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Abstract

Background: Relative survival is commonly used for studying survival of cancer patients as it captures both the direct
and indirect contribution of a cancer diagnosis on mortality by comparing the observed survival of the patients to the
expected survival in a comparable cancer-free population. However, existing methods do not allow estimation of the
impact of isolated conditions (e.g., excess cardiovascular mortality) on the total excess mortality. For this purpose we
extend flexible parametric survival models for relative survival, which use restricted cubic splines for the baseline
cumulative excess hazard and for any time-dependent effects.

Methods: In the extended model we partition the excess mortality associated with a diagnosis of cancer through
estimating a separate baseline excess hazard function for the outcomes under investigation. This is done by
incorporating mutually exclusive background mortality rates, stratified by the underlying causes of death reported in
the Swedish population, and by introducing cause of death as a time-dependent effect in the extended model. This
approach thereby enables modeling of temporal trends in e.g., excess cardiovascular mortality and remaining cancer
excess mortality simultaneously. Furthermore, we illustrate how the results from the proposed model can be used to
derive crude probabilities of death due to the component parts, i.e., probabilities estimated in the presence of
competing causes of death.

Results: The method is illustrated with examples where the total excess mortality experienced by patients diagnosed
with breast cancer is partitioned into excess cardiovascular mortality and remaining cancer excess mortality.

Conclusions: The proposed method can be used to simultaneously study disease patterns and temporal trends for
various causes of cancer-consequent deaths. Such information should be of interest for patients and clinicians as one
way of improving prognosis after cancer is through adapting treatment strategies and follow-up of patients towards
reducing the excess mortality caused by side effects of the treatment.

Keywords: Survival analysis, Cancer, Relative survival, Regression models, Competing risks

Background
Observational studies of cancer patient survival often
use data recorded by population-based cancer registries
and are typically analyzed using relative survival. Rela-
tive survival is defined as the observed (all-cause) survival,
S(t), among the cancer patients divided by the expected
survival, S∗(t), in a comparable group (with respect to
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age, sex, calendar year and possibly other covariates)
in the general population. On the hazard scale, rela-
tive survival provides a measure of excess mortality that
can be assumed to be entirely, directly or indirectly,
attributable to the disease [1]. One reason for why mod-
elling excess mortality has become the preferred method
for population-based cancer patient survival analysis is
that it not only captures deaths that are directly due to
the cancer in question but also deaths that can be thought
of as indirect or cancer-consequent, without relying on
the classification of cause of death. There are, however,
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research areas of clinical interest that involve estimat-
ing the effect of one particular component of the excess
mortality and existing methodology does not provide an
immediate answer to how such an analysis might be car-
ried out. For example, late adverse health effects in cancer
patients is a growing problem given the longer survival
seen for most cancers. Cause-specific survival in breast
cancer patients is far better today than 20 years ago prob-
ably due to intensifiedmammography screening andmore
prevalent use of adjuvant therapy such as anti-hormones
and chemotherapy. Several studies have, however, identi-
fied an increasing risk of cardiovascular disorders, mainly
myocardial infarction, possibly associated with radio- and
chemotherapy such as anthracyclines, in breast cancer
survivors. If the primary interest lies in studying tem-
poral trends in treatment-related mortality following a
diagnosis of breast cancer, how can we best identify the
deaths that occur as a consequence of the treatment? It is
well-known that radiotherapy and chemotherapy follow-
ing a breast cancer diagnosis cause cardiac dysfunction
and increase cardiovascular mortality more than 15 years
after diagnosis and hence indirectly contribute to excess
breast cancer mortality [2-4]. These deaths are particu-
larly difficult, if at all possible, to identify solely based
on the information stated on the death certificate. The
reason is that a correct classification of death due to
treatment-induced cardiovascular disease (CVD) would
require knowledge about which cardiovascular deaths
would not have occurred in the absence of a cancer diag-
nosis. Previous work in this area has involved compar-
ing CVD specific mortality ratios by laterality in women
treated with radiotherapy compared to women who did
not receive radiotherapy treatment [5] or via modelling
of standardized mortality ratios [6]. The first approach
is often not appropriate for cancer register data where
treatment is, if recorded, not randomized. Moreover, both
approaches analyse the excess CVD mortality as an iso-
lated condition, ignoring the fact that the excess CVD
mortality is only one component of the excess mortality,
and thus the possibility that certain covariate effects can
be assumed to be equal for the different component parts.
In situations where one of the events is rare such assump-
tionsmay become necessary to avoid overfitting themodel
[7]. Pintilie and others [8] have recently suggested a case-
cohort approach to estimating treatment-related mortal-
ity in patients diagnosed with Hodgkin lymphoma while
simultaneously accounting for competing causes of death
by borrowing ideas from Fine and Gray [9]. We sug-
gest an alternative approach, building on work of Royston
and Parmar [10] on flexible parametric survival models
and later adapted for relative survival by Nelson et al.
[11]. The latter models are fitted on the log cumulative
excess hazard scale using restricted cubic splines [12] for
the baseline excess hazard and for any time-dependent

