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1 Introduction

Gauge/gravity dualities have taught us a lot about the properties of strongly coupled field

theories. The most studied gauge/gravity duality is the AdS/CFT correspondence which

deals with the gravitational description of conformal field theories [1]. Over the years

generalizations of this correspondence have been proposed that are more closely connected

to ‘real life’ physical systems, like the quark-gluon plasma or, more recently, condensed

matter systems.

In the case of condensed matter physics, one conjectures a gravitational dual for field

theories that exhibit an anisotropic scale invariance. Such an anisotropic scaling behaviour

can be embedded in various symmetry algebras, such as the Lifshitz algebra [2], which con-

sists of spatial rotations and translations, time translations and a scaling transformation,

and the Schrödinger algebra [3, 4] which extends the former algebra with Galilean boosts

and a number operator. Both algebras are characterized by a dynamical exponent z, which

specifies how the scale transformations act differently on the time and spatial coordinates.

Since algebras of this kind describe symmetries of non-relativistic field theories exhibiting

non-relativistic dispersion relations, the corresponding gauge/gravity dualities are often

stated as giving examples of non-relativistic holography.

An independent new development in gauge/gravity duality is the connection between

logarithmic conformal field theories (LCFT) and critical gravity theories [5–16]. This

connection was first made in the context of three-dimensional massive gravity theories,

like Topologically Massive Gravity [17] or New Massive Gravity [18]. These are higher-

derivative three-dimensional gravity theories, where the Einstein-Hilbert action is supple-

mented with a negative cosmological constant and specific interactions with up to four
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derivatives. The spectrum of linearized perturbations of these theories is described by

(unitary or non-unitary) massive bulk gravitons and boundary gravitons that do not de-

scribe any physical bulk degrees of freedom. At certain points in the parameter space

of these theories, a degeneracy takes place and the massive gravitons coincide with the

boundary gravitons. Such a special point is dubbed a “critical point” and the theory at

such a critical point is referred to as a “critical gravity” theory. At the critical point, the

massive gravitons are replaced by so called logarithmic modes. According to the AdS/CFT

dictionary, the boundary gravitons are dual to the components of the stress-energy tensor

of the boundary field theory. The logarithmic modes on the other hand source so-called

logarithmic operators that degenerate with the components of the stress energy tensor in

all quantum numbers. This results in a logarithmic conformal field theory, introduced in

physics by [19].1 A defining feature of a LCFT is that the Hamiltonian is no longer di-

agonalisable: the components of the stress energy tensor form a pair with the logarithmic

operators and the action of the Hamiltonian on such a pair is not diagonalisable.

Although the connection between LCFT’s and critical gravity was discovered in three

dimensions, it was found to hold also in higher-dimensional higher-derivative gravity the-

ories [11–15]. The mechanism by which logarithmic modes appear in the theory is similar

to the three-dimensional case. At the critical point, a degeneracy takes place and the mas-

sive gravitons coincide with either massless gravitons or pure gauge modes. Instead of the

massive gravitons, an equal amount of logarithmic modes appears in the theory.

In this paper, we wish to combine the two recent developments described above,

i.e. non-relativistic gauge-gravity duality and critical gravity. To be precise, we propose

a LCFT which enjoys anisotropic scale invariance. The approach we take in defining this

‘non-relativistic’ LCFT is through the gauge/gravity duality: the LCFT is defined by its

correlation functions, which we calculate through holographic methods starting from a

higher-derivative bulk theory.

Instead of looking on the gravitational side at a higher-derivative model of gravita-

tional, i.e. spin-2, degrees of freedom, we will consider a simpler situation involving only

spin-0 degrees of freedom in a fixed non-relativistic gravitational background. This model

is a non-relativistic version of the model discussed in [22, 23] (see [24] for a finite tem-

perature version of this model). The model consists of a scalar field configuration in a

fixed AdS background with fourth-order derivative equations of motion and is conjectured

to be dual to a LCFT. The higher-derivative equation of motion can be written in terms

of two coupled second order equations, involving Klein-Gordon operators, by introducing

an auxiliary scalar field. At the point where the mass of the two scalar fields degenerate,

logarithmic modes will appear. The boundary value of this logarithmic solution sources

the logarithmic partner of the dual scalar operator and defines a logarithmic conformal

field theory on the boundary. The analogy with critical gravity is as follows. A priori, the

two Klein-Gordon operators involve different masses and the spectrum is described by two

spin-0 excitations with different masses. At the critical point, both mass parameters are

equal. Just as in critical gravity, massive gravitons coincide with massless gravitons and

1See [20, 21] for reviews on LCFT and further references.
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logarithmic modes appear, here both spin-0 excitations will coincide and a new logarithmic

spin-0 mode shows up, that obeys the full fourth order equation of motion, but that is not

annihilated by a single Klein-Gordon operator.

