contributions (23) and linear terms in a. It is
understood from (32) that we restrict ourselves to the case
f@r)y= fir+ f2(15).

The equations to solve (14) take the following forms in
the a-linear approximation:

F. o« [12Bf2(fir+2f2)—4Bf2(r* +3 fir+6 f2) cos” 0
+ 422 /)T 414 sin? 07O 42732 2 )0
—2r*cos 0T OV — 4 £, TNa + O(d?), (33)

3 It is well known that a charged rotating disk generates at its center a
magnetic field linearly proportional to the disk’s angular velocity. This
extends to the case of an electromagnetic field around a Kerr black hole
where the magnetic field, Eq. (29) of Ref. [30], is proportional to ag
with ¢ being the total charge of the electromagnetic source.

@ Springer
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+ (r?

)q)(l :0)

—4cos DD 4 74]:224)]61 + 0@,

F o [2Q(f1r3+6f2r2—6f1fzr—4.f22)

— (2,0
r3(r272f)2 2f)q>

+ sin? 9d©2 4 <4r 6f1 —

(34)

m-+n .
where, for instance, T ") = g _ 3Tn with x = cos 6. Look-

ing for solutions of the form
T =Ti(r)Po(x) + To(r)P2(x) and @ = Py(r)Po(x),

where Py(x) = 1 and Pr(x) = —5 L+ 3% are the Legendre
polynomials, we were lead to the partlcular solutions*

_ Bfysin?6 B 0
T(r,0) = ) , ©@r)=-— ( X5k (35)
Finally, the expression of A* takes the form
—Qr frsin 6
"o Josm o "
A _[ 2f+aB(1+ P )}Et
B 2 /> Qa M
+[3(1+%F) - tap e oo

To the linear approximation in a, the nonvanishing compo-
nents of the electromagnetic tensor remain finite on the hori-
zons

F.o—_2 4f2+3f1r+(4fz+f1r) c0s26]
tr — 2 2,3
Fg=— Bd(2fz+rj2‘1r) sin 20 ’
- . (37
Frp, = —Brsin“ 0 — —Qaflzn ,

Fgy = =52 f +r?)sin2g + 22

and
Fir Q + Ba(2f2+f12rr)(l+300529)
6 B 20
Fo — afzrzm 7
Fre — _B0*-2) _ Qa (38)
- 73 4
Foe — _B(Z.fztiz)cow + 2Qc;§ot(9

4 By particular solutions we mean we have set the integration constants
to their specific values so that the r.h.s. of (8) reduces to Q + 0(d?).
For instance, the expression

Bfsin? 0 cr

T, = =+

which is a solution to (33), would yield QO — ca + 0(a?), so we had to
choose ¢ = 0.

@ Springer

Using these expressions, it is straightforward to check that
the r.h.s. of (8) reduces to Q + O (a?). The two invariants of
the electromagnetic field,

B2[r*— fir3+ for 42 fE+(fir3 43 far? +2£7) cos 20]
4

2
FuF" = -2 4

B
_ QBalr*+3fir+8 o +Gr’+ fir+8£>) cos 26]

5 (39)
*FMF,W _ _4BQ(r2J;42f2)cos0 + sngjcose
_ 2B2a[ i 461 frr+8f3+B 1348 far2+2f1 far +8f3) cos 20] cos
7S
(40)

(where “FH’ = %e“”“ﬁFaﬂ and €008 = €uvap/18] is the
totally antisymmetric tensor) too remain finite to the linear
approximation in a.

As explained in the introduction Sect. 1, Wald’s formu-
las (2) and (3) apply only to Schwarzschild and Kerr black
holes where f(r) = fir = Mr. However, had we tried to
apply (3) to charged black holes with f(r) = Mr + f, (15)
and metric of the form (11, 12), we would obtain

Fir — + 2f2Q + Ba[4f2+Mr+(;rf2+3f1r)00929]’
0 __
v = 0 41
Fre — _B0?-2f) _ QaQ@pH+Mr) “h
W r3 MrS ’
0¢ __ _ Bcotf 2Qa(f2+Mr) cot6
FW - r2 + Mro

Now if we set f; = M in (38), we see that the terms propor-
tional to M in both expressions (38) and (41) are the same.
In the case of the Reissner—Nordstrom black hole witha = 0
and fo = — Q2 /2, however, Eq. (41) contains an extra term,
—Q3/(Mr3), in F" and in the case of the Kerr—Newman
black hole with a # 0 and f» = —Q?/2, Eq. (41) fails to
produce the term, BQ? cot6/r*, in F’¢. Even if B is taken
as a test field, this last term cannot be neglected near the axis
of symmetry and in the vicinity of the horizon. As shown
in (28), this produces the non-negligible extra magnetic force
on a charged particle,

2
_q9Q fzcote % (42)
This shows that the case of charged black holes lies beyond
the realm of applicability of Wald’s formula (3).

In the case of the Kerr—Newman black hole, besides what
we just mentioned in the previous paragraph, Wald’s for-
mula 3 produces wrong and extra terms proportional to
fra = —Q%a/2in F'", F"® and F??, and it yields a vanish-
ing F'. Thus, the formulas (38) modify greatly the expres-
sions of the forces acting on a charged particle and add extra
terms to them. For instance, the force g F; ¥ (dx? /ds will still
have the third extra term in (28) and the force ¢ F,? (dx® /ds
will have two extra terms due to F*°:
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aF" (gud + 2, %). 3)

Dropping the second term proportional to a2, there remains
the term

2 Ba sin 20 dt
—40 BB e, gL, (44)

which, for all 6 and g;; > 0, drives positively (resp. neg-
atively) charged particles to (resp. away from) the axis of
symmetry.

Other more important applications will be given else-
where [29].

Electromagnetic fields around rotating black holes

As mentioned in Sect. 1, the electromagnetic field is taken as
a test field in a given background metric; that is, the presence
of the field does not modify the background metric. This
approximation results in the two constraints (30) and (31).

To the best of our knowledge, there are no available
exact, asymptotically flat, solutions to electromagnetic fields
around (non)rotating black holes where the stress-energy
of the electromagnetic field is taken into consideration
except the well-known Kerr and Kerr—-Newman solutions.
Among existing approximate solutions, we find the stationary
axisymmetric given in Refs. [30-34]. Exact solutions with a
Melvin asymptotic behavior do, however, exist [26,27].

In Ref. [30], stationary axisymmetric electromagnetic
fields surrounding a Kerr black hole were determined analyt-
ically. It was implicitly assumed that the stress-energy of the
electromagnetic field is negligible not to affect the geometry
of the background Kerr metric. Recall that the Kerr black
hole has f(r) = Mr (fi = M and f, = 0), so these
field solutions do not extend to include the Kerr—Newman
black hole nor more general black holes of the form (11)
with fo # 0. In order to compare these field solutions
with (37) we take Q0 = 0 in Eq. (29) of Ref. [30], which
is the charge of the electromagnetic source (the background
Kerr black hole is uncharged) and take Q = 0 in (37), which
is the charge of the background black hole. Now, if we fix
the remaining constants in Eq. (29) of Ref. [30] such that
af = —BvV/M? —a%/2 (~ —BM/2 if a small), o] = 0,
Olll =0 #1),8 =0,and ,31’ = 0, this produces the
leading terms proportional to 7 and r2 in (37).

5 Conclusion

We have derived expressions for the vector potential and
electromagnetic field of a rotating and nonrotating charged
black hole immersed in a uniform magnetic field. The expres-
sions are exact within the linear approximation and include

all linear terms in both the rotation parameter and the mag-
netic field, thus introducing corrections to Wald’s formulas.
Since we have considered exact background black hole solu-
tions, no special assumptions constraining the electric charge
and the mass have been made. We have, however, made the
implicit assumptions that the mass, electric charge, and rota-
tion parameter are such that the solution is a black hole (not a
naked solution without horizon(s)). The expressions apply to
a variety of vacuum and nonvacuum solutions provided they
satisfy asymptotically the linear Maxwell field equations.

As a first application we have observed the emergence of
new extra force terms and evaluated some of them. Other
applications will follow [29]. The generalization along with
the corrections made to Wald’s formulas are crucial for a
consistent analysis of (un)charged-particle dynamics around
black holes [4-6,35-38], to mention but a few. From this
point of view, some particle-dynamics analyses made in the
literature have relied on Wald’s formulas in cases where they
do not apply.

The Kerr—Sen and Kerr—Newman-Taub—NUT black holes
are charged solutions having dilaton fields resulting from
dimensional reductions. Due to dilatons, the vacuum electro-
magnetic field equations (4) no longer describe the motion of
F,,». Moreover, their metrics diverge from the form (11). It
is another interesting topic to determine the vector potential
of these black holes when they are immersed in a uniform
magnetic field parallel to the axis of symmetry.
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