effects. By borrowing ideas from classical competing risks
theory and incorporating background mortality rates,
stratified by the reported underlying causes of death,
reported in the Swedish population we propose a model
that simultaneously models the number of CVD-deaths
and remaining deaths (i.e., deaths other than CVD deaths)
among the cancer patients that occur in excess to what is
expected in a cancer-free population.
Crude probabilities of death due to cancer and other

causes can be derived using the theory of competing risks
and have previously been shown to be particularly useful
under circumstances where it is of interest to communi-
cate cancer prognosis while accounting for the fact that
cancer patients are at risk of experiencing mortality due
to a wide range of other causes than their cancer. Cronin
et al. showed how the crude probability of death due to
cancer and other causes can be calculated from life-tables
[13]. The theory has subsequently been further developed
by Lambert et al. to show how the crude probabilities of
death can be calculated after fitting a flexible paramet-
ric relative survival model to individual patient data [14].
In this paper we show how the excess hazard functions,
related to the different outcomes under investigation, can
be used further to partition the crude probabilities of
death into component parts (i.e., death due to excess CVD
or other cancer-related causes).
The proposed methodology is illustrated using women

diagnosed with breast cancer in Sweden between 1973-
1992 and followed up for a maximum of 15 years.
The paper is outlined as follows: The Methods section
describes relative survival, flexible parametric models for
relative survival and provides a framework for how flexible
parametric models are adopted for modelling competing
risks. The Results and discussion section describes the
breast cancer application, implements the method on this
data set, and discusses the assumptions of the models.
Potential areas for future development and refinement are
discussed in the Conclusions section of the paper.

Methods
Excess mortality and relative survival
The total (all-cause) hazard, h(t), experienced by the
patients is the sum of two components, the expected
hazard rate in the background population, h∗(t), and the
excess hazard rate, λ(t), associated with a diagnosis of the
cancer, i.e.,

h(t) = h∗(t) + λ(t). (1)

The survival analogue of the excess hazard rate is the rela-
tive survival and on the survival scale the total (all-cause)
survival can be written as

S(t) = S∗(t)R(t) (2)
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where S∗(t) is the expected survival and R(t) is the relative
survival at time t. Both S∗(t) and h∗(t) are assumed known
and are usually obtained from routine data sources (e.g.,
national or regional life tables).

Flexible parametric models
Flexible parametric models for survival analysis were
developed by Royston and Parmar [10] and extended to
relative survival by Nelson et al. [11]. These models are
fitted in continuous time on the log cumulative baseline
excess hazard scale using restricted cubic splines to esti-
mate the baseline log cumulative excess hazard. In addi-
tion, as flexible parametric models are fitted on individual
level data, continuous covariates can easily be included.
The total (all-cause) cumulative hazard, H(t), is retrieved
by integrating equation 1 to give

H(t) = H∗(t) + �(t). (3)

In the above expression H∗(t) is the expected cumulative
hazard in a comparable group from the background popu-
lation and assumed known whereas�(t) is the cumulative
excess hazard assumed to be attributable to the cancer.
By assuming that the cumulative excess hazard is a multi-
plicative function of the covariates, x, and that the effects
are proportional with respect to the underlying time scale
gives

ln(�(t; x)) = s(ln(t); γ0, k0) + xTβ . (4)

Here the log cumulative baseline excess hazard is repre-
sented by restricted cubic splines for ln(t), s(ln(t); γ0, k0),
characterised by the vector of knot positions, k0, and the
vector of parameters associated with the spline variables,
γ0 and where the effects of covariates, x, are given by β .
The derivation of the spline function has been described
in detail elsewhere [10].

