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Abstract 

Background: Mercury (Hg) used in gold amalgamation is a major source of contamination in developing countries. 
The present study evaluates the concentrations of total mercury in water, sediment and fish from the Ankobra and 
Tano Rivers, which drain the major gold mining areas in Ghana. Total mercury (T‑Hg) analysis was carried out using an 
atomic absorption spectroscopy (Perkin Elmer model 5100PC) equipped with a flow injection analysis system (FIAS, 
AS‑90).

Results: Water, sediment and fish T‑Hg concentrations were 0.145–1.078 μg/L, 23.39–73.31, and 0.03–0.443 μg/g dw, 
respectively in Ankobra basin, while in Tano basin levels of 0.214–0.250 μg/L, 14.43–21.51, 0.068–0.413 μg/g were 
found for water, sediment and fish, respectively. The T‑Hg concentration in water from both basins were within the 
World Health Organization threshold limits for drinking water except at River Asuo Kofi. Concentration of T‑Hg in the 
sediment exceeded Environmental Protection Agency ecotoxicological threshold in some sampling stations, suggest‑
ing potential adverse ecological effects. T‑Hg levels in fish from both basins were lower than the WHO value (<0.500 
μg/g (wet wt). The target hazard quotient values, suggest that human should minimizing meals/week of the analyzed 
species to avoid deleterious effect during lifetime.

Conclusions: The results suggested that mining activities significantly contribute to the considerable environmental 
Hg contamination in both Ankobra and Tano River basins. Therefore Hg levels should carefully monitored and con‑
trolled to reduce its inputs and mitigate potential health consequences of Hg accumulation in the environment.
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Background
Over the last decades, mercury (Hg) is considered to 
be one of the environmental pollutants with the great-
est impact on the biosphere and human health (Miller 
et  al. 2011). The process by which many developing 
countries use elemental Hg to extract gold is becoming 
one of the primary sources of Hg pollution (Tomiyasu 
et al. 2013). In gold mining, Hg employed in its elemen-
tal form to produce Gold-Hg amalgams can escape to 

the atmosphere and deposited on surrounding soils and 
aquatic ecosystems (Rodrigues-Filho and Maddock 1997; 
Cesar et al. 2011). Once it reaches the ecosystems, Hg is 
distributed into the air, soil, water, and sediments, form-
ing the largest metal deposits in the environment (Mar-
tinez-Finley and Aschner 2014). Elemental Hg is highly 
volatile and easily dispersed at the high temperatures that 
often occur at sites of amalgamation and subsequently 
undergoes global long-range atmospheric transport and 
deposition that allows its accumulation in biota, with 
subsequent human health risks (Falandysz et al. 2014).

Moreover, leaching and soil erosion processes can also 
mobilize mercury to aquatic systems (Cesar et al. 2011). 
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In the aquatic systems, Hg can be bio-transformed by 
bacteria into Hg and reached the top predators through 
its bioaccumulation and bio-magnification in the food 
chain (Ullrich et al. 2001). As a consequence, top preda-
tors are expected to exhibit higher mercury concentra-
tions compared to non-carnivorous species. Besides 
the Hg vapor occupational exposure, Hg environmental 
exposure via fish consumption has become an issue of 
concern in areas affected by Hg pollution (Castilhos et al. 
1998, 2006).

People living in close proximity to artisanal mining 
areas are vulnerable to Hg exposure. One of the major 
problems of Hg is its ability to cause neurotoxicity 
(Woods et al. 2013) and teratogenesis (Heinz et al. 2011), 
as well as lesions in organs such as the liver and kidneys 
(Sonne et  al. 2013). Much of the neurotoxicity of Hg is 
associated with its ability to reach the brain by binding to 
cysteine, which uses the neutral amino acid transporter 
(Aschner and Aschner 1990).