Since we are interested in a non-relativistic version of the model, we consider the

background spacetime to be Lifshitz instead of AdS:

ds2Lifd+1
= L2

(

1

r2z
dt2 +

1

r2
dr2 +

1

r2
dxadxa

)

. (1.1)

Here the r and xa, a = 1, . . . , d−1, are the spatial directions, L is a parameter with inverse

mass dimension and z is the dynamical exponent. For z = 1 we recover the relativistic

AdS background. One can show that the Lifshitz spacetime has an anisotropic conformal

boundary at infinity which can be mapped to r = 0 [25, 26]. The bulk metric induces an

anisotropic conformal class of metrics on the boundary, where the action of the Lifshitz

symmetry group on the boundary is induced from the action of the bulk isometries. The

presence of logarithmic terms in representations of the Galilean Conformal Algebra and

the Schrödinger-Virasoro algebra has been discussed in [27, 28].

This paper is organized as follows. In section 2 we introduce the non-relativistic

version of the model mentioned above and discuss some of its basic features. Furthermore,

we give, for z = 2, the logarithmic modes which source the logarithmic partner of the

dual scalar operator. Next, in section 3 we derive the main result of this work. We

use holographic renormalization to obtain the two-point functions of the dual operators

in our non-relativistic model and indicate that they satisfy the defining properties of a

non-relativistic LCFT. As a final result, we suggest a general structure for the two-point

functions of a logarithmic conformal field theory which enjoys anisotropic scale invariance.

Finally, in the conclusions we discuss a few open issues and generalizations of our work.

2 The model

In this section we will introduce the scalar model that shares many of the features of critical

gravity theories. It is, however, much simpler to study since it deals with spin-0 instead of

spin-2 degrees of freedom. In subsection 2.1 we discuss some general features of the model

while in subsection 2.2 we will calculate the scalar logarithmic modes for the specific case

z = 2.

2.1 General features

The model under consideration consists of a scalar field φ1 obeying a fourth order equation

of motion, given by the action of two Klein-Gordon operators on the field:

(

� −m2
1

) (

� −m2
2

)

φ1 = 0 . (2.1)

For m2
1 6= m2

2, the solution space of this equation is spanned by the solutions of the two

second order equations, obtained by acting with only one of the two Klein-Gordon operators

appearing in (2.1), i.e. the full solution space is spanned by spin-0 excitations with masses

m1 and m2. The case where m2
1 = m2

2 = m2 is the analog of the critical point in massive
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gravities. In this case the two Klein-Gordon operators appearing in (2.1) are degenerate and

apart from a spin-0 excitation, the spectrum also contains a logarithmic mode that obeys:

(

� −m2
)2
φlog = 0 ,

(

� −m2
)

φlog 6= 0 . (2.2)

In the AdS/CFT correspondence, the conformal dimension of an operator dual to a massive

scalar field is related to the mass of the scalar. As in the critical limit m2
2 → m2

1 = m2, the

mass degenerates, one expects that the operators dual to the logarithmic mode and the

scalar mode with massm2 will have degenerate conformal dimension and form a logarithmic

pair.

In the following, we will not work with the four-derivative formulation of the model.

Instead, we will introduce an auxiliary scalar field φ2 to lower the number of derivatives

from four to two. The action (for generic m2
1, m

2
2) we will consider is given by

S =

∫

dd+1x
√
g

(

− 1

2
(m2

1 −m2
2)

(

∂µφ1∂
µφ1 +m2

1φ
2
1

)

− ∂µφ1∂
µφ2

−m2
1φ1φ2 −

1

2
φ2

2

)

. (2.3)

Upon diagonalization this action describes two spin-0 modes with masses m2
1 and m2

2.

The kinetic terms will have opposite signs, so the theory is always non-unitary. This is

reminiscent of higher dimensional non-critical massive gravities. Upon eliminating the

auxiliary field φ2, this action leads to the equation of motion (2.1). At the critical point

m2
1 = m2

2 = m2, the action reduces to [22, 23]

S = −
∫

dd+1x
√
g

(

∂µφ1∂
µφ2 +m2φ1φ2 +

1

2
φ2

2

)

. (2.4)

The equations of motion are then given by

(

� −m2
)

φ1 = φ2,
(

� −m2
)

φ2 = 0 , (2.5)

which upon elimination of φ2 lead to a degenerate fourth-order equation for φ1.

From now on, we will consider the bulk action (2.4) and equations of motion (2.5) in

the background of the anisotropically scale invariant Lifshitz metric (1.1). We will assume

that we can ignore the backreaction of the massive scalar on the metric. This assumption

is justified when the scalar field equations decouple from the metric equations of motion at

least asymptotically up to the order of coefficients that contribute to the divergent terms

in the bulk action [29].