Time-dependent effects
Non-proportional excess hazards models, i.e., models
with time-dependent covariate effects, are often biologi-
cally plausible when studying cancer patient survival and
such models can be fitted by including interaction terms
for the covariate effects that are assumed to depend on
time and the spline function representing the time scale.
In flexible parametric models the time-dependent effects
generally require fewer knots than the baseline effects [11]
so for each time-dependent effect, xi, a new configuration
of the knots may be chosen. This gives the model

ln(�(t; x)) = s(ln(t); γ0, k0)+xTβ+
D∑
i=1

s(ln(t); γi, ki)xi

(5)

where D is the number of time-dependent covariate
effects and s(ln(t); γi, ki) is the spline function for the ith

time-dependent effect. Note that for each of the D time-
dependent effects represented by xi in themodel above are
typically a subset of x.
Flexible parametric survival models have advantages

over Poisson regression models for excess mortality,
which fit piecewise constant effects for the baseline excess
hazard rate, as they obviate the need for splitting the time
scale into a number of intervals. In contrast to equation 5,
a piecewise approach, with a reasonable number of split
points, typically implies estimating a large number of
parameters for the time-dependent effects. A number of
alternative approaches to model λ(t) have however also
been proposed [15-18]. While the most common solu-
tion for handling time-dependent covariate effects is via
inclusion of interaction terms between the covariates that
depend on time and the time-scale, alternative approaches
for assessing time-dependence and goodness-of-fit have
also been proposed [18,19].
In the current application of flexible parametric models

the outcome is mortality. For this reason we will use the
term excess mortality, in place of excess hazard. The latter
is, in most applications of survival analysis, regarded as
the generic term for any time-to-event outcome and the
reader may think of the terms as being exchangeable.

Flexible parametric models for component-specific excess
mortality
In order to partition the excess mortality into component
parts, the ability to identify the excess mortality related
to the specific cause of interest in the data is central.
Treatment-related side effects leading to death contribute
to excess mortality in cancer patients and, in particular,
excess CVD mortality has been reported in women with
breast cancer [3,5]. These type of events are difficult to
identify solely based on death certificate information but
an estimate of the excess mortality caused by the treat-
ment can be retrieved indirectly by comparing the CVD
event rate in the group of patients to that in a comparable
group, assumed to be free from the cancer in question, in
the general population. That is, in this situation the event
of interest is only identifiable via a relative survival frame-
work. When mortality is the endpoint the events that are
not of primary interest (in this application those events
that account for the remaining cancer consequent deaths)
act as competing causes of death as they preclude the
event of interest from occurring. To account for the com-
peting causes we borrow ideas from classical competing
risks theory when simultaneously modelling the compo-
nent parts that make up the total excess mortality. For the
current application we can re-express equation 3 in terms
of the component parts of interest, i.e.,

H(t) = H∗
cvd(t) + H∗

other(t) + �(t)cvd + �(t)other , (6)
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where other is used to denote deaths due to other causes
than CVD.Written on this form,H∗

cvd(t) andH
∗
other(t) rep-

resent the expected mortality from CVD and other causes
respectively and are assumed known from national mor-
tality statistics. �(t)cvd is our main quantity of interest
and represents the excess CVD mortality rate among the
patients whereas�(t)other represents the remaining excess
mortality rate attributable to the cancer. The main contri-
bution to�(t)other comes from deaths from the underlying
disease (breast cancer in this case), but side effects other
than CVD, such as second malignancies contribute to the
remaining excess hazard too.
Let j ∈ {cvd, other}. A competing risk analogue of the