Methyl mercury, the commonest organic mercury, can 
accumulate in human beings through the food chain and 
may give rise to both acute and chronic toxicity (Tchoun-
wou et  al. 2003; Morel et  al. 1998; Harris et  al. 2003; 
Boening 2000). Fish samples are commonly used as an 
indicator of Hg exposure (Dabeka et al. 2003, 2004; Thom 
et al. 2006; Konig et al. 2005; Virtanen et al. 2005; Wenn-
berg et  al. 2007; Yoshizawa et  al. 2002; D’Itri and D’Itri 
1975).

Increased use of mercury in gold recovery mining 
operations in many developing countries has raised con-
cern over its release into the environment (Oppong et al. 
2010). Studies on mercury contamination and health 
effects in the Amazon have been carried out (Pfeiffer and 
Larceda 1988; Larceda and Salomons 1991; Nriagu et al. 
1992; Akagi and Nishimura 1991). However, in Ghana 
studies on assessment of mercury levels in water, sedi-
ments, soil, food crops, fish and some human tissues have 
been carried out in different areas (Amonoo-Neizer et al. 
1996; Adimado and Baah 2002; Golow and Adzei 2002; 
Bannerman et al. 2003; Bonzongo et al. 2003; Babut et al. 
2003; Golow and Mingle 2002; Donkor et al. 2006).

In Ghana, small-scale and artisanal gold extraction is 
one of the leading causes of Hg release to aquatic ecosys-
tems (Ayensu 1997). Although this activity contributes 
significantly to rural employment in Ghana, the apparent 
wealth resulting from gold mining contrasts with the loss 
of ecosystems, as well as both health and social impair-
ment on communities. The inappropriate use of Hg and 
the poor technical knowledge on handling and recover-
ing have facilitated Hg contamination of water bodies 
and the atmosphere. Since artisanal gold mining activi-
ties using mercury are carried out close by the rivers, 
it is likely that mercury may be carried along the river. 

Aquatic species like fish may be affected by this contami-
nation and eventually affect living organisms that may 
also feed on these aquatic species. Therefore, the main 
aim of this study is to determine the extent of Hg pol-
lution derived from gold mining in Ankobra and Tano 
River basins, as well as sediment contamination and the 
health risk due to Hg intake via fish consumption.

Methods
Study area
The Ankobra Basin is one of the south-western basins of 
Ghana. It is located within latitudes 4°52′–6°27′N, and lon-
gitudes 1°42′–2°33′W. It is bounded to the East; West and 
South by the Pra Basin, Tano Basin and the Gulf of Guinea, 
respectively. The basin has an area of 8403 km2 spanning 
11 districts in three regions with Wassa Amenfi, Wassa 
West and Nzema East Districts. The basin falls under the 
South-Western Equatorial and the Wet Semi-Equatorial 
climatic regions. The South-Western Equatorial is the wet-
test climatic region in Ghana with mean annual rainfall 
above 1900 mm. The vegetation of the basin comprises the 
Rain forest as well as the Moist-semi deciduous forest.

The Tano Basin is located in the southwestern part of 
Ghana and lies between latitudes 50°00′–70°40′N and 
longitudes 20°00′–30°15′W. The southern section is 
generally low in altitude, ranging between 0 and 150 m 
above the mean sea level. The general topography of 
the entire basin, however, ranges between 0 and 700 m 
above the mean sea level. The climate of the Tano Basin 
falls partly under the wet semi-equatorial and partly 
under south-western equatorial climatic zones of Ghana. 
It is thus characterized by double rainfall maxima. The 
Tano basin traverses three administrative regions: The 
Brong Ahafo, Ashanti, and Western Regions, compris-
ing 21 administrative districts. There is commercial 
farming of cocoa, plantain, and other commercial and 
food crops. Only about 10 % of the landmass is used for 
human settlement. The forest cover represents the sec-
ond highest land use pattern in the basin and follows 
closely after agricultural lands, occupying about 50  % 
of the total landmass of the basin. The remaining 40  % 
of the landmass is covered by forests which are largely 
protected areas. The Tano basin has its source within 
the forest in Pooyem, 4  km from Techiman, and flows 
roughly north–south into the sea. The basin enters the 
sea outside Ghana, in the Cote d’Ivoire. The main trib-
utaries of the Tano River system are the Abu, Amama, 
Bo, Disue, Soro, Atronie, Sabom, Gaw, Kwasa, Sumre, 
and Totua. The Tano River System has a total catch-
ment area of about 15,000  Km2 shared between Ghana 
and Cote D’Ivoire. The Tano River Basin constitutes a 
major source of domestic water supply from surface and 
groundwater.
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Fig. 1 Map of Western Region showing the study area
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Sampling locations
Sampling locations were carefully selected along the 
courses of Ankobra and Tano river (Fig.  1). These loca-
tions include Asawinso, Beppoh Ehyireso, Heman-
Prestea and Dominase all along the Ankobra River, and 
Tano-Odumase, Jomoro and Elubo, all along the Tano 
River. Samples were also taken from Bonsaso and Asuo 
Kofi River, which are tributaries of the Ankobra River.