To find the non-singular bulk field configurations φi(r, t,x), with i = 1, 2, for any

smooth boundary value φi(0)(t,x) we need to find the bulk-to-boundary propagators

Gij(r, t,x; 0, t′,x′), so that:

φi(r, t,x) =

2
∑

j=1

∫

dd−1x′dt′φj(0)(t
′,x′)Gij(r, t,x; 0, t′,x′) . (2.6)
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It is convenient to work in Fourier space, where we transform t into ω and x into k. Now

eq. (2.6) reads:

φi(r, ω,k) =

2
∑

j=1

φj(0)(ω,k)Gij(r, ω,k) (2.7)

The bulk to boundary propagators Gij(r, ω,k) satisfy the differential equations, for r 6= 0, :

(

� −m2
)

G22 = 0,
(

� −m2
)

G21 = 0, (2.8)
(

� −m2
)

G11 = G21,
(

� −m2
)

G12 = G22, (2.9)

with

(

� −m2
)

G(r, ω,k) (2.10)

= r2∂2
rG(r, ω,k) − (d+ z − 2)r∂rG(r, ω,k) − (r2zω2 + r2|k|2 +m2)G(r, ω,k) .

We have set L = 1 for convenience. This parameter can always be re-introduced by

dimensional analysis.

We note that φ1 is the fundamental field that satisfies a degenerate fourth-order equa-

tion of motion whereas φ2 is an auxiliary field, needed to rewrite the equation of motion in

terms of a second-order differential equation. The most general solution for φ1 is therefore

a superposition of a mode annihilated by acting on it with the Klein-Gordon operator once

(the scalar mode) and a mode annihilated by acting twice with the Klein-Gordon operator

(the logarithmic mode). Writing out eq. (2.7) for φ1 we have now two options. Either

φ1(0)G11 is the scalar mode and φ2(0)G12 the logarithmic mode or vice versa. These two

options correspond to the freedom we have in coupling the sources to the dual operators.

We can either choose to couple φ1(0) to the scalar operator and φ2(0) to its logarithmic

partner or vice versa. There is no difference in the physics between the two options. We

fix this ambiguity by taking G11 = G22 = G and G21 = 0 so that eq. (2.7) becomes:

φ1(r, ω,k) = φ1(0)(ω,k)G(r, ω,k) + φ2(0)(ω,k)G12(r, ω,k), (2.11)

φ2(r, ω,k) = φ2(0)(ω,k)G(r, ω,k). (2.12)

Acting with one Klein-Gordon operator on φ1 will annihilate the φ1(0)G term. This term

therefore represents the scalar mode. The remaining (� − m2)φ2(0)G12 term is equal to

φ2 and consequently is eliminated by acting on it with a second Klein-Gordon operator.

Therefore, this term represents the logarithmic mode. From the above it is clear that φ1(0)

couples to a scalar operator Os
∆ and that φ2(0) couples to its logarithmic partner Olog

∆

where ∆ is the common conformal dimension of the two operators.

The bulk-to-boundary propagator generally has two independent solutions. These

solutions can be divided into modes which are regular in the interior (for r → ∞) and

singular modes. Since the singular modes diverge rapidly in the interior, it is no longer

safe to assume that their backreaction to the metric can be ignored. All singular modes

will therefore be discarded.
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An expansion of the field near the boundary (r → 0) allows us to also distinguish

between the non-normalizable modes φi(0) and the normalizable modes φ̃i(0):

φi(r, ω,k) = φi(0)(ω,k)r∆−(1 + · · · ) + φ̃i(0)(ω,k)r∆+(1 + · · · ) , (2.13)

where the dots indicate higher powers of r within the brackets and ∆+ ≥ ∆− are the two

roots of the quadratic equation

∆(∆ − (d+ z − 1)) = m2 , (2.14)

i.e.

∆± =
1

2

(

(d+ z − 1) ±
√

(d+ z − 1)2 + 4m2
)

. (2.15)

Note that by requiring that ∆+ ≥ ∆− we are assuming that ∆+ ≥ (d+z−1)/2. According

to the standard AdS/CFT dictionary the non-normalizable mode φi(0) is the source for the

dual field theory operator, while the normalizable mode φ̃i(0) is related to the one-point

function of the dual operator with conformal weight ∆ = ∆+.

Since the conformal dimension is related to the mass of the scalar field in the bulk, the

limit where the mass of the scalar fields φ1 and φ2 degenerates corresponds to a degenerate

conformal dimension for the dual operators. This is precisely what we need for a logarithmic

conformal field theory, since operators with a degenerate conformal dimension will form

a logarithmic pair with a non-diagonalizable Jordan cell. This degeneracy should not be

confused with the degeneracy between ∆+ and ∆− plus even integers [30] (see [31] for the

non-relativistic extension). We will comment briefly here on this kind of degeneracies.

The form of the power series in eq. (2.13) can be determined by solving the equations

of motion order by order in r. In our case, it is an expansion in r2k and r2zl, with k, l ∈ Z.