flexible parametric survival model for relative survival can
now be written as

ln(�j(t; x)) = s(ln(t); γ0,j, k0,j) + xTβ j (7)

where s(ln(t); γ0,j, k0,j) provides an estimate of the log
cumulative baseline excess mortality for cause j and the
vector β j represents the covariate effects on cause j. We
can fit separate models for each cause of death accord-
ing to (7), and thereby allow the component-specific
baseline cumulative excess mortality functions to take
completely different shapes for the two outcomes. The
analysis is standard if the research question is restricted
to either �(t)cvd or �(t)other or if both component parts
are of equal interest but there are no joint parameters
shared between the outcomes. The main requirement
for fitting models of the type described in (7) is that the
expected mortality files can be stratified by the causes of
death in question. An equivalent approach to modelling
multiple outcomes in one single step is however often
required, in particular if we are willing to assume that
some covariate effects are shared between the outcomes
under study. However, modelling multiple outcomes
simultaneously requires additional data preparation. In
particular, the number of observations per individual in
the data set need to match that of the number of causes of
death under investigation (in our example, each woman
will be represented by two rows in the new data set).
In addition, a covariate representing cause of death is
needed (in our example CVD or other) as well as a binary
covariate indicating which of the different outcomes the
individual eventually died from (if any). Data sets on this
form are described in detail in [7] and are sometimes
referred to a long format data sets. Having a data set up
in long format allows the inclusion of a covariate repre-
senting cause of death as a time-dependent effect in the
model and thereby the possibility to account for separate
shapes for the underlying component-specific baseline
excess mortality functions. To illustrate this in the case
where only two competing causes of excess deaths are
considered, we can express a joint model for the two
outcomes as

ln(�j(t; x)) = s(ln(t); γ0, k0) + xTβ + cj(βcvd

+ s(ln(t); γcvd, kcvd) + xTβcvd)
(8)

where

cj =
{
0, if j = other;
1, if j = CVD

and where s(ln(t); γ0, k0) now represents the log cumu-
lative baseline excess mortality function for causes other
than excess CVD, βcvd the parameter that represents the
shift in the baseline excess function if interest is in the
excess CVD mortality, and s(ln(t); γcvd, kcvd) the time-
dependent effect that allows the baseline excess mortality
function for the excess CVD mortality to vary freely. In
this example, xTβ denotes the effect of the covariates that
are assumed common for the two causes whereas xTβcvd
represents interaction effects (i.e., the additional covariate
effects for modelling the excess CVD mortality). Fur-
thermore, additional complexity such as time-dependent
covariate effects can easily be accommodated by including
additional interaction terms with a spline term represent-
ing the underlying time scale (see equation 5 for details).
The individual contribution to the log likelihood for a

flexible parametric model on the log cumulative hazard
scale is described in detail in [20]. Stata’s stpm2 module
[20] was used to applying the proposed model to women
with breast cancer in Sweden. The stpm2 module is a
readily available user-written program which uses Stata’s
optimizer, ml (which in turn uses the Newton-Raphson
algorithm) to maximize the likelihood function.

Estimating crude treatment-related mortality
The crude probability of dying from cancer, Crcan(t), i.e.,
the probability of dying from cancer estimated in the pres-
ence of competing causes of death, can be calculated using
standard competing risk definitions [7]. However, because
we are in a relative survival setting, we first need to sub-
stitute the estimates of the all-cause survival, S(t) and
cancer-specific hazard, hc(t), with their relative survival
counterparts. This involves replacing S(t) with S∗(t)R(t)
and hc(t) with λ(t), respectively [14]. The crude probabil-
ity of death from the cancer can hence be expressed as

Crcan(t) =
∫ t

0
S∗(u)R(u)λ(u)du. (9)

Similarly, the crude probability of death due to causes
other than cancer, Crnon−can, is given by

Crnon−can(t) =
∫ t

0
S∗(u)R(u)h∗(u)du. (10)

After having partitioned the excess mortality rate, λ(u),
associated with cancer into component-specific excess
hazard rates via (8), we can also partition Crcan(t) by
extending (9). We are hence able to estimate the crude
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probability of dying from excess CVD (i.e. the treatment-
related CVD), Crcan,cvd, as well as the remaining excess
mortality attributable to the cancer, Crcan,other . Formally,
this is achieved using