Sample collection
Sampling was done during two periods in April/May 
2014 (on-set of rainy season) and November/December 
2014 (on-set of dry season) from the various locations 
indicated above. Depth integrated water samples were 
collected over bridges and preserved at about pH 2 with 
conc. HNO3, whilst sediment samples were collected 
through coring with a PVC tube. Two water and sedi-
ment samples were taken from each location. The fish 
samples were collected using dragnet and stored in an ice 
chest at 4 °C and transported to the laboratory. The sam-
ples were later identified in the laboratory and prepared 
for analysis.

Sample preparation
The water samples from each location were bulked and 
filtered through a Whatman No 41 filter paper prior to 
digestion. The sediment samples from each location were 
also bulked and dried in an oven at 60  °C to a constant 
weight. The dried samples were then pulverized and 
sieved through 20 mm-mesh size. Separate aliquots parts 
of the fish samples were weighed and dried in an oven at 
105 °C to a constant weight.

Hg in water
5 mL concentrated H2SO4 was added to 50 mL of three 
representative aliquots from the bulked water sample in 
100 mL volumetric flask followed by 2.5 mL concentrated 
HNO3 and then 15 mL of 5 % KMnO4. The mixture was 
allowed to stand for at least 15 min, 8 mL of 5 % K2S2O8 
solution was added and then heated in a water bath at 
95 °C. The sample was allowed to cool to room temper-
ature after which 10  % HONH3Cl was added to reduce 
excess KMnO4 and then diluted with double distilled 
water (Greenberg et al. 1992; Perkin Elmer 1994).

Hg in sediment
About 2 ± 0.05 g of three representative aliquot from the 
bulk of dry, finely ground and sieved sample was weighed 
into a 250  mL beaker follow by the addition of 25  mL 
concentrated H2SO4. A 1 mL additions of 50 % H2O2 was 
carefully added, allowing sufficient time for decomposi-
tion of the peroxide. The sample was heated gently on a 
sand bath to decompose any sediment and then sufficient 

amount of 5  % KMnO4 was added to the solution in 
order to maintain a permanent pink color. After cooling 
to room temperature, the excess KMnO4 was reduced 
by addition of sufficient amount of 10 % HONH3Cl solu-
tion (Larry et al. 1991). The resultant solution was then 
filtered into a 250 mL volumetric flask and made to mark 
with distilled water.

Hg in fish
Samples of fish tissue were cut into small pieces on a 
plastic cutting board using a stainless-steel knife. Four 
representative aliquots were sampled by halving and 
quartering prior to weighing. About 0.5 ± 0.05 g of each 
aliquot was weighed into a 100 mL beaker and 4 mL con-
centrated H2SO4 was added followed by1  mL concen-
trated HNO3 and then placed in a water bath maintained 
at 58  °C until the tissue completely dissolved. The sam-
ple was then cooled to 4  °C in an ice bath and 5 mL of 
5  % KMnO4 in 1  mL increments was cautiously added. 
About 8 mL of 5 % K2S2O8 was then added and allowed 
to stand overnight at room temperature. Excess amount 
of KMnO4 was reduced by addition of sufficient amount 
of 10  % HONH3Cl and then transferred quantitatively 
into a 100 mL volumetric flask and dilute to the mark.

Reagent blanks were prepared for each batch of sample 
and standard using equal amounts of all reagents used in 
the sample or standard preparation. The reagent blanks 
were used to correct for background absorption due to 
the reagent.

Analytical quality control
The quality assurance and control aspects of the analy-
sis were implemented through the analytical protocols, 
including sampling and sample preservation, instrument 
performance evaluation, instrument calibration, recovery 
and reagent blank analyses. The instrument performance 
evaluation involved optimizing instrument parameters 
followed by sensitivity check. The measured average 
characteristic concentration was 0.146 ng/0.0044 A with 
a confidence interval of 0.146 ± 0.004 (n = 5) at the 95 % 
confidence level as against the instrument manufactur-
ers specification of 0.138  ng/0.0044 A. The optimized 
instrument parameters were maintained throughout the 
analyses, and the average percent recoveries for Hg was 
recorded as 0.098 ± 0.001 (n = 5).

Calibration of instrument
The instrument was calibrated using a standard solutions 
of Hg prior to the analyses of samples. Hg calibration and 
recovery standards were prepared by dissolving 0.1354 g 
of HgCl2 (Analar Grade) with about 70  mL double dis-
tilled water and concentrated HNO3. The solution was 
transferred into a 100 mL volumetric flask and made up 
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to the mark with distilled water. A 1 mL of the resulting 
solution of concentration 1.0 mg/mL Hg was transferred 
into a 1 L volumetric flask and treated with concentrated 
H2SO4, 5 % K2S2O8 and 10 % HONH3Cl, and made up to 
the mark with double distilled water. The resulting solu-
tion of concentration 1000  μg/L was diluted serially to 
obtain other solutions of lower concentrations.

Sample analyses
All samples were analyzed in triplicates using the cold 
vapor technique with Perkin-Elmer 5100PC AAS equipped 
with a flow injection analysis system (FIAS, AS-90). A 
mixture 3 % HCl and 1.1 % SnCl2 in 3 % HCl was used as a 
carrier solution and reducing agent respectively.

Assessment of sediment contamination
The geochemical accumulation index (Igeo) was employed 
as a quantitative tool to assess the level of Hg contamina-
tion in sediments. This index was calculated using Eq. (1) 
proposed by Müller (1969):

where Cn is the sediment metal concentration; A is the 
constant for modifying the fluctuation of the background 
value caused by lithological movement, usually 1.5 (Bhui-
yan et  al. 2010); and Bn is the geochemical background 
value of the metal. In this work, two reported back-
ground values were utilized: 0.06 (Lecce and Pavlowsky 
2014) and 0.08 μg/g (Hortellani et al. 2013). Based on the 
results, Hg pollution in the sediment was classified into 
seven different categories: class 0 (unpolluted), Igeo ≤  0; 
class 1 (unpolluted to moderately polluted), 0 ≤ Igeo ≤ 1; 
class 2 (moderately polluted), 1 ≤ Igeo ≤ 2; class 3 (mod-
erately to strongly polluted), 2 ≤ Igeo ≤ 3; class 4 (strongly 
polluted), 3 ≤ Igeo ≤ 4; class 5 (strongly to extremely pol-
luted), 4 ≤ Igeo ≤ 5; and class 6 (extremely contaminated), 
Igeo > 5 (Müller 1969).

Risk‑based consumption limits
Risk factors were calculated according to the guidelines 
of the US Environmental Protection Agency (US-EPA 
1989, 2000), previously reported by (Marrugo-Negrete 
et al. 2008; Copat et al. 2013a, b). It was assumed that the 
ingestion dose was equal to the adsorbed Hg dose (Chien 
et  al. 2002). Hg consumption limit calculations were 
based on the reference dose (RfDo) set by the US-EPA. 
Target hazard quotient (THQ), indicate the ratio between 
exposure and the reference dose, and calculations were 
made using the standard assumption for an integrate US-
EPA risk analysis. The estimated daily intake per meal 
(EDIm) and for the target hazard quotient (THQ) were 

(1)Igeo = log2
Cn

1.5× Bn

calculated using Eqs. (2) and (3), respectively reported by 
(Copat et al. 2013a, b,):

where EDIm is the estimated daily intake of Hg per meal 
size; MS is the standard portion size of 230 g for adults 
(Hosseini et  al. 2013); C is the Hg concentration (mg/
kg w.w.) (Marrugo-Negrete et al. 2008); BW is the body 
weight of 70 kg for adults (Copat et al. 2013a). According 
to US-EPA (1989), when THQ risk is above 1, systemic 
effects may occur. RfD for T-Hg is 0.1 µg/g/day.

The allowable number of fish meals of a specific meal 
size that may be consumed over a given period of time 
was also evaluated. For noncarcinogenic effects, maxi-
mum allowable fish consumption rate in meals/week 
(CRmw) (US-EPA 2000) that would not be expected to 
cause any chronic systemic effects was obtained using 
Eq. (4):

Considering an average adult body weight of 70  kg 
(USEPA 1994), the Hg USEPA Acceptable Daily Intake 
(ADI) can be approximated as 7 μg/day/adult (49 μg Hg/
week) (Hosseini et al. 2013).

Statistical analysis
Data for Hg analysis are presented as mean  ±  stand-
ard deviation. Correlation or multiple linear regression 
analysis was used to establish relationships between the 
two variables. For all purposes, significance was set at 
p  <  0.05. Statistical analysis was carried out using both 
Microsoft Excel (2016 edition) and statistical Package for 
Social Science (IBM SPSS version 20) software.

Results and discussion
Mercury in sediments and geoaccumulation analysis
Levels of T-Hg in sediment samples revealed high vari-
ability (Table 1). Hg recorded the maximum mean value 
of 73.31 μg/g at Heman Prestea and the minimum mean 
value of 23.39  μg/g at Beppoh Ehyireso in the Ankobra 
River basin. Significant levels have also been detected 
in other areas such as Dominase, with a mean value of 
66.30  μg/g, downstream of Asuo Kofi (Table  1). The 
overall mean value of Hg in sediment from the Ankobra 
River basin was found to be 43.12 μg/g with a %RSD of 
56.9. In the Tano River basin, the concentration of Hg in 
sediment ranged from 14.43 to 21.51 μg/g with an overall 

(2)EDIm =

MS× C

BW

(3)THQ =

EDIm

RfD

(4)Crmw =

49

C×MS
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mean value of 17.37  μg/g with 21.2  % RSD. T-Hg con-
centrations were greater than those reported for Mina 
Santa Cruz Marsh (gold-mining site), Colombia [0.140–
0.355 μg/g dw (Olivero and Solano 1998)] and village of 
Caimito, San Jorge River basin [0.155 ±  0.016  μg/g  dw 
(Olivero et  al. 2004)]. On the other hand, considering a 
Hg threshold of 0.2  μg/g as the level of concern for Hg 

in continental water sediments (Salomons and Förstner 
1984), on average, both basins may be categorized as 
highly polluted.

Based on sediment T-Hg levels, sampling sites repre-
senting the two basins have significant differences between 
them (p > 0.05). Heman Prestea, has the highest concentra-
tions, and it receives a direct impact from gold mining along 
the Ankobra River, where Hg used during gold amalgama-
tion reaches the river together with washed sediments.

The Igeo data for the sampling sites are presented in 
Table  1. The Mullers geochemical index (Igeo) values 
ranged from 8.02–9.67 and 7.32–7.90 for both Anko-
bra and Tano River basin, respectively. According to the 
Igeo indexes, Hg pollution in these sediments classifies 
them as highly to strongly polluted (class 6), comparable 
to sediments found in an abandoned gold mining area in 
southern Minas Gerais State, Brazil (Cesar et al. 2011) and 
the Middle Odra River (Germany/Poland) (Boszke et  al. 
2004). These concentrations are far from the allowable 
limit of 0.81 μg/g suggested by the International Atomic 
Energy Agency (IAEA) (Kwaansa-Ansah et al. 2011).

Table 1 Hg concentrations in  sediment (µg/g) collected 
from the Ankobra and Tano River Basins

Site Hg (µg/g) Igeo Sediment quality

Ankobra 
Basin

Asawinso 27.76 ± 8.55 8.27 Extremely contaminated

Beppoh Ehyireso 23.39 ± 7.05 8.02 Extremely contaminated

Heman Prestea 73.31 ± 55.60 9.67 Extremely contaminated

Dominase 66.30 ± 51.51 9.52 Extremely contaminated

Bonsaso 24.82 ± 9.94 8.11 Extremely contaminated

Tano 
Basin

Tano Odumasi 14.43 ± 4.47 7.32 Extremely contaminated

Jomoro 16.18 ± 4.08 7.49 Extremely contaminated

Elubo 21.51 ± 0.24 7.90 Extremely contaminated

Fig. 2 T‑Hg concentrations in fish from Ankobra basin
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Mercury in Fish from the Ankobra and Tano River basins
The average muscle T-Hg concentrations in fish are 
depicted in Figs. 2 and 3. The Ankobra River basin meas-
ured levels of T-Hg in the range of 0.03–0.443 μg/g (wet 
wt), whereas Tano River basin measured T-Hg concen-
tration in the range of 0.068–0.413 μg/g (wet wt). The 
highest T-Hg concentrations were observed in Tano 
Odumase, (Sarotherodon Galilaeus, 0.89  ±  0.05  μg/g). 
In Tano Basin, Tilapia guineensis recorded lower T-Hg 
levels of 0.03 ±  0.01  μg/g. The overall mean T-Hg con-
centration was found to be <0.5 μg/g fresh wt, the maxi-
mum T-Hg concentration that should be present in fish 
for human consumption according to JOINT FAO/WHO 
(2010), except Sarotherondon Galilaeus.

To protect vulnerable people, in particular, preg-
nant women, those under 15  years of age, and frequent 
fish consumers, the WHO (1990) has recommended 
the lower T-Hg guideline of 0.2  μg/g fresh wt for those 
groups. T-Hg concentrations found in most fish species 
were higher than 0.2 μg/g.

Risk‑based consumption limits
Estimated EDIm, THQ, and CRmw values are presented in 
Table 2. Values of estimated daily intake per meal size of 
seafood for humans in some species were higher than the 
accepted tolerable intake provided by Joint FAO/WHO 

Expert Committee on Food Additive (JECFA 2010), sug-
gesting that levels of assumed exposure are likely to cause 
deleterious effect during lifetime in humans. The specific 
consumption limits obtained, confirming THQ values 
above 1, indicate that it would be appropriate to minimize 
the weekly meals of the analyzed fish species, to avoid 
the chronic systemic effects due to Hg content. Special 
concern are Hemichromis fasciatus, Schilbe intermedius, 
Hepsetus Odoe, Rai Senegalensis, Sarotherodon Tila-
pia zillii, Galilaeus Brycinus nurse, Heterobranchus spp, 
Chrysichthys nigrodigitatus and Chrysichthys nigrodigita-
tus species. All the CRmw values were > 14 meals/week. 
Tano basin showed the lowest level of fish meals sug-
gested. EDIm, THQ, and CRmw results, indicates that the 
species that can be eaten with low risk for human health 
are Tilapia guineensis, Barbus macrops, Schilbe mystus, 
Chromidotilopia guntheri, Liza grandisquamis, Labeo 
parvus, and Mormyrus rume.

Mercury in water
The levels of Hg in water samples from both the Ankobra 
and Tano River Basins are shown in Table 3. The maxi-
mum mean Hg value of 1.078 μg/L was recorded at Asuo 
Kofi, a tributary to the Ankobra River, whilst the mini-
mum mean value of 0.145 μg/L was measured at Domi-
nase, located downstream of the Ankobra River. The 

Fig. 3 T‑Hg concentrations in fish from Tano basin
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Table 2 Estimated daily intake per meal (EDIm) (µg/g daily), target hazard quotient (THQ), and maximum allowable fish 
consumption rate in meals/week (CRmw) in adults

Sampling sites Fish species T‑Hg (μg/g)  
Mean ± SD

EDIm THQ CRmw

Ankobra basin

Asawinso Tilapia zillii 0.22 ± 0.05 0.79 7.86 1

Tilapia guineensis 0.03 ± 0.01 0.11 1.07 7

Hepsetus Odoe 0.23 ± 0.03 0.82 8.21 1

Hemichromis fasciatus 0.28 ± 0.09 1.00 10.00 1

Schilbe intermedius 0.29 ± 0.04 1.04 10.36 1

Heterobranchus spp. 0.08 ± 0.02 0.29 2.86 3

Chrysichthys nigrodigitatus 0.10 ± 0.01 0.36 3.57 2

Beppoh Ehyireso Tilapia zillii 0.04 ± 0.02 0.14 1.43 5

Hemichromis fasciatus 0.41 ± 0.03 1.46 14.64 1

Tilapia guineensis 0.18 ± 0.09 0.64 6.43 1

Heterobranchus spp 0.20 ± 0.07 0.71 7.14 1

Sarotherodon galilaeus 0.07 ± 0.02 0.25 2.50 3

Barbus macrops 0.10 ± 0.01 0.36 3.57 2

Schilbe mystus 0.12 ± 0.01 0.43 4.29 2

Hepsetus Odoe 0.07 ± 0.03 0.25 2.50 3

Heman prestea Hepsetus Odoe 0.44 ± 0.07 1.57 15.71 0

Tilapia guineensis 0.04 ± 0.06 0.14 1.43 5

Barbus macrops 0.08 ± 0.01 0.29 2.86 3

Sarotherodon galilaeus 0.11 ± 0.02 0.39 3.93 2

Chromidotilopia guntheri 0.15 ± 0.05 0.54 5.36 1

Heterobranchus spp 0.07 ± 0.06 0.25 2.50 3

Schilbe mystus 0.21 ± 0.04 0.75 7.50 1

Bonsaso Schilbe mystus 0.04 ± 0.01 0.14 1.43 5

Brycinus nurse 0.13 ± 0.03 0.46 4.64 2

Hepsetus Odoe 0.20 ± 0.04 0.71 7.14 1

Barbus macrops 0.17 ± 0.01 0.61 6.07 1

Heterobranchus spp 0.08 ± 0.02 0.29 2.86 3

Dominase Schilbe mystus 0.09 ± 0.03 0.32 3.21 2

Barbus macrops 0.13 ± 0.02 0.46 4.64 2

Liza falcipinnis 0.08 ± 0.01 0.29 2.86 3

Chrysichthys nigrodigitatus 0.22 ± 0.09 0.79 7.86 1

Liza grandisquamis 0.10 ± 0.06 0.36 3.57 2

Tano basin

Tano odumase Rai Senegalensis 0.29 ± 0.06 1.04 10.36 1

Labeo parvus 0.10 ± 0.05 0.36 3.57 2

Sarotherodon Galilaeus 0.89 ± 0.05 3.18 31.79 0

Barbus macrops 0.06 ± 0.01 0.21 2.14 4

Hemichromis fasciatus 0.07 ± 0.02 0.25 2.50 3

Brycinus nurse 0.28 ± 0.05 1.00 10.00 1

Schilbe mystus 0.14 ± 0.06 0.50 5.00 2

Heterobranchus spp 0.30 ± 0.06 1.07 10.71 1

Chrysichthys nigrodigitatus 0.36 ± 0.02 1.29 12.86 1

Tilapia zillii 0.29 ± 0.01 1.04 10.36 1

Hepsetus Odoe 0.08 ± 0.06 0.29 2.86 3
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mean level of Hg in the entire Ankobra River basin is 
0.348 μg/L with a root square deviation (RSD) of 94.0 %. 
The maximum mean concentration of Hg in the Tano 
River basin was found to be 0.250 μg/L at Jomoro whilst 
the minimum mean value of 0.214 μg/L was recorded at 
Elubo. The maximum concentration of were below the 
WHO guideline value of 1.00  μg/L for drinking water 
(WHO 1985). The corresponding mean value for the 
entire Tano River basin is 0.227  µg/L. Comparing the 
overall mean values for the two River basins, the Anko-
bra River basin is being impacted more with Hg pollution 
than the Tano River basin.

It is quite apparent that in areas of high discharges of 
trace metals usually associated with mining activities, 
these metals do not occur in very high concentrations 
in surface waters. The pH range of 6.0–8.0 as observed 
for water from both the Ankobra and Tano River basin 
and in the presence of suspended solids, adsorption and 
co-precipitation processes can remove metals such as 
Hg from solutions as sulfides under anoxic conditions 
(Hamilton 1971). This may account for the observed low 
concentrations of Hg in water from both River basins as 

compared to the very high Hg concentrations in sedi-
ments (Table 1). Water T-Hg values found in this study 
are lower than those reported for other rivers contami-
nated with artisanal gold mining in Ghana [162–164 ng/L 
(Donkor et  al. 2006)], Indonesia [up to 250  ng/L (Lim-
bong et al. 2005)] and Brazil [up to 800 ng/L (Palheta and 
Taylor 1995)].

Conclusions
The study revealed considerable Hg contamination 
in sediment, water and fish collected from the Anko-
bra and Tano River basins which drain the major gold 
mining areas in Ghana. Human T-Hg concentrations 
together with the THQ data indicates more extensive 
and intensive ecological and environmental health 
studies in the region by the local government. Although 
fish are considered the main source of Hg exposure, 
they are the only source of protein from the daily food 
intake of many populations in this region. In addition, 
it should be pointed out that, besides fish eaters, min-
ers are exposed to Hg but in its inorganic form, and this 
could also end up in severe health problems. However, 
since Hg like any other heavy metal undergo bioaccu-
mulation and bio magnification, the levels should be 
carefully monitored and controlled to minimize inputs 
of Hg into the environment to mitigate the potential 
health risk associated with Hg exposure through fish 
consumption.
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Table 2 continued

Sampling sites Fish species T‑Hg (μg/g)  
Mean ± SD

EDIm THQ CRmw

Jomoro Chrysichthys nigrodigitatus 0.28 ± 0.06 1.00 10.00 1

Rai senegalensis 0.41 ± 0.03 1.46 14.64 1

Hepsetus Odoe 0.20 ± 0.01 0.71 7.14 1

Marcusenius senegalensis 0.20 ± 0.02 0.71 7.14 1

Schilbe mystus 0.21 ± 0.03 0.75 7.50 1

Mormyrus rume 0.14 ± 0.01 0.50 5.00 2

Barbus macrops 0.11 ± 0.01 0.39 3.93 2

Hemichromis fasciatus 0.14 ± 0.04 0.50 5.00 2

Labeo parvus 0.17 ± 0.03 0.61 6.07 1

Brycinus nurse 0.15 ± 0.07 0.54 5.36 1

Table 3 Mean concentrations of Hg in water from Ankobra 
and Tano basin (n = 6)

Sampling  
location

pH TDS (mg/L) Hg (μg/L) 
Mean ± SD

Ankobra basin Asawinso 7.30 42.5 0.320 ± 0.101

Beppoh Ehyireso 7.64 14.0 0.282 ± 0.090

Heman Prestea 6.90 15.0 0.264 ± 0.022

Asuo Kofi 8.00 203.5 1.078 ± 0.940

Dominase 7.27 14.0 0.145 ± 0.061

Bonsaso 7.45 14.0 0.184 ± 0.111

Tano basin Tano Odumase 7.48 58.8 0.216 ± 0.091

Jomoro 8.12 37.1 0.250 ± 0.110

Elubo 7.35 17.0 0.214 ± 0.080
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