Therefore, whenever ∆+ − ∆− is an even integer or a multiple of 2z, the corresponding

term in the expansion of ∆− will degenerate with the leading term in the expansion of

∆+ and a logarithmic term needs to be introduced at order r∆+. We can relate this to a

value of the scalar field mass as follows:

∆+ − ∆− =
√

(d+ z − 1)2 + 4m2 = 2(k + lz), k, l ∈ Z. (2.16)

The special case where ∆+ = ∆− = (d + z − 1)/2 saturates the Breitenlohner-Freedman

bound

m2 ≥ −(d+ z − 1)2/4 . (2.17)

In that case the asymptotic expansion acquires a logarithmic term at leading order,

because the two ∆’s degenerate:

φi(r, ω,k) = r∆
(

φi(0)(ω,k) + · · · + log(r)
(

φ̃i(0)(ω,k) + · · ·
))

. (2.18)

In the presence of this kind of degeneracies, one needs to take additional logarithmic

counterterms into account in order to get finite correlation functions. Analogous to the

discussions in [30], this will result in a term in the one-point function which is a local

– 6 –
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function of the sources. At the level of the higher-point functions these will correspond to

contact terms. For the sake of simplicity we will restrict ourselves to those values of m2 for

which no logarithmic terms arise in the expansion of φi due to this kind of degeneracies.

In this work we only consider the consequences of the degeneracy of the scalar field masses

m1 and m2. Therefore, the results presented in section 3 hold for general m2 only up to

contact terms in the two-point correlation functions.

2.2 An example: z = 2

To find an explicit expression for the logarithmic mode we first need to find an exact

solution for the scalar mode. Such a solution is available for the case z = 2 [2]. We therefore

consider that example in this subsection. The solution of the homogeneous Klein-Gordon

equation (2.8) with G11 = G22 = G and G21 = 0 is given by:

G(r, ω,k) ∝ r∆e−
1
2
ωr2

U

( |k|2 + (2∆ − (d− 1))ω

4ω
,∆ − d− 1

2
, ωr2

)

, (2.19)

where we now have that:

∆ =
1

2

(

d+ 1 +
√

(d+ 1)2 + 4m2
)

. (2.20)

U(a, b, x) is the confluent hypergeometric function and the constant of proportionality can

be determined by requiring that G(ǫ, ω,k) = 1 on the regulated boundary r = ǫ. We have

found φ2(r, ω,k)

φ2(r, ω,k) = φ2(0)(ω,k)G(r, ω,k), (2.21)

which can be expanded near the boundary as:

φ2(r, ω,k) =φ2(0)(ω,k)rd+1−∆ [1 + · · · ] (2.22)

+ φ2(0)(ω,k)
Γ

(

d+1
2 − ∆

)

Γ
(

|k|2+(2∆−(d−1))ω
4ω

)

Γ
(

∆ − d+1
2

)

Γ
(

|k|2−(2∆−(d+3))ω
4ω

)ω∆− d+1
2 r∆ [1 + · · · ] .

Now we still need to find G12. For this we use a trick inspired by [23]. The equation which

determines G12 is:
(

� −m2
)

G12(r, ω,k) = G(r, ω,k) . (2.23)

From eq. (2.14) it follows that
[

(� −m2), d/d∆
]

= dm2/d∆ = 2∆ − (d + 1) where we

have used that the Lifshitz metric does not depend on the conformal dimension ∆. Using

that (� −m2)G(r, ω,k) = 0 we can therefore write G as:

G =
1

2∆ − (d+ 1)

[

(

� −m2
)

,
d

d∆

]

G =
1

(2∆ − (d+ 1))

(

� −m2
) d

d∆
G . (2.24)

Comparing this with eq. (2.23) we derive the following expression of G12 in terms of the

derivative of G with respect to ∆:2

G12(r, ω,k) =
1

2∆ − (d+ 1)

d

d∆
G(r, ω,k) . (2.25)

2Note that this method is identical to the method employed in [5, 6] to find the log modes of TMG

at the critical point, albeit adjusted for scalar fields. Here one takes the limit m2
1 → m2

2 of (φ1(m
2
1) −

φ2(m
2
2))/(m

2
1 − m2

2).

– 7 –
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The derivative of the confluent hypergeometric function is not so easy to find. However, for

our purposes, it is sufficient to derive the near boundary expansion of this derivative. The

expression for this expansion can be found by taking the derivative of the expansion (2.22).

According to eq. (2.11) we have that

φ1(r, ω,k) = φ1(0)(ω,k)G(r, ω,k) + φ2(0)(ω,k)
1

2∆ − (d+ 1)

dG(r, ω,k)

d∆
. (2.26)

This finally leads to the following near-boundary expansion for φ1 :

φ1(r, ω,k) =

(

φ1(0)(ω,k) + φ2(0)(ω,k)
1

((d + 1) − 2∆)
log(r)

)

rd+1−∆ [1 + · · · ] (2.27)

+

(

φ1(0)(ω,k) − φ2(0)(ω,k)
1

(d + 1 − 2∆)

(

log(r) + log(ω)

− ψ

(

d+ 1

2
− ∆

)

− ψ

(

∆ − d+ 1

2

)

+
1

2
ψ

( |k|2 + (2∆ − (d− 1))ω

4ω

)

+
1

2
ψ

( |k|2 − (2∆ − (d+ 3))ω

4ω

)))

×
Γ

(

d+1
2 − ∆

)

Γ
(

|k|2+(2∆−(d−1))ω
4ω

)

Γ
(

∆ − d+1
2

)

Γ
(

|k|2−(2∆−(d+3))ω
4ω

)ω∆− d+1
2 r∆ [1 + · · · ] ,

where ψ(x) is the digamma function defined by ψ(x) = Γ′(x)/Γ(x).

Note that there is a shift symmetry in the expression for φ1. We can always add

solutions to the homogeneous Klein-Gordon equation to φ1 and it will still solve the field

equations. This is due to a symmetry of the action (2.4). The variation in the action

under the transformation φ1 → φ1 + λφ2, φ2 → φ2 with constant λ is proportional to

the equation of motion and zero on-shell. At the level of two-point functions of the dual

theory, which we will calculate in the next section, this shift symmetry corresponds to a

well-known ambiguity in defining the logarithmic operator.

3 Two point correlation functions

Having obtained, for a specific example, the explicit expression for the logarithmic modes

we now proceed to relate these solutions to operators on the boundary of the Lifshitz

spacetime. For this we need to apply the holographic renormalization procedure [30]. In

subsection 3.1 we first briefly review some aspects of this procedure which will be needed

later on. Next, in subsection 3.2, we will calculate the two-point correlation functions for

an AdS background, i.e. z = 1 and for the example discussed in subsection 2.2, i.e. z = 2.

We will show that in both examples the two-point functions satisfy the defining properties

of a relativistic and non-relativistic LCFT, respectively.

3.1 Holographic renormalization

For the purpose of this subsection we may switch back to general values of z. Only in the

next subsection we will specify this value. Following the AdS/CFT correspondence, we

– 8 –
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couple the boundary values of the scalar field to operators in the field theory:

∫

dd−1xdt
(

φ1(0)Os
∆ + βφ2(0)Olog

∆

)

, (3.1)

where β is a normalization parameter which we will fix later on. To precisely compute

the two-point function we need to get rid of the divergences in the bulk fields as we move

towards the boundary. We can do so by means of a holographic renormalization of the

action (2.4). Following [30] we first compute the on-shell action Sreg on a regulated surface

r = ǫ, using a near boundary expansion of the fields. Then we identify the divergent terms

in this action as a function of the sources φi(0) and write down the counterterm action Sct

as minus these divergent terms. The counterterm action cannot be written as a covariant

expression; it obeys the same anisotropic scaling as the Lifshitz background. Of course

the limit z → 1 should reduce to the AdS results which does allow a covariant expression.

Once the counterterm action is obtained, this can be subtracted at the regulated surface

to obtain the subtracted action Ssub which has by construction a finite limit for ǫ→ 0.

Following the AdS/CFT dictionary, the one-point correlation functions can be obtained

by functional differentiation of the on-shell action with respect to the sources:

〈Oi
∆(t,x)〉 =

δSsub

δφi(0)(t,x)

∣

∣

∣

∣

φi(0)=0

. (3.2)

Since the subtracted action is expressed in terms of the bulk fields φ1 and φ2 on the

regulated boundary, we need to write the above expression for the one-point correlation

functions in terms of derivatives with respect to the bulk fields and afterwards take the

limit ǫ → 0. To rewrite sources in terms of bulk fields we consider the near-boundary

expansions of the bulk fields φ1 and φ2:

φ1 =
(

φ1(0) + αφ2(0) log r
)

rd+z−1−∆ +
(

φ1(2) + αφ2(2) log r
)

rd+z+1−∆ (3.3)

+
(

φ1(2z) + αφ2(2z) log r
)

rd+3z−1−∆ + · · · +
(

φ̃1(0) − αφ̃2(0) log r
)

r∆ + · · ·

φ2 =φ2(0)r
d+z−1−∆ + φ2(2)r

d+z+1−∆ + φ2(2z)r
d+3z−1−∆ + · · · + φ̃2(0)r

∆ + · · · , (3.4)

where α is given by

α =
1

(d+ z − 1 − 2∆)
. (3.5)

We can use the leading order terms in this expansion to write (3.2) in terms of a functional

derivative with respect to the bulk fields φ1, φ2:

〈Os
∆(t,x)〉 = lim

ǫ→0

(

1√
γ

1

ǫ∆
δSsub

δφ1(ǫ, t,x)

)

(3.6)

β〈Olog
∆ (t,x)〉 = lim

ǫ→0

(

1√
γ

1

ǫ∆

(

δSsub

δφ2(ǫ, t,x)
+ α log ǫ

δSsub

δφ1(ǫ, t,x)

))

, (3.7)

where γαβdx
αdxβ = dxadx

a/ǫ2+dt2/ǫ2z is the induced metric on the regulated hypersurface

and γ is its determinant.
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The two-point functions are obtained by a further differentiation of the one-point

functions with respect to the sources and setting the sources to zero afterwards :

〈Os
∆(t,x)Os

∆(t2,x2)〉 = − δ〈Os
∆(t,x)〉

δφ1(0)(t2,x2)

∣

∣

∣

∣

φ1(0)=0

, (3.8)

β〈Olog
∆ (t,x)Os

∆(t2,x2)〉 = − δ〈Os
∆(t,x)〉

δφ2(0)(t2,x2)

∣

∣

∣

∣

φ2(0)=0

= − δ〈Olog
∆ (t,x)〉

δφ1(0)(t2,x2)

∣

∣

∣

∣

φ1(0)=0

, (3.9)

β2〈Olog
∆ (t,x)Olog

∆ (t2,x2)〉 = − δ〈Olog
∆ (t,x)〉

δφ2(0)(t2,x2)

∣

∣

∣

∣

φ2(0)=0

. (3.10)

We now apply the holographic renormalization procedure to the scalar model defined

by the action (2.4). A partial integration of this action on a regulated surface r = ǫ

near the boundary and requiring the equations of motion to hold leads to the following

regularized on-shell action:

Sreg = −1

2

∫

r=ǫ
ddx

√
γ

(

φ1~n · ~∇φ2 + φ2~n · ~∇φ1

)

, (3.11)

where ~n is the vector normal to the regulated hypersurface ~n · ~∇ = r∂r|r=ǫ.

Without explicitly going through all the steps of the holographic renormalization pro-

cedure, we note that after a lengthy calculation we find that the counterterm action needed

to make the action (2.4) finite is given by:

Sct =

∫

r=ǫ
ddx

√
γ

(

(d+ z − 1 − ∆)φ1φ2 +
1

2
αφ2φ2 (3.12)

− a2

(

1

2
(φ1∂

a∂aφ2 + φ2∂
a∂aφ1) − a2αφ2∂

a∂aφ2

)

− a2z

(

1

2

(

φ1∂
t∂tφ2 + φ2∂

t∂tφ1

)

− a2zαφ2∂
t∂tφ2

)

+ O
(

φi∂
4
aφi

)

)

,

with a = 1, . . . , d− 1 and a2 and a2z given by3

a2 =
1

(d+ z + 1 − 2∆)
, a2z =

1

(d+ 3z − 1 − 2∆)
. (3.13)

We note that all indices in the derivatives are raised and lowered with the induced metric

on the boundary γαβ.

In (3.12) we took terms up to order O
(

φi∂
4
aφi

)

into account. In the near-boundary

expansions (3.3), (3.4) the normalizable modes are of order ǫ∆, so all the terms with

a lower power than ǫ∆ are going to contribute to the counterterm action. The precise

3Note that for d = z = 2 and ∆ = 5/2 a pole appears in a2 and a2z. At this value of the mass m2 the

degeneracy mentioned at the end of section 2.1 takes place. The correct way to deal with these poles is to

introduce additional logarithmic terms in the near-boundary expansion and replace the corresponding term

in Sct with a log ǫ divergent term. This will change the two-point correlation functions with contact terms.

But as mentioned before, we will not explicitly take these special values of m2 into account.
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number of counterterms we need to add depends on the value of ∆. This value of ∆ is

restricted as follows:
1

2
(d+ z − 1) ≤ ∆ ≤ d+ z − 1 . (3.14)

The upper limit follows from the observation that if ∆ ≥ d + z − 1 then the operator is

irrelevant and, according to [32], it is no longer safe to ignore the backreaction of the scalar

sector on the gravitational background. The lower limit follows from the Breitenlohner-

Freedman bound (2.17). For our purposes, taking counterterms into account up to order

ǫd+z−1 is sufficient. In eq. (3.12) we have only written down the first couple of terms.

These are sufficient for d = 2 and z = 1, 2. These terms illustrate that the counterterm

action cannot be written down covariantly, but instead respects the anisotropic scale

invariance. For larger values of d and z we need to take more counterterms into account,

but the analysis is similar and can be extended straightforwardly. The renormalized

one-point correlation functions do not change as long as the degeneracy discussed at the

end of section 2.1 is absent. Their expressions are given by:

〈Os
∆(t,x)〉 = (d+ z − 1 − 2∆)φ̃2(0)(t,x) , (3.15)

β〈Olog
∆ (t,x)〉 = (d+ z − 1 − 2∆)φ̃1(0)(t,x) , (3.16)

where β is the normalization parameter that appeared in (3.1).

3.2 Two-point correlation functions

The two-point functions can now be obtained from the exact solutions to the field equa-

tions. Once the exact solution is found, we can expand it near the boundary and find the

expressions for φ̃i(0) linearly in the sources φi(0). To find exact solutions we need to specify

the value of z. Below we discuss two examples.

3.2.1 Example 1: z = 1

We first consider z = 1, i.e. the d dimensional LCFT dual to d+1 dimensional Anti-de Sitter.

The solution to the homogeneous Klein-Gordon equation which is regular everywhere in

the interior in Fourier space is:

G(r, k) ∝ r
d

2K 1
2

√
d2+4m2(|k|r) , (3.17)

where k = {ω,k} is now a d component vector with length |k| and Kn(z) is the modified

Bessel function of the second kind. The constant of proportionality is determined by

taking G(ǫ, k) = 1 on the regulated boundary.

Repeating the steps outlined in section 2.2 and applying the holographic renormaliza-

tion outlined above for z = 1 we find that the correlation functions expressed in Fourier

space are:

〈Os
∆(k)Os

∆(−k)〉 = 0 , (3.18)

β〈Os
∆(k)Olog

∆ (−k)〉 = (2∆ − d)|k|2∆−d 2d−2∆Γ
(

d
2 − ∆

)

Γ
(

∆ − d
2

) , (3.19)
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β2〈Olog
∆ (k)Olog

∆ (−k)〉 = |k|2∆−d 2d−2∆Γ
(

d
2 − ∆

)

Γ
(

∆ − d
2

)

(

2 log |k| (3.20)

− log 4 − ψ

(

∆ − d

2

)

− ψ

(

d

2
− ∆

)

+ λ

)

.

As expected, this is precisely the structure of a relativistic LCFT [23]. The constant λ

in the last correlator above is a consequence of the shift symmetry φ1 → φ1 + λφ2 of the

original (on-shell) action. It corresponds to a well known ambiguity in LCFT’s, where one

can always redefine the logarithmic operator by the shift Olog → Olog + λ′Os.

3.2.2 Example 2: z = 2

For the example worked out in subsection 2.2 with z = 2 we can read off φ̃1(0) and φ̃2(0) by

comparing (3.3) with (2.22) and (3.4) with (2.27). This leads to the following expressions :

φ̃1(0) =ω∆− d+1
2

Γ
(

d+1
2 − ∆

)

Γ
(

|k|2+(2∆−(d−1))ω
4ω

)

Γ
(

∆ − d+1
2

)

Γ
(

|k|2−(2∆−(d+3))ω
4ω

)

(

φ1(0) − φ2(0)
1

d+ 1 − 2∆

(

log(ω) (3.21)

− ψ

(

d+ 1

2
− ∆

)

− ψ

(

∆ − d+ 1

2

)

+
1

2
ψ

( |k|2 + (2∆ − (d− 1))ω

4ω

)

+
1

2
ψ

( |k|2 − (2∆ − (d+ 3))ω

4ω

)))

,

φ̃2(0) = φ2(0)
1

d+ 1 − 2∆
ω∆− d+1

2

Γ
(

d+1
2 − ∆

)

Γ
(

|k|2+(2∆−(d−1))ω
4ω

)

Γ
(

∆ − d+1
2

)

Γ
(

|k|2−(2∆−(d+3))ω
4ω

) . (3.22)

Following the general procedure outlined in the previous subsection we find that the two-

point functions are:

〈Os
∆(ω,k)Os

∆(−ω,−k)〉 =0 , (3.23)

β〈Os
∆(ω,k)Olog

∆ (−ω,−k)〉 =(2∆−(d+1))ω∆− d+1
2

Γ
(

d+1
2 −∆

)

Γ
(

|k|2+(2∆−(d−1))ω
4ω

)

Γ
(

∆− d+1
2

)

Γ
(

|k|2−(2∆−(d+3))ω
4ω

) ,

(3.24)

β2〈Olog
∆ (ω,k)Olog

∆ (−ω,−k)〉 =ω∆− d+1
2

Γ
(

d+1
2 − ∆

)

Γ
(

|k|2+(2∆−(d−1))ω
4ω

)

Γ
(

∆ − d+1
2

)

Γ
(

|k|2−(2∆−(d+3))ω
4ω

)

(

log ω (3.25)

− ψ

(

d+ 1

2
− ∆

)

− ψ

(

∆ − d+ 1

2

)

+
1

2
ψ

( |k|2 + (2∆ − (d− 1))ω

4ω

)

+
1

2
ψ

( |k|2 − (2∆ − (d+ 3))ω

4ω

)

+ λ

)

.

The correlation function (3.24) agrees with the two point function for a massive scalar field

in a Lifshitz background found in [2] and later by means of holographic renormalization

in [31].
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3.3 Comparison with LCFT’s

In the relativistic case, a general logarithmic conformal field theory of rank 2 (i.e. only

one logarithmic partner) has two-point correlation functions which are restricted by the

conformal symmetry to be [19]:

〈Os(x)Os(y)〉 = 0 , (3.26)

〈Olog(x)Os(y)〉 =
c

|x− y|2∆ , (3.27)

〈Olog(x)Olog(y)〉 =
1

|x− y|2∆ (−2c log |x− y| + λ) , (3.28)

where the constant c is determined by the normalization of Olog and the constant λ can

be changed by shifting Olog → Olog + λ′Os.

To re-write these expressions in Fourier space we use the fact that the Fourier transform

of a power law in d dimensions is given by another power law. Explicitly, one finds:

〈Olog(k)Os(−k)〉 =
1

(2π)d/2

∫

ddx e−ik·x c

|x|2∆

= 2d/2−2∆ Γ
(

d
2 − ∆

)

Γ
(

d
2

)

Γ
(

1 + ∆ − d
2

)c|k|2∆−d (3.29)

and:

〈Olog(k)Olog(−k)〉 =
1

(2π)d/2

∫

ddx e−ik·x c

|x|2∆ (−2 log x+ λ)

= 2d/2−2∆−1 Γ
(

d
2 − ∆

)

Γ
(

d
2

)

Γ
(

1 + ∆ − d
2

)c|k|2∆−d

(

2 log |k|

− log 4 − ψ

(

d

2
− ∆

)

− ψ

(

1 + ∆ − d

2

)

+ 2λ

)

. (3.30)

If we compare these expressions with the correlation functions obtained in section 3.2.1

from the holographic calculation with bulk AdS space we find that they agree and the

standard normalization is obtained by choosing β = 1/(∆ − d/2).

For non-relativistic field theories the two-point functions are less restricted by the

symmetry group. Invariance under time and space translations and spatial rotations restrict

the two point correlation functions to be functions of only |t − t′| and |x − x′|. The non-

relativistic scale transformations then further restrict the general two-point function of two

operators with scaling dimensions ∆1 and ∆2 to be:

〈O∆1(t1,x1)O∆2(t2,x2)〉 =
1

|x1 − x2|∆1+∆2
f(χ) =

1

|t1 − t2|(∆1+∆2)/z
f ′(χ) , (3.31)

where f(χ), f ′(χ) are arbitrary functions of the scale invariant variable χ = |x1−x2|z
|t1−t2| .

If we compare this with the correlation functions found in section 3.2.2 we see that

they show the appropriate scaling behavior. By analogy to the AdS case, this suggests

that the general structure of the non-relativistic LCFT is:

〈Os(t1,x1)Os(t2,x2)〉 = 0 , (3.32)
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〈Olog(t1,x1)Os(t2,x2)〉 =
1

|x1 − x2|2∆
f(χ) , (3.33)

〈Olog(t1,x1)Olog(t2,x2)〉 =
1

|x1 − x2|2∆
(−g(χ) log |x1 − x2| + λ) , (3.34)

with λ a constant which can be changed by transforming Olog → Olog+λ′Os and f(χ), g(χ)

are arbitrary functions of the scale invariant variable χ.

4 Conclusions

In this work we considered a fourth-order derivative scalar field configuration. Upon using

an auxiliary scalar field, the model describes two ordinary Klein-Gordon scalar fields

with mass squared m2
1 and m2

2 and with opposite signs of their kinetic terms. Like in

theories of massive gravity, there exists a critical case where m2
1 = m2

2 = m2, that exhibits

a logarithmic mode, apart from an ordinary scalar mode. In the relativistic case, when

considering a fixed AdS background, the model was shown to be dual to a logarithmic

CFT [23]. Instead of considering a fixed AdS background, in this paper we considered a

non-relativistic Lifshitz background. Just as the usual AdS/CFT correspondence is then

extended to a non-relativistic version, likewise we suggest that the fourth-order derivative

scalar model is dual to a non-relativistic version of a logarithmic CFT. We then employed

non-relativistic holographic methods to calculate the two-point functions of the operators

sourced by the boundary value of the scalar and the logarithmic mode. Holographic

reasoning allows one to view these correlation functions on the boundary as defining a

non-relativistic extension of a logarithmic CFT.

Although the model we discussed here involves only spin-0 degrees of freedom, it bears

a lot of resemblance with massive gravity theories. Away from critical points, the latter

describe both massive and massless (or pure gauge for d = 3) spin-2 degrees of freedom.

At a critical point, the massive gravitons become massless and are replaced by logarithmic

modes. At such a critical point, the theories are conjectured to be dual to logarithmic

CFTs. In view of this similarity to critical gravity, it would be interesting to consider

critical gravities around a non-relativistic background and obtain non-relativistic versions

of the log CFTs dual to massive gravity theories. In these log CFTs, typically the stress

energy tensor would acquire a logarithmic partner. In this respect it is of interest to note

that massive gravity theories, like Topologically Massive Gravity and New Massive Gravity,

generically exhibit Lifshitz vacua.

Finally, it would be interesting to see whether these non-relativistic log CFTs, obtained

via holographic reasoning can also be understood as deformations of relativistic log CFTs

as it can be done for ordinary non-relativistic CFTs [33].
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