Crcan,j(t) =
∫ t

0
S∗(u)R(u)λj(u)du, j ∈ {cvd, other}

(11)

where R(u) = ∏
j Rj(u) and λj(u) = d�j(t)

dt . The Crcan,j(t)
can be viewed as marginal probabilities, i.e.,

Crcan(t) =
∑
j
Crcan,j(t). (12)

The integrands in equations 9, 10 and 11 are non-
linear functions of the model parameters and the integrals
are obtained numerically by splitting the time scale into
a large number, n, of small intervals and summing the
values of the integrand for the n time intervals. 95% confi-
dence intervals are retrieved using the delta method. For a
detailed description of the method used for the numerical
integration and for calculation of confidence intervals see
Lambert et al [14].

Application to breast cancer in Sweden - Description of
the data
We obtained a data set encompassing all female breast
cancer registrations in Sweden between 1 January 1973
and 31 December 1992 from the National Swedish Cancer
Register [21]. All women had a potential follow-up of at
least 15 years. Among the 70,655 women there were 8,939
deaths where the underlying cause of death was classified
as CVD and 31,422 deaths where the underlying cause
of death was classified as other than CVD. Cause-specific
background mortality rates were created by combin-
ing publically available national mortality statistics with
population-based information about the underlying cause

of death reported to the Swedish Cause of Death Register
1973-2007. A detailed description of this procedure is
provided in the appendix.

Results and discussion
Proportional excess hazards model
Time since diagnosis, estimated using survival times in
days, was used as the underlying time scale. We fitted
a proportional excess hazard model where age at diag-
nosis and calendar year of diagnosis were included as
categorical variables. Interaction terms between age at
diagnosis and cause of death and between calendar period
and cause of death were included to allow the effect to
differ for the two outcomes respectively. The log cumula-
tive baseline excess mortality functions for both outcomes
were modeled using restricted cubic splines with 5 df.
The knots were places at the 0th, 20th, 40th, 60th, 80th
and 100th centiles of the uncensored log event times. For
comparison we also fitted a proportional excess mortality
model for the total excess mortality (i.e., without parti-
tioning the excess mortality into component parts). All
reported p-values refer to results from likelihood ratio
tests.
The estimated excess mortality rate ratios (EMRR)

from the two models are shown in table 1. The EMRRs
for the total excess mortality and the remaining (non-
CVD) excess mortality are very similar. This is expected
because the excess CVD deaths only constitute a relatively
small portion of the total excess mortality. The effect of
age at diagnosis on excess CVD mortality is more pro-
nounced than for the excess remaining mortality (p for
interaction < 0.001). The predicted excess CVD mor-
tality rate for women aged 70-79 was 5.32 (95 % CI:
3.51-8.06) times higher than that of women aged 50-59
at diagnosis whereas the corresponding EMRR for the
remaining excess mortality was 1.09 (1.04-1.14). There
was no evidence against the hypothesis of a common

Table 1 Parameter estimates from flexible parametric models

Covariate EMRR (CVD) EMRR (remaining) EMRR (total)

Age at Diagnosis

< 50 0.40 (0.24-0.69) 0.96 (0.92-1.00) 0.95 (0.91-0.99)

50-59 1.00 (reference) 1.00 (reference) 1.00 (reference)

60-69 1.84 (1.16-2.91) 0.99 (0.95-1.03) 1.00 (0.96-1.04)

70-79 5.32 (3.51-8.06) 1.09 (1.04-1.14) 1.11 (1.06-1.16)

Calendar Period

1973-1977 1.00 (reference) 1.00 (reference) 1.00 (reference)

1978-1982 1.13 (0.68-1.87) 0.82 (0.79-0.85) 0.82 (0.79-0.86)

1983-1987 1.23 (0.76-2.01) 0.76 (0.73-0.79) 0.78 (0.75-0.81)

1988-1993 0.76 (0.45-1.31) 0.58 (0.56-0.60) 0.59 (0.56-0.61)

Component-specific and total excess mortality rate ratios (EMRR) with 95 percent confidence intervals (CI) estimated frommodels assuming proportional excess
hazards.
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effect of calendar period on the excess mortality for the
two outcomes (p = 0.292).
The left part of figure 1 shows the overall excess mor-

tality rate per 1,000 person-years for patients diagnosed
at ages 70-79 years between the years 1978-1982 as a
function of years since diagnosis whereas the right part
of the graph shows the mortality rates for excess CVD
deaths and the remaining excess deaths separately. In can-
cer patient survival the overall cancer mortality rate is
typically highest within the first few years after diagnosis.
This is also observed in figure 1 although the pattern of
the excess CVD mortality rate is somewhat different. In
general, we expect to observe an increasing excess CVD
mortality rate with increasing time since diagnosis. How-
ever, elderly women are more likely to be cardiologically
fragile at the time of diagnosis which could potentially
explain the high excess CVD mortality immediately fol-
lowing diagnosis. Because the main objective of this appli-
cation is to study late adverse health effects of cardio-toxic
therapies such as anthracyclines and radiotherapy we have
chosen not to show any results for the first three months
following the diagnosis of breast cancer.

Non-proportional excess hazards models
In cancer patient survival analyses it has previously been
shown that the effects of age at diagnosis and calen-
dar period are often non-proportional. The model was
extended to evaluate the need for time-dependent effects

for the two covariates by including additional interaction
terms with the spline variables representing the time scale.
Each time-dependent effect was modelled using 3 df (with
knots placed at the 0th, 33rd, 67th and 100th centiles of
the uncensored log survival times) whereas the baseline
effect was still modelled using 5 df. In thismodel, the effect
of calendar period was assumed common for the two
outcomes. The resulting excess mortality rates per 1,000
person-years, for women diagnosed 1978-1982 are shown
in figure 2. The excess CVD mortality tends to increase
as a function of time since diagnosis whereas the oppo-
site is seen for the remaining excess mortality. However,
for the eldest age group, the excess CVD mortality seems
to follow a U-shape the first 7 years after diagnosis which
is probably reflecting that a selection of these patients are
presenting with damaged vessels already at the time of
diagnosis and are therefore at a higher risk for cardiac
mortality even shortly after diagnosis. The excess CVD
mortality rate increases with increasing age at diagnosis
but is lower than the remaining excess mortality through-
out follow-up. Figure 3 shows the predicted EMRRs for
the effect of age at diagnosis on the component parts as
a function of time since diagnosis. Apart from a tendency
towards a departure immediately after diagnosis the effect
of age at diagnosis on excess CVD mortality remains rel-
atively constant throughout the 15 years of observation
time (p for interaction = 0.346). A more notable departure
from the proportional hazards assumption is observed for
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Figure 1 Partitioning excess mortality. Predicted total and component-specific excess mortality rates (per 1,000 person-years) estimated from a
proportional excess hazards model among women diagnosed with breast cancer in Sweden at ages 70-79 years and between the years 1978-1982.
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Figure 2 Component-specific excess mortality rates. Predicted component-specific excess mortality rates (per 1,000 person-years) among
women diagnosed with breast cancer in Sweden between 1978-1982, estimated from a model accounting for time-dependent effects.
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Figure 3 Component-specific excess mortality rate ratios. Predicted component-specific excess mortality rate ratios, (EMRR), among women
diagnosed with breast cancer in Sweden between 1978-1982, estimated from a model accounting for time-dependent effects.

the remaining excess mortality, primarily among the two
eldest age groups (p < 0.001).
With the aim of studying temporal trends in excess

mortality partitioned into component parts, we fitted a

second non-proportional excess mortality model where
age at diagnosis and calendar period were included in
the model as continuous covariates using restricted cubic
splines, each modelled with 4 df (with knots placed at
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the 5th, 25th, 50th, 75th and 95th centiles of the distri-
butions of the two variables respectively). Both covariates
were included as time-dependent effects (implying spline-
spline interaction terms using 4 × 3 = 12 df to model the
time-dependence for each of the two covariates). Neither
the effect of age at diagnosis nor the effect of calendar year
of diagnosis on the excess mortality rate were assumed
to be common when modelling the component-specific
excess mortality rates. In addition, the effect of calendar
period on the remaining excess mortality was found to
depend on age at diagnosis suggesting a need for a three-
way interaction term in the model (p < 0.001). To reduce
the potential risk of over parametrization the latter inter-
action term was restricted to the linear components (i.e.,
the first spline variable) of the spline terms representing
age at diagnosis and calendar year. The predicted 5-,10-
and 15 year excess mortality for the two outcomes for
women aged 55, 65 and 75 years at diagnosis are shown as
a function of year of diagnosis in figure 4. The bottom two
graphs suggests a reduction in both short and long term

remaining excess mortality over calendar time whereas no
such trend is evident for the excess CVD mortality (top
graphs). Although we lack global evidence of a statistically
significant trend of a decreasing excess CVD mortality
with calendar time, the tendency towards a reduced rate
from the mid 1980’s can possibly be explained by an
increasing use of partial mastectomies, resulting also in
lower radiation doses to the heart [22].

Crude probability of cancer death
The crude probabilities of death due to cancer were par-
titioned by applying equation 11 to each component part
after having partitioned excess mortality into component
parts. The predicted relative survival estimates and excess
mortality rates from the second non-proportional hazards
model, described last in the previous section, were used
in the numerical integration. The top three graphs in
figure 5 show how the crude probabilities of death due
to treatment-related CVD, breast cancer death (exclud-
ing the CVD deaths) and other causes respectively vary
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Figure 5 Crude probabilities of death. Predicted crude probabilities of death and the relative contribution of the component parts to total
mortality among women diagnosed with breast cancer in Sweden in 1992 at ages 55, 65 and 75 respectively.

as a function of time since diagnosis for patients diag-
nosed in 1992 at ages 55, 65 and 75. The graphs clearly
show how the risk of dying from any breast cancer related
cause decreases as the patients are diagnosed at an older
age whereas the risk of dying from causes other than the
cancer increase with increasing age at diagnosis. For the
two mutually exclusive sources of excess cancer mortality
we see that the probability of death from excess CVD
increased with age at diagnosis as opposed to the proba-
bility of death from the remaining cancer causes. This is
due to treatment-related side effects being less common
in younger ages when the patients are typically of better
cardiac health.
The three bottom graphs of Figure 5 show the relative

contribution of each component part, as well as death due
to other causes, to the total mortality. Hence, by condi-
tioning on that a woman, diagnosed in 1992 and aged
55, 65 or 75 years respectively at diagnosis, has died by
time t, these graphs illustrate the proportion of all deaths
estimated to be due to each possible cause of death. For
all three age categories, the proportion of cancer deaths

(excluding excess CVD deaths) decrease with elapsed
time since diagnosis whereas the opposite is observed for
deaths due to other causes than cancer. In contrast, the
excess CVD deaths remain quite constant throughout the
15 years of follow-up.
Figure 6 summarizes temporal trends in the 15-year

crude probabilities of death due to the three different
causes of death for women of ages 55, 65 and 75 years at
diagnosis estimated from the same model. For all three
ages, dramatic improvements can be seen for the remain-
ing excess cancer mortality whereas no improvement is
observed for the excess CVD mortality. For example, the
15-year probability of death for women aged 65 years at
diagnosis and who were diagnosed in 1973 is 0.016 (95%
CI: 0.004,0.027) compared to 0.012 (95 % CI: 0.005, 0.019)
for women diagnosed in 1992. Interestingly, the proba-
bility of death due to other causes does not seem to be
affected by the substantial decrease in cancer mortality for
women aged 65 years or younger at diagnosis. However,
among the older women deaths due to other causes have
increased somewhat during the period of of observation
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Figure 6 Temporal trends in the crude probabilities of death. 15-year crude probabilities of death among women diagnosed with breast
cancer in Sweden at ages 55, 65 and 75 respectively.

since the decreased cancer mortality has increased the
’opportunity’ to die from other causes.

Assumptions and sensