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1 Introduction

The gauge/string duality, also known as holography, has provided interesting insights into

the far-from-equilibrium properties of hot, strongly-coupled, non-Abelian plasmas that

are potentially relevant for the quark-gluon plasma (QGP) created in heavy ion collision

experiments (see e.g. [1] for a review). Most notably, holographic models have shown

that “hydrodynamization”, the process by which the plasma comes to be well described

by hydrodynamics, can occur before “isotropization”, the process by which all pressures

become approximately equal to one another in the local rest frame.

All far-from-equilibrium holographic studies of hydrodynamization to date (see

e.g. [2–7]) have been performed in conformal field theories (CFTs).1 To make closer con-

tact with the QGP, it is important to understand non-conformal theories. One crucial

difference between the two cases is that in non-conformal theories the equation of state,

namely the relation between the energy density and the average pressure, is not fixed by

symmetry, and hence it needs not be obeyed out of equilibrium. The relaxation process

therefore involves an additional channel, namely the evolution of the energy density and

the average pressure towards asymptotic values related by the equation of state. We will

refer to this process as “EoSization” and once it has taken place we will say that the system

has “EoSized”. One purpose of this paper is to show that hydrodynamization can occur

before EoSization.

We will consider gravitational shock wave collisions in a five-dimensional bottom-up

model [14] consisting of gravity coupled to a scalar field with a non-trivial potential. At zero

temperature, the dual four-dimensional gauge theory exhibits a Renormalization Group

(RG) flow from an ultraviolet (UV) fixed point to an infrared (IR) fixed point. The

source Λ for the relevant operator that triggers the flows is responsible for the breaking

of conformal invariance. The dual gravity solution describes a domain-wall geometry that

interpolates between two AdS spaces. We emphasize that our choice of model is not guided

1Near-equilibrium studies of non-conformal plasmas include [8–15]. Refs. [16–18] study far-from-

equilibrium dynamics in non-conformal but homogeneous plasmas, hence no hydrodynamic modes are

present. Ref. [19] studies bulk-viscosity-driven hydrodynamics in a cosmological context.
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by the desire to mimic detailed properties of Quantum Chromodynamics (QCD) but by

simplicity: the UV fixed point guarantees that holography is on its firmest footing, since

the bulk metric is asymptotically AdS; the IR fixed point guarantees that the solutions are

regular in the interior; and turning on a source for a relevant operator is the simplest way

to break conformal invariance.

In this paper we focus on a concise comparison between hydrodynamization and

EoSization. Further details will be given in [20].

2 The model

The action for our Einstein-plus-scalar models is

S =
2

κ25

∫
d5x
√
−g
[

1

4
R− 1

2
(∇φ)2 − V (φ)

]
. (2.1)

The potential

L2V = −3− 3

2
φ2 − 1

3
φ4 +

(
1

3φ2M
+

1

2φ4M

)
φ6 − 1

12φ4M
φ8 (2.2)

depends on one parameter φM > 0 in such a way that it possesses a maximum at φ = 0

(the UV) and a minimum at φ = φM (the IR). L is the radius of the corresponding AdS

solution at the UV, whereas the radius of the IR AdS is

LIR =

√
− 3

V (φM )
=

1

1 + 1
6φ

2
M

L . (2.3)

The decrease of the number of degrees of freedom along the flow is reflected in the fact

that LIR < L. The scalar field is dual to a scalar operator in the gauge theory, O, with

dimension ∆ = 3 at the UV fixed point. The full flow describing the vacuum of the theory

is given by

ds2 =
du2

u2
+ e2A(u)

(
−dz+dz− + dx2

⊥
)
, (2.4a)

e2A =
Λ2

φ2

(
1− φ2

φ2M

)φ2M
6

+1

e−
φ2

6 , (2.4b)

φ =
Λu√

1 +
φ20
φ2M

u2
, (2.4c)

where z± = t± z and φ0 = ΛL. The Ward identity for the trace of the stress tensor reads〈
Tµµ
〉

= −Λ 〈O〉 , (2.5)

and we adopt a renormalization scheme such that 〈Tµν〉 = 〈O〉 = 0 in the vacuum. Hence-

forth we will omit the expectation value signs and work with the rescaled quantities

(E , PL, PT ,V) =
κ25

2L3
(−T tt , T zz , T x⊥x⊥ ,O) . (2.6)
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Figure 1. Equilibrium pressure as a function of energy density for φM = 10.

In these variables the Ward identity takes the form

E − 3P̄ = ΛV , (2.7)

where

P̄ =
1

3
(PL + 2PT ) (2.8)

is the average pressure. Out of equilibrium the average pressure is not determined by the

energy density because the scalar expectation value V fluctuates independently. In contrast,

in equilibrium V is determined by the energy density and the Ward identity becomes the

equation of state

P̄ = Peq(E) , (2.9)

with

Peq(E) =
1

3
[E − ΛVeq(E)] . (2.10)

In this paper we will focus on φM = 10 (the dependence of the physics on this parameter

will be presented in [20]). The equilibrium pressure for this case is shown in figure 1. As

expected, both at high and low energies the physics becomes approximately conformal and

Peq asymptotes to E/3. The bulk viscosity-to-entropy ratio as a function of temperature is

shown in figure 2(top). In this case approximate conformal invariance implies that ζ/s→ 0

at high and low temperatures. In between, ζ/s attains a maximum at T = 0.22Λ, reflecting

the fact that the theory is maximally non-conformal around the scale set by the source.

3 Collisions

Remarkably, a gravitational wave propagating in the background (2.4) can be constructed

simply by adding a term of the form

f(u)h(z±)dz2± (3.1)

– 3 –
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Figure 2. (Top panel) Bulk viscosity over entropy density as a function of temperature. (Bottom

panel) Hydrodynamization and EoSization times as a function of the hydrodynamization temper-

ature for collisions of 1/2-shocks. The vertical grid lines lie at T/Λ = {0.15, 0.19, 0.31, 0.38} and

mark, respectively, the lowest value of Thyd/Λ that we have simulated, the maximum of thydThyd,

the point with the largest ratio of tEoS/thyd, and the intersection between the two curves. The

bulk viscosity at these temperatures is ζ/s = {0.025, 0.028, 0.023, 0.017}. The top horizontal line

indicates the result in a CFT, thydThyd = 0.56.3

to the metric (2.4a), with

h(z±) =
µ3

w
√

2π
e−z

2
±/2ω

2
, (3.2)

f(u) = 4 e2A(u)
∫ u

0

dũ

ũ
e−4A(ũ) . (3.3)

The dual stress tensor of a single shock has

E = PL = h(z±) , PT = 0 . (3.4)

The scalar expectation value remains V = 0, as in the vacuum. The energy per unit

transverse area of the shock is
dE
d2x⊥

= µ3 . (3.5)

Unlike in the conformal case, in which the physics only depends on the dimensionless

“thickness” µω [3], in the present case the physics depends also on the initial transverse
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energy density in units of the source, µ/Λ. We simulate collisions of 1/2-shocks and 1/4-

shocks in the terminology of [3] (µω = 0.30 and µω = 0.12, respectively) for several different

values of µ/Λ. We then extract the boundary stress tensor and we focus on its value at

mid-rapidity, z = 0, as a function of time.2 We choose t = 0 as the time at which the two

shocks would have exactly overlapped in the absence of interactions [3].

We define the hydrodynamization time, thyd, as the time beyond which both pressures

are correctly predicted by the constitutive relations of first-order viscous hydrodynamics,

P hyd
L = Peq + Pη + Pζ , (3.6a)

P hyd
T = Peq −

1

2
Pη + Pζ , (3.6b)

with a 10% accuracy, so that ∣∣∣PL,T − P hyd
L,T

∣∣∣
P̄

< 0.1 . (3.7)

In (3.6) we have denoted by Pη and Pζ the shear and the bulk contributions to the hydro-

dynamic pressures, respectively, which are proportional to the corresponding viscosities.

The different coefficients in front of Pη in these two equations reflect the tracelessness of the

shear tensor. We define the EoSization time, tEoS, as the time beyond which the average

pressure coincides with the equilibrium pressure with a 10% accuracy, meaning that∣∣P̄ − Peq

∣∣
P̄

< 0.1 . (3.8)

We expect on physical grounds that increasing the initial energy in the shocks increases

the energy deposited in, and hence the hydrodynamization temperature of, the resulting

plasma. We have confirmed that, indeed, Thyd/Λ increases monotonically with µ/Λ. On

the gravity side this means that, for sufficiently large (small) µ/Λ, the horizon forms in

the UV (IR) region of the solution, where the geometry is approximately AdS. As a

consequence, in these two limits the plasma formation and subsequent relaxation proceed

approximately as in a CFT. In contrast, for µ ∼ Λ the relaxation of the plasma takes

place in the most non-conformal region where the bulk viscosity effects are largest. In this

intermediate region we see several effects that are absent in a CFT.

First, hydrodynamization times are longer than in a CFT. This is illustrated by the

dashed, red curve in figure 2(bottom) whose maximum, indicated by the first vertical line

from the left, is 2.5 times larger than the conformal result, which is indicated by the hori-

zontal line.3 As expected, at high Thyd/Λ we see that thydThyd asymptotically approaches

its conformal value (we have checked that at Thyd/Λ = 4.8 the difference is 0.5%). We

expect the same to be true at low Thyd/Λ.4 The increase in the hydrodynamization time is

2We employ as a regulator a background thermal bath with an energy density between 0.8% and 2.5%

of that at the centre of the initial shocks. We simulate each collisions with several different regulators and

extrapolate to zero regulator.
3This value differs from that in [3] because [3] used a 20% criterion to define thyd.
4Although we have not been able to verify this explicitly because simulations in this regime become

increasingly challenging, figure 2(bottom) is consistent with this expectation.
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Figure 3. Longitudinal, transverse and average pressures, their hydrodynamic approximations,

and the equilibrium pressure extracted from the equation of state, all in units of Λ4, for a collision

of 1/4-shocks with µ/Λ = 0.94. The hydrodynamization temperature is Thyd/Λ = 0.24. Because

the transverse pressure hydrodynamizes much faster than the longitudinal one, PT and P hyd
T are

virtually on top of one another for the times shown. Hydrodynamization and EoSization take place

at thydΛ = 4.2 and tEoSΛ = 9.6, respectively, as indicated by the vertical lines. At thyd the difference

between P̄ and Peq is 18%, whereas the difference between P̄ and P̄hyd is 2%. At tEoS the difference

between PL and P hyd
L is 3%. The PT /PL ratio is 4.4 at thyd and 1.9 at tEoS.

qualitatively consistent with the increase in the lifetime of non-hydrodynamic quasi-normal

modes found in [8–15]. A heuristic explanation on the gravity side comes from realizing

that the larger the non-conformality, the steeper the scalar potential becomes. As the

plasma expands and cools down, the horizon “rolls down the potential”. It is therefore

intuitive that steeper potentials make it harder for the non-hydrodynamic perturbations

of the horizon to decay.

Second, the equation of state is not obeyed out of equilibrium. This is illustrated in

figure 3(bottom) for a collision of 1/4-shocks with µ/Λ = 0.94, for which the hydrody-

namization temperature is Thyd/Λ = 0.24. We see that the equilibrium and the average

pressures are not within 10% of one another until a time tEoS = 9.6/Λ = 2.4/Thyd. This

is further illustrated in figure 2(bottom), which shows the dependence of the EoSization

time on the hydrodynamization temperature for 1/2-collisions. We see that for sufficiently

large µ/Λ the EoSization time becomes negative, meaning that the average and the equi-

librium pressures differ by less than 10% even before the shocks collide. The reason is

– 6 –
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simply that in these cases the energy density in the Gaussian tails in front of the shocks,

which start to overlap at negative times, becomes much higher than Λ. At these energy

densities the physics becomes approximately conformal and the equation of state becomes

approximately valid as a consequence of this symmetry. An analogous argument implies

that tEoS should also become negative for collisions with sufficiently small µ/Λ.4

Third, hydrodynamization can take place before EoSization. Indeed, we see in

figure 2(bottom) that thyd < tEoS for collisions for which the hydrodynamization temper-

ature is between the first and the fourth vertical line. Comparing with figure 2(top) we

see that at these two temperatures the viscosity-to-entropy ratios are ζ/s = 0.025 and

ζ/s = 0.017, respectively. Note that the first value of ζ/s would decrease if we were to

consider the lower temperature at which we expect that the two curves in figure 2(bottom)

will have a second crossing. Also, note that the ordering of thyd and tEoS depends on the

accumulated effect of the bulk viscosity along the entire history of the collision. Notwith-

standing these caveats, we will take the value ζ/s = 0.025 as a conservative estimate of

the minimum bulk viscosity needed to have thyd < tEoS for 1/2-collisions. The maximum

value of the ratio tEoS/thyd for 1/2-collisions is tEoS/thyd = 2.56.

Regardless of the ordering of tEoS and thyd, these times are always shorter than the

isotropization time beyond which PL and PT differ from one another by less than 10%.

This is apparent in figure 3.

4 Discussion

Eqs. (3.6) imply that the hydrodynamic viscous correction to the equilibrium pressure is

controlled by the bulk viscosity alone, since

P̄hyd = Peq + Pζ , (4.1)

whereas the viscous deviation from isotropy is controlled by the shear viscosity alone, since

P hyd
L − P hyd

T =
3

2
Pη . (4.2)

We see from (4.1) that the reason why hydrodynamization can take place before EoSization

is because hydrodynamics becomes applicable at a time when bulk-viscosity corrections are

still sizeable. This is illustrated in figure 3 by the fact that hydrodynamics provides an

excellent prediction (within 2%) for P̄ at thyd, whereas at this time P̄ and Peq still differ by

18%. The above statement is the analog of the fact that hydrodynamization can take place

before isotropization because hydrodynamics becomes applicable at a time when shear-

viscosity corrections are still sizeable [2]. In our model the bulk viscosity is rather small

compared to the shear viscosity, since ζ/η = 4πζ/s ' 0.35 at the temperature at which ζ

attains its maximum value. Presumably this is the reason why the difference between PL
and PT at thyd in figure 3 is much larger than that between P̄ and Peq.

Our results indicate that relaxation in non-conformal theories follows two qualitatively

different paths depending on the bulk viscosity. If ζ/s . (ζ/s)cross then EoSization precedes

hydrodynamization, whereas for ζ/s & (ζ/s)cross the order is reversed. Although we may

– 7 –
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take the cross-over value (ζ/s)cross ∼ 0.025 obtained from 1/2-collisions as representative,

we emphasize that this depends not just on the model but on the specific flow under

consideration. For example, we expect (ζ/s)cross to take a smaller value for 1/4-collisions

since in this case the gradients are larger than for 1/2-collisions [3]. Note that along either

of these paths, correlation functions, such as two point functions, may still differ from their

thermal values, as explicitly demonstrated in [21, 22].

Heavy ion collisions provide an excellent laboratory in which to study experimentally

these two paths to relaxation. Indeed, although at very high temperatures the deconfined

phase of QCD is approximately conformal, with very small values of ζ/s, estimates of this

ratio indicate that, in the vicinity of the critical temperature, Tc, a fast rise takes place

to values as large as ζ/s ' 0.3 [23]. Despite the fact that ζ/s is only sizeable in a rel-

atively narrow region around Tc, it has been shown to have an important effect on the

late-time hydrodynamic description of the QGP created at RHIC and the LHC [24–33].

Our results suggest that the value of ζ/s may also have an impact on the early-time pro-

cess of hydrodynamization. This may be investigated by comparing collisions of different

systems with varying energies. For most central collisions at top RHIC or LHC energies,

the initial temperature is well above Tc and hydrodynamization proceeds as in a conformal

theory. However, in peripheral collisions or in central collisions at lower energies, such as

those at the RHIC energy scan, the hydrodynamization temperature is reduced and the

corresponding bulk viscosity may be sufficiently large to delay EoSization until after hy-

drodynamization. Another exciting possibility is to consider collisions of smaller systems,

such as p− Pb, d− Au, 3He − Au or p− p collisions. As it has been recently discovered,

these systems also show strong collective behaviour [34–39] that is well described by hy-

drodynamic simulations [40–47] that include non-zero values of the bulk viscosity (see [48]

for a review of collective effects in this type of collisions). As stressed in [44], the temper-

ature range explored by these smaller systems is narrowly concentrated around Tc. These

makes them ideal candidates with which to explore the effect of transport coefficients, in

particular of the bulk viscosity. The comparison between the early-time dynamics of these

small systems and heavy ion collision is an excellent framework in which to explore the

different relaxation paths uncovered here.

We close with a comment on on-going work. In order to ascertain the robustness

of our conclusions, we are currently extending our simulations to other non-conformal

models. In particular, we are considering models that, unlike the one studied here, exhibit

thermal phase transitions, near which non-hydrodynamics modes are expected to play an

important role [9, 15].
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