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Abstract

In this paper, a pair of nondifferentiable multiobjective fractional programming
problems is formulated. For a differentiable function, we introduce the definition of
higher-order (F, a, r, d)-convexity, which extends some kinds of generalized
convexity, such as second order F-convexity and higher-order F -convexity. Under the
higher-order (F, a, r, d)-convexity assumptions, we prove the higher-order weak,
higher-order strong and higher-order converse duality theorems.
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Introduction
Symmetric duality in nonlinear programming in which the dual of the dual is the pri-

mal was introduced by Dorn [1]. The notion of symmetric duality was developed sig-

nificantly by Dantzig et al. [2], and the Wolfe dual models presented in [2]. Mond [3]

presented a slightly different pair of symmetric dual nonlinear programs and obtained

more generalized duality results than that of Dantzig et al. [2]. Mond and Weir [4]

then gave another pair of symmetric dual nonlinear programs in which a weaker con-

vexity assumption was imposed on involved functions. Later, Mond and Weir [5],

Weir and Mond [6] as well as Gulati et al. [7] generalized single objective symmetric

duality to multiobjective case.

Chandra et al. [8] first formulated a pair of symmetric dual fractional programs with

certain convexity hypothesis. Pandey [9] introduced second-order h-invex function for

multiobjective fractional programming problem and established weak and strong dua-

lity theorems. Yang et al. [10] discussed a class of nondifferentiable multiobjective frac-

tional programming problems, and proved duality theorems under the assumptions of

invex (pseudoinvex, pseudoincave) functions. Higher-order duality in nonlinear pro-

grams have been studied by some researchers. Mangasarian [11] formulated a class of

higher-order dual problems for the nonlinear programming problem by introducing

twice differentiable functions. Mond and Zhang [12] obtained duality results for var-

ious higher-order dual programming problems under higher-order invexity assump-

tions. Under invexity-type conditions, such as higher-order type I, higher-order

pseudo-type I, and higher-order quasi-type I conditions, Mishra and Rueda [13] gave

various duality results. Recently, Chen [14] also discussed the duality theorems under
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higher-order F-convexity (F-pseudo-convexity, F-quasi-convexity) for a pair of multiob-

jective nondifferentiable program. But, up to now, there is not sufficient literatures

dealing with higher-order fractional symmetric duality.

In this paper, we first formulate a pair of nondifferentiable multiobjective fractional

pro-gramming problems. For a differentiable function h: Rn ×Rn ® R, we introduce the

definition of higher-order (F, a, r, d)-convexity, which extends some kinds of general-

ized convexity, such as second order F-convexity in [15] and higher-order F -convexity

in [14]. Under the higher-order (F, a, r, d)- convexity assumptions, we prove the higher-

order weak, higher-order strong and higher-order converse duality theorems.

Preliminaries
Let Rn be the n-dimensional Euclidean space and let Rn

+ be its non-negative orthant.

The following conventions for vectors in Rn will be used:

x < y if and only if y − x ∈ int Rn;

x ≤ y if and only if y − x ∈ Rn
+\{0};

x � y if and only if y − x ∈ Rn
+;

x �≤ y is the negation of x ≤ y.

For a real-valued twice differentiable function h(x, y) defined on an open set in Rn × Rm,

denote by ∇xh(x̄, ȳ) the gradient vector of h with respect to x at (x̄, ȳ), ∇xxh(x̄, ȳ) the hes-

sian matrix with respect to x at (x̄, ȳ) . Similarly, ∇yh(x̄, ȳ), ∇xyh(x̄, ȳ) and∇yyh(x̄, ȳ) are

also defined.

Let C be a compact convex set in Rn. The support function of C is defined by

s(x|C) = max{xTy : y ∈ C}.

A support function, being convex and everywhere finite, has a subdifferential, that is,

there exists a z Î Rn such that

s(y|C) � s(x|C) + zT(y − x), ∀x ∈ C.

The subdifferential of s(x|C) is given by

∂s(x|C) = {z ∈ C : zTx = s(x|C)}.

For a convex set D ⊂ Rn, the normal cone to D at a point x Î D is defined by

ND(x) = {y ∈ Rn : yT(z − x) � 0, ∀z ∈ D}.

When C is a compact convex set, y Î NC(x) if and only if s(y|C) = xT y, or equiva-

lently, x Î ∂s(y|C).

Consider the following multiobjective programming problem (P):

Minimize f (x) subject to g(x) � 0, x ∈ X,

where f: Rn ® Rm, g: Rn ® Rl and X ⊂ Rn. Denote by S the set of feasible solutions

of (P).

Definition 2.1. (a) A feasible solution x0 is said to be an efficient solution of (P) if

there is no other x Î S such that f(x) ≤ f(x0).
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(b) A feasible solution x0 is said to be a properly efficient solution of (P) if it is an effi-

cient solution of (P), and there exists a real number M >0 such that for all i Î {1, ..., m},

x Î S, and fi(x) < fi(x0),

fi(x0) − fi(x) � M(fj(x) − fj(x0))

for some j Î {1, ..., m} such that fj(x) > fj (x0).

Definition 2.2. A functional F: X × X × Rn ® R (where X ⊂ Rn) is sublinear in its

third component if for all (x, u) Î X × X,

F(x, u; a1 + a2) � F(x, u; a1) + F(x, u; a2)for all a1, a2 ∈ Rn;

F(x, u;αa) = αF(x, u; a) for allα ∈ R+ and for all a ∈ Rn.

For convenience, we write Fx, u(a) = F (x, u, a).

We now introduce higher-order (F, a, r, d)-convex function. Where, F: X × X × Rn ®
R is a sublinear functional, a: X × X ® R+ \ {0}, r Î R and d: X × X ® R. Let F: X ® R

and h: X × Rn ® R be differentiable real valued functions.

Definition 2.3. F is said to be higher-order (F, a, r, d)-convex at u Î X with respect

to h if, ∀(x, p) Î X × Rn,

�(x) − �(u) � Fx,u(α(∇x�(u) + ∇ph(u, p))) + h(u, p) − pT∇ph(u, p) + ρd2(x, u).

Remark 2.1. (1) When a = 1, and r = 0 or d = 0, the higher-order (F, a, r, d)-con-
vexity reduces to higher-order F-convexity in [14].

(2) When a = 1, r = 0 or d = 0, and h(u, p) = 1
2p

T∇xx�(u)p , the higher-order (F, a,

r, d)-convexity reduces to second order F-convexity in [15].

we now give an example of higher-order (F, a, r, d)-convex function with respect to

h(u, p), which is not higher-order F -convex and second order F-convex.

Example 2.1. Let X ⊂ R, X = {x: x ≧ 1}, f: X ® R, F: X × X × R ® R, h: X × R ® R

and d: X × X ® R given as follows

f (x) = x +
2

x + 1
, Fx,u(a) = |a|(x − u)2, h(u, p) =

p

u + 1
, d(x, u) = x − u.

And let u = 1, r = -1, α = 3
4 . Then for all (x, p) Î X × R

f (x) − f (u) =
x2 − x
x + 1

� Fx,u

(
3
4
(∇xf (u) + ∇ph(u, p))

)

+ h(u, p) − pT∇ph(u, p) − d2(x, u) = −1
4
(x − 1)2.

This implies f(x) is a higher-order (F, a, r, d)-convex function with respect to h at u.

But when we let x = 2, p = 3 and x = 6, p = 3 respectively, we have

f (2) − f (1) =
2
3

< Fx,u(∇xf (u) + ∇ph(u, p)) + h(u, p) − pT∇ph(u, p) =
3
4
,

f (6) − f (1) =
30
7

< Fx,u(∇xf (u) + ∇xxf (u)) − 1
2
pT∇xxf (u)p =

66
4
.

Hence, f is neither a higher-order F-convex function nor a second order F-convex

function. From now on, suppose that the sublinear functional F satisfies the following

condition:

Fx,y(a) + aTy � 0, ∀a ∈ Rn
+. (1)
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Higher-order symmetric duality
In the section, we consider the following multiobjective fractional symmetric dual pro-

blems: (MFP) Minimize L(x, y, p) = (L1(x, y, p1), ..., Lk(x, y, pk))
T subject to

k∑
i=1

λi
[
(∇yfi(x, y) − zi + ∇piHi(x, y, pi))

−Li(x, y, pi)(∇ygi(x, y) + ri + ∇piGi(x, y, pi))
]
� 0,

yT
k∑
i=1

λi
[
(∇yfi(x, y) − zi + ∇piHi(x, y, pi))

−Li(x, y, pi)(∇ygi(x, y) + ri + ∇piGi(x, y, pi))
]
� 0,

λ > 0, λTe = 1, zi ∈ Di, ri ∈ Fi, i = 1 . . . , k.

(MFD) Maximize M(u, v, q) = (M1(u, v, q1),..., Mk(u, v, qk))
T subject to

k∑
i=1

λi
[
(∇xfi(u, v) + wi + ∇qi�i(u, v, qi))

−Mi(u, v, qi)(∇xgi(u, v) − ti + ∇qi�i(u, v, qi))
]
� 0,

uT
k∑
i=1

λi
[
(∇xfi(u, v) + wi + ∇qi�i(u, v, qi))

−Mi(u, v, qi)(∇xgi(u, v) − ti + ∇qi�i(u, v, qi))
]
� 0,

λ > 0, λTe = 1, wi ∈ Ci, ti ∈ Ei, i = 1 . . . , k.

where

Li(x, y, pi) =
fi(x, y) + s(x|Ci) − yTzi +Hi(x, y, pi) − pTi ∇piHi(x, y, pi)

gi(x, y) − s(x|Ei) + yTri + Gi(x, y, pi) − pTi ∇piGi(x, y, pi)
,

Mi(u, v, qi) =
fi(u, v) − s(v|Di) + uTwi + �i(u, v, qi) − qTi ∇qi�i(u, v, qi)

gi(u, v) + s(v|Fi) − uTti + �i(u, v, qi) − qTi ∇qi�i(u, v, qi)
,

fi: Rn × Rm ® R; gi: R
n × Rm ® R; Hi, Gi: R

n × Rm ® R and Fi, Ψi: Rn × Rm × Rn ®
R are twice differentiable functions for all i = 1 ..., k. Ci, Ei are compact convex sets in

Rn, and Di, Fi are compact convex sets in Rm, i = 1, ..., k. e = (1, ..., 1)T Î Rk. pi Î Rm,

qi Î Rn, i = 1, ..., k, p = (p1, ..., pk), q = (q1, ..., qk). It is assumed that in the feasible

regions the numerators are nonnegative and denominators are positive.

We let S = (S1, ..., Sk)
T , W = (W1, ..., Wk)

T Î Rk. Then we can express the programs

(MFP) and (MFD) equivalently as:

(MFP)S Minimize S subject to

(fi(x, y) + s(x|Ci) − yTzi +Hi(x, y, pi) − pTi ∇piHi(x, y, pi))

−Si(gi(x, y) − s(x|Ei) + yTri + Gi(x, y, pi) − pTi ∇piGi(x, y, pi)) = 0, i = 1, . . . , k,
(2)

k∑
i=1

λi
[
(∇yfi(x, y) − zi + ∇piHi(x, y, pi))

−Si(∇ygi(x, y) + ri + ∇piGi(x, y, pi))
]
� 0,

(3)
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yT
k∑
i=1

λi
[
(∇yfi(x, y) − zi + ∇piHi(x, y, pi))

−Si(∇ygi(x, y) + ri + ∇piGi(x, y, pi))
]
� 0,

λ > 0, λTe = 1, zi ∈ Di, ri ∈ Fi, i = 1 . . . , k.

(4)

(MFD)W Maximize W subject to

(fi(u, v) − s(v|Di) + uTwi + �i(u, v, qi) − qTi ∇qi�i(u, v, qi))

−Wi(gi(u, v) + s(v|Fi) − uTti + �i(u, v, qi) − qTi ∇qi�i(u, v, qi)) = 0, i = 1, . . . , k,
(5)

k∑
i=1

λi
[
(∇xfi(u, v) + wi + ∇qi�i(u, v, qi))

−Wi(∇xgi(u, v) − ti + ∇qi�i(u, v, qi))
]
� 0,

(6)

uT
k∑
i=1

λi
[
(∇xfi(u, v) + wi + ∇qi�i(u, v, qi))

−Wi(∇xgi(u, v) − ti + ∇qi�i(u, v, qi))
]
� 0,

λ > 0, λTe = 1, wi ∈ Ci, ti ∈ Ei, i = 1 . . . , k.

(7)

Now we can prove weak, strong and converse duality theorems for (MFP)S and

(MFD)W, but equally apply to (MFP) and (MFD).

Theorem 3.1 (Weak duality). Let (x, y, S, z1, ..., zk, r1, ..., rk, l, p) be feasible for

(MFD)S and let (u, v, W, w1, ..., wk, t1 ..., tk, l, q) be feasible for (MFD)W . Let ∀i Î {1,

..., k}, fi(., v) + (.)T wi be higher-order (F, a, ri, di)-convex at u with respect to Fi(u, v,

qi), - (gi(., v) - (.)
T ti) be higher-order (F, a, r, di)-convex at u with respect to -Ψi(u, v,

qi), - (fi(x, .) - (.)
Tzi) be higher-order (K, ᾱ, ρ̄i, d̄i) -convex at y with respect to -Hi(x, y,

pi), gi(x, .) + (.)T ri be higher-order (K, ᾱ, ρ̄i, d̄i) -convex at y with respect to Gi(x, y, pi),

where sublinear functional F: Rn × Rn × Rn ® R and K: Rm × Rm × Rm ® R satisfy the

condition (1). If the following conditions hold:

gi(x, v) + vTri − s(x|Ei) > 0, i = 1, . . . , k, (8)

k∑
i=1

λi((1 +Wi)ρid
2
i (x, u) + (1 + Si)ρ̄id̄

2
i (v, y)) � 0. (9)

Then S ≰ W.

Proof. Since (u, v, W, w1, ..., wk, t1 ..., tk, l, q) is feasible for (MFD)W, from (6), (7)

and F satisfies condition (1), it follows that

Fx,u

(
k∑
i=1

λi[(∇xfi(u, v) + wi + ∇qi�i(u, v, qi)) − Wi(∇xgi(u, v) − ti + ∇qi�i(u, v, qi))]

)
� 0. (10)

Using the convexity assumptions of fi(., v) + (.)T wi and -(gi(., v) - (.)
T ti) at u, we

have
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fi(x, v) + xTwi − fi(u, v) − uTwi

� Fx,u(α(∇xfi(u, v) + wi + ∇qi�i(u, v, qi))) + �i(u, v, qi) − qTi ∇qi�i(u, v, qi) + ρid
2
i (x, u),

−gi(x, v) + xTti + gi(u, v) − uTti

� Fx,u(α(−∇xgi(u, v) + ti − ∇qi�i(u, v, qi))) − �i(u, v, qi) + qTi ∇qi�i(u, v, qi) + ρid2i (x, u).

Since F is a sublinear functional and l >0, W ≧ 0, a >0, from (10) and the above two

inequalities, we have

k∑
i=1

λi(fi(x, v) + xTwi − fi(u, v) − uTwi − �i(u, v, qi) + qTi ∇qi�i(u, v, qi))

+
k∑
i=1

λiWi(gi(u, v) + vTri − uTti + �i(u, v, qi) − qTi ∇qi�i(u, v, qi))

+
k∑
i=1

λiWi(xTti − gi(x, v) − vTri) �
k∑
i=1

λi(1 +Wi)ρid
2
i (x, u).

(11)

Since vT ri ≦ s(v|Fi), from (5) and (11), we have

k∑
i=1

λi[(fi(x, v)+xTwi−s(v|Di))+Wi(xTti−vTri−gi(x, v))] �
k∑
i=1

λi(1+Wi)ρid
2
i (x, u). (12)

On the other hand, from (3), (4) and sublinear functional K satisfies condition (1), we

obtain

Kv,y

(
−

k∑
i=1

λi
(
(∇yfi(x, y) − zi + ∇piHi(x, y, pi))

−Si(∇ygi(x, y) + ri + ∇piGi(x, y, pi))
))

� 0.

(13)

Using the convexity assumptions of -fi(x, .) + (.)T zi and gi(x, .) + (.)T ri at y, we have

−fi(x, v) + vTzi + fi(x, y) − yTzi � Kv,y(ᾱ(−∇yfi(x, y) + zi − ∇piHi(x, y, pi)))

− Hi(x, y, pi) + pTi ∇piHi(x, y, pi) + ρ̄id̄
2
i (v, y),

gi(x, v) + vTri − gi(x, y) − yTri � Kv,y(ᾱ(∇ygi(x, y) + ri + ∇piGi(x, y, pi)))

+ Gi(x, y, pi) − pTi ∇piGi(x, y, pi) + ρ̄id̄2i (v, y).

Since K is a sublinear functional, and l >0, S ≧ 0, ᾱ > 0 , from (13) and the above

two inequalities, it holds

k∑
i=1

λi(−fi(x, v) + vTzi + fi(x, y) − yTzi +Hi(x, y, pi) − pTi ∇piHi(x, y, pi))

+
k∑
i=1

λiSi(−gi(x, y) + xTti − yTri − Gi(x, y, pi) + pTi ∇piGi(x, y, pi))

+
k∑
i=1

λiSi(gi(x, v) + vTri − xTti) �
k∑
i=1

λi(1 + Si)ρ̄id̄
2
i (v, y).

(14)
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Since xT ti ≦ s(x|Ei), from (2) and (14) we have

k∑
i=1

λi[(−fi(x, v) + vTzi − s(x|Ci)) +Si(gi(x, v) + vTri − xTti)] �
k∑
i=1

λi(1+Si)ρ̄id̄
2
i (v, y).

Adding the above inequality and (12), we get

k∑
i=1

λi(vTzi − s(v|Di) + xTwi − s(x|Ci)) +
k∑
i=1

λi(Si − Wi)(gi(x, v) + vTri − xTti)

�
k∑
i=1

λi(ρid2i (x, u)(1 +Wi) + ρ̄id̄2i (v, y)(1 + Si)).

Since li >0, vT zi - s(v|Di) + xT wi - s(x|Ci) ≦ 0, i = 1, ..., k, by (9) it yields

k∑
i=1

λi(Si − Wi)(gi(x, v) + vTri − xTti) � 0.

By assumptions (8), we have gi(x, v)+v
T ri -x

T ti >0, i = 1, ..., k. Since l >0, it follows

that S ≰ W. □
Theorem 3.2 (Strong duality). Let (x̄, ȳ, S̄, z̄1, . . . , z̄k, r̄1, . . . , r̄k, λ̄, p̄) be a properly

efficient solution of (MFP)S, and fix λ = λ̄ in (MFD)W. Suppose that

(a)
∇xHi(x̄, ȳ, 0) = ∇xGi(x̄, ȳ, 0) = 0, ∇qi�i(x̄, ȳ, 0) = ∇qi�i(x̄, ȳ, 0) = 0,

Hi(x̄, ȳ, 0) = Gi(x̄, ȳ, 0) = 0, �i(x̄, ȳ, 0) = �i(x̄, ȳ, 0) = 0, ∇yHi(x̄, ȳ, 0) = ∇yGi(x̄, ȳ, 0) = 0,

∇piHi(x̄, ȳ, 0) = ∇piGi(x̄, ȳ, 0) = 0, i = 1, . . . , k.

(b) For all i Î {1, ..., k},

fi(x̄, ȳ) + s(x̄|Ci) − ȳT z̄i +Hi(x̄, ȳ, p̄i) − p̄Ti ∇piHi(x̄, ȳ, p̄i) > 0.

(c) (i) ∇pipiHi(x̄, ȳ, p̄i) − S̄i∇pipiGi(x̄, ȳ, p̄i) �= 0 for p̄i = 0 , i = 1, ..., k and

∇pipiHi(x̄, ȳ, p̄i) − S̄i∇pipiGi(x̄, ȳ, p̄i) is nonsingular for all i = 1, ..., k,

(ii)
∑k

i=1 λ̄i(∇yyfi(x̄, ȳ) − S̄i∇yygi(x̄, ȳ)) is positive definite and

p̄Ti ((∇yHi(x̄, ȳ, p̄i)− S̄i∇yGi(x̄, ȳ, p̄i))− (∇piHi(x̄, ȳ, p̄i)− S̄i∇piGi(x̄, ȳ, p̄i))) � 0 for all i =

1, ..., k, or
∑k

i=1 λ̄i(∇yyfi(x̄, ȳ) − S̄i∇yygi(x̄, ȳ)) is negative definite and

p̄Ti ((∇yHi(x̄, ȳ, p̄i)− S̄i∇yGi(x̄, ȳ, p̄i))− (∇piHi(x̄, ȳ, p̄i)− S̄i∇piGi(x̄, ȳ, p̄i))) � 0 for all i =

1, ..., k.

(iii) {∇yfi(x̄, ȳ) − z̄i + ∇piHi(x̄, ȳ, p̄i) − S̄i(∇ygi(x̄, ȳ) + r̄i + ∇piGi(x̄, ȳ, p̄i)) : i = 1, . . . , k} is

linearly independent.

Then p̄ = 0 , and there exist w̄i ∈ Ci and t̄i ∈ Ei , i = 1, ..., k such that

(x̄, ȳ, S̄, w̄1, ..., w̄k, t̄1, . . . , t̄k, λ̄, q̄ = 0) is a feasible solution of (MFD)W. Furthermore, if

the hypotheses in Theorem 3.1 are satisfied, then (x̄, ȳ, S̄, w̄1, ..., w̄k, t̄1, . . . , t̄k, λ̄, q̄ = 0)

is a properly efficient solution of (MFD)W, and the two objective values are equal.

Proof. Since (x̄, ȳ, S̄, z̄1, . . . , z̄k, r̄1, . . . , r̄k, λ̄, p̄) is a properly efficient solution of

(MFP)S, by the Fritz John type necessary optimality conditions [16], there exist a Î Rk,

b Î Rk, g Î Rm, δ Î R, μ Î Rk and w̄i ∈ Rn, t̄i ∈ Rn , i = 1, ..., k such that
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k∑
i=1

βi((∇xfi(x̄, ȳ) + w̄i + ∇xHi(x̄, ȳ, p̄i)) − S̄i(∇xgi(x̄, ȳ) − t̄i + ∇xGi(x̄, ȳ, p̄i)))

+(γ − δȳ)T
k∑
i=1

λ̄i(∇yxfi(x̄, ȳ) − S̄i∇yxgi(x̄, ȳ))

+
k∑
i=1

(∇pi xHi(x̄, ȳ, p̄i) − S̄i∇pixGi(x̄, ȳ, p̄i))
T
((γ − δȳ)λ̄i − βip̄i) = 0,

(15)

k∑
i=1

(βi − δλ̄i)
(
(∇yfi(x̄, ȳ) − zi + ∇piHi(x̄, ȳ, p̄i)) − S̄i(∇ygi(x̄, ȳ) + r̄i + ∇piGi(x̄, ȳ, p̄i))

)

+
k∑
i=1

βi((∇yHi(x̄, ȳ, p̄i) − S̄i∇yGi(x̄, ȳ, p̄i)) − (∇piHi(x̄, ȳ, p̄i) − S̄i∇piGi(x̄, ȳ, p̄i)))

+
k∑
i=1

λ̄i((∇yyfi(x̄, ȳ) − S̄i∇yygi(x̄, ȳ))T(γ − δȳ))

+
k∑
i=1

(∇piyHi(x̄, ȳ, p̄i) − S̄i∇piyGi(x̄, ȳ, p̄i))
T
(−βip̄i + (γ − δȳ)λ̄i) = 0,

(16)

αi − βi(gi(x̄, ȳ) − s(x̄|Ei) + ȳT r̄i + Gi(x̄, ȳ, p̄i) − p̄Ti ∇piGi(x̄, ȳ, p̄i))

−(γ − δȳ)T(λ̄i(∇ygi(x̄, ȳ) + r̄i + ∇piGi(x̄, ȳ, p̄i))) = 0, i = 1, . . . , k,
(17)

(γ − δȳ)T
(
(∇yfi(x̄, ȳ) − z̄i + ∇piHi(x̄, ȳ, p̄i) − S̄i(∇ygi(x̄, ȳ) + r̄i + ∇piGi(x̄, ȳ, p̄i)))

−μi = 0, i = 1, . . . , k,
(18)

(λ̄i(γ − δȳ) − βip̄i)T(∇pipiHi(x̄, ȳ, p̄i) − S̄i∇pipiGi(x̄, ȳ, p̄i)) = 0, i = 1, . . . , k, (19)

βiȳ + (γ − δȳ)λ̄i ∈ NDi(z̄i), i = 1, . . . , k, (20)

βiS̄iȳ + λ̄iS̄i(γ − δȳ) ∈ NFi(r̄i), i = 1, . . . , k, (21)

γ T
k∑
i=1

λ̄i
(
(∇yfi(x̄, ȳ) − z̄i + ∇piHi(x̄, ȳ, p̄i))

−S̄i(∇ygi(x̄, ȳ) + r̄i + ∇piGi(x̄, ȳ, p̄i))
)
= 0,

(22)

δȳT
k∑
i=1

λ̄i
(
(∇yfi(x̄, ȳ) − z̄i + ∇piHi(x̄, ȳ, p̄i))

−S̄i(∇ygi(x̄, ȳ) + r̄i + ∇piGi(x̄, ȳ, p̄i))
)
= 0,

(23)

μT λ̄ = 0, (24)

w̄i ∈ Ci, t̄i ∈ Ei, x̄T t̄i = s(x̄|Ei), x̄Tw̄i = s(x̄|Ci), i = 1, . . . , k, (25)
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(α, β , γ , δ, μ) �= 0, (α, γ , δ, μ) � 0. (26)

Since λ̄ > 0 , and μ ≧ 0, (24) implies μ = 0. Consequently, (18) yields

(γ − δȳ)T
((∇yfi(x̄, ȳ) − z̄i + ∇piHi(x̄, ȳ, p̄i)

−S̄i(∇ygi(x̄, ȳ) + r̄i + ∇piGi(x̄, ȳ, p̄i))
)
= 0, i = 1, . . . , k.

(27)

By assumption (i) and (19), we have

λ̄i(γ − δȳ) = βip̄i, i = 1, ..., k. (28)

Multiplying (16) (γ − δȳ) by left, from (27) and (28) we have

(γ − δȳ)T
k∑
i=1

βi((∇yHi(x̄, ȳ, p̄i) − S̄i∇yGi(x̄, ȳ, p̄i)) − (∇piHi(x̄, ȳ, p̄i) − S̄i∇piGi(x̄, ȳ, p̄i)))

+(γ − δȳ)T
k∑
i=1

λ̄i(∇yyfi(x̄, ȳ) − S̄i∇yygi(x̄, ȳ))(γ − δȳ) = 0.

Since λ̄ > 0 , from (28) and the above equation, we have

k∑
i=1

β2
i

λ̄i
p̄Ti ((∇yHi(x̄, ȳ, p̄i) − S̄i∇yGi(x̄, ȳ, p̄i)) − (∇piHi(x̄, ȳ, p̄i) − S̄i∇piGi(x̄, ȳ, p̄i)))

+(γ − δȳ)T
k∑
i=1

λ̄i(∇yyfi(x̄, ȳ) − S̄i∇yygi(x̄, ȳ))(γ − δȳ) = 0.

Which by assumption (ii), we can obtain

γ − δȳ = 0. (29)

Using (29) in (28), we have βip̄i = 0 , i = 1, ..., k. This implies that p̄i = 0 when bi ≠
0, for all i Î {1, ..., k}. Hence, by assumption (1), we get

k∑
i=1

βi((∇yHi(x̄, ȳ, p̄i) − S̄i∇yGi(x̄, ȳ, p̄i)) − (∇piHi(x̄, ȳ, p̄i) − S̄i∇piGi(x̄, ȳ, p̄i))) = 0.

Combining this with (16), (28) and (29), it follows that

k∑
i=1

(βi − δλ̄i)(∇yfi(x̄, ȳ) − z̄i + ∇piHi(x̄, ȳ, p̄i) − S̄i(∇ygi(x̄, ȳ) + r̄i + ∇piGi(x̄, ȳ, p̄i))) = 0,

which by assumption (iii), it yields

βi − δλ̄i = 0, i = 1, . . . , k. (30)

We claim that δ ≠ 0, otherwise, from (29) and (30) we get b = 0, g = 0. Using (29) in

(17), we get a = 0. This contradicts with (26). Hence δ = 0. Since λ̄ > 0 , from (30) we

get b >0. Hence βip̄i = 0 , i = 1, ..., k implies p̄i = 0 , i = 1, ..., k. Using (28), (29) and

the fact p̄i = 0 , i = 1, ..., k in (15), by assumption (a), we get

k∑
i=1

βi((∇xfi(x̄, ȳ) + w̄i) − S̄i(∇xgi(x̄, ȳ) − t̄i)) = 0,
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combining this with (30) and δ >0, λ̄ > 0 , it holds

k∑
i=1

λ̄i((∇xfi(x̄, ȳ) + w̄i) − S̄i(∇xgi(x̄, ȳ) − t̄i)) = 0, (31)

which yields

x̄T
k∑
i=1

λ̄i((∇xfi(x̄, ȳ) + w̄i) − S̄i(∇xgi(x̄, ȳ) − t̄i)) = 0. (32)

On the other hand, by assumption (a) and (2) we get

(fi(x̄, ȳ) + s(x̄|Ci) − ȳT z̄i) − S̄i(gi(x̄, ȳ) − s(x̄|Ei) + ȳT r̄i) = 0, i = 1, . . . , k. (33)

Since b > 0, by (20) and (29) we get ȳ ∈ NDi(z̄i) , i = 1, ..., k. This implies

ȳT z̄i = s(ȳ|Di), i = 1, . . . , k. (34)

Assumption (b) implies S̄ > 0 . By (21), we similarly have ȳ ∈ NFi(r̄i) , i = 1, ..., k.

This implies

ȳT r̄i = s(ȳ|Fi), i = 1, . . . , k. (35)

Combining (25), (33), (34) and (35), we get

(fi(x̄, ȳ) + x̄Tw̄i − s(ȳ|Di)) − S̄i
(
gi(x̄, ȳ) − x̄T t̄i + s(ȳ|Fi) = 0, i = 1, . . . , k,

combining this with (31) and (32), by assumption (a),

(x̄, ȳ, S̄, w̄1, ..., w̄k, t̄1, . . . , t̄k, λ̄, q̄ = 0) is a feasible solution of (MFD)W.

Under the assumptions of Theorem 3.1, if (x̄, ȳ, S̄, w̄1, ..., w̄k, t̄1, . . . , t̄k, λ̄, q̄ = 0) is not

an efficient solution of (MFD)W, then there exists other feasible solution

(u, v,W,w1, . . . ,wk, t1, . . . , tk, λ̄, q) , of (MFD)W such that S̄ ≤ W . Since

(x̄, ȳ, S̄, z̄1, . . . , z̄k, r̄1, . . . , r̄k, λ̄, p̄) is a feasible solution of (MFP)S, by Theorem 3.1, we

have S̄ �≤ W , hence the contradiction implies (x̄, ȳ, S̄, w̄1, ..., w̄k, t̄1, . . . , t̄k, λ̄, q̄ = 0) is an

efficient solution of (MFD)W.

If (x̄, ȳ, S̄, w̄1, ..., w̄k, t̄1, . . . , t̄k, λ̄, q̄ = 0) is not a properly efficient solution of (MFD)W,

then there exists other feasible solution (u, v,W,w1, . . . ,wk, t1, . . . , tk, λ̄, q) of (MFD)W

such that for an index i Î {1, ..., k} and any real number M > 0, Wi − S̄i > M(S̄j − Wj)

for j satisfying S̄j > Wj whenever Wi > S̄i This implies Wi > S̄i can be made arbitra-

rily large and this contradicts with Theorem 3.1. And it is easy to find that the two

objective values are equal. □
Theorem 3.3 (Strict converse duality). Let (ū, v̄, W̄, w̄1, . . . , w̄k, t̄1, . . . , t̄k, λ̄, q̄) be a

properly efficient solution of (MFD)W, and fix λ = λ̄ in (MFP)S. Suppose that

(a)
∇x�i(ū, v̄, 0) = ∇x�i(ū, v̄, 0) = 0, ∇qi�i(ū, v̄, 0) = ∇qi�i(ū, v̄, 0) = 0,

Hi(ū, v̄, 0) = Gi(ū, v̄ , 0) = 0, �i(ū, v̄, 0) = �i(ū, v̄, 0) = 0, ∇y�i(ū, v̄, 0) = ∇y�i(ū, v̄, 0) = 0,

∇piHi(ū, v̄, 0) = ∇piGi(ū, v̄, 0) = 0, i = 1, . . . , k.

(b) For all i Î {1, ..., k},

fi(ū, v̄) − s(v̄|Di) + ūTw̄i + �i(ū, v̄, q̄i) − q̄Ti ∇qi�i(ū, v̄, q̄i) > 0.

Ying Journal of Inequalities and Applications 2012, 2012:142
http://www.journalofinequalitiesandapplications.com/content/2012/1/142

Page 10 of 12



(c) (i) ∇qiqi�i(ū, v̄, q̄i) − W̄i∇qiqi�i(ū, v̄, q̄i) �= 0 , for q̄i = 0, i = 1, ..., k, and

∇qiqi�i(ū, v̄, q̄i) − W̄i∇qiqi�i(ū, v̄, q̄i) is nonsingular for all i = 1, ..., k, and

(ii)
k∑
i=1

λ̄i(∇xxfi(ū, v̄) − W̄i∇xxgi(ū, v̄)) is positive definite and

q̄Ti ((∇x�i(ū, v̄, q̄i) − W̄i∇x�i(ū, v̄, q̄i)) − (∇qi�i(ū, v̄, q̄i) − W̄i∇qi�i(ū, v̄, q̄i))) � 0 for all i =

1, ..., k, or
k∑
i=1

λ̄i(∇xxfi(ū, v̄) − W̄i∇xxgi(ū, v̄)) is negative definite and

q̄Ti ((∇x�i(ū, v̄, q̄i) − W̄i∇x�i(ū, v̄, q̄i)) − (∇qi�i(ū, v̄, q̄i) − W̄i∇qi�i(ū, v̄, q̄i))) � 0 for all i =

1, ..., k.

(iii) {∇xfi(ū, v̄) + w̄i + ∇qi�i(ū, v̄, q̄i) − W̄i(∇xgi(ū, v̄) − t̄i + ∇qi�i(ū, v̄, q̄i)) : i = 1, . . . , k} is

linearly independent.

Then q̄ = 0 , and there exist z̄i ∈ Di and r̄i ∈ Fi , i = 1, ..., k such that

(ū, v̄, W̄, z̄1, ..., z̄k, r̄1, . . . , r̄k, λ̄, p̄ = 0) is a feasible solution of (MFP)S. Furthermore, if

the hypotheses in Theorem 3.1 are satisfied, then (ū, v̄, W̄, z̄1, ..., z̄k, r̄1, . . . , r̄k, λ̄, p̄ = 0)

is a properly efficient solution of (MFP)S, and the two objective values are equal. □

Remark 3.1.(1) If k = 1, H1(x, y, p1) = 1
2p

T
1∇yyf1(x, y)p1 ,

�1(u, v, q1) = 1
2q

T
1∇xxf1(u, v)q1 , �1(u, v, q1) = 1

2q
T
1∇xxf1(u, v)q1 , and

g1(u, v) + s(v|F1) − uTt1 + �1(u, v, q1) − qT1∇q1�1(u, v, q1) = 1 , then (MFP)S and (MFD)

W becomes the problems considered by Hou and Yang [17].

(2) If k = 1, g1(x, y) − s(x|E1) + yTr1 + G1(x, y, p1) − pT1∇p1G1(x, y, p1) = 1 , and

g1(u, v) + s(v|F1) − uTt1 + �1(u, v, q1) − qT1∇q1�1(u, v, q1) = 1 , then (MFP)S and (MFD)

W becomes the problems considered by Mishra [18].

(3) If gi(x, y) − s(x|Ei) + yTri + Gi(x, y, pi) − pTi ∇piGi(x, y, pi) = 1, and

gi(u, v) + s(v|Fi) − uTti + �i(u, v, qi) − qTi ∇qi�i(u, v, qi) = 1 for all i {1, ..., k}, then

(MFP)S and (MFD)W becomes the problems considered by Chen [14].

(4) If gi(x, y) − s(x|Ei) + yTri + Gi(x, y, pi) − pTi ∇piGi(x, y, pi) = 1,

Hi(x, y, pi) = 1
2p

T
i ∇yyfi(x, y)pi,�i(u, v, qi) = 1

2q
T
i ∇xxfi(u, v)qi ,

Hi(x, y, pi) = 1
2p

T
i ∇yyfi(x, y)pi,�i(u, v, qi) = 1

2q
T
i ∇xxfi(u, v)qi , for all i Î {1, ..., k}, and

there is not the condition lT e = 1 in (MFP)S and (MFD)W, then the two problems

reduce to the problems considered by Yang et al. [19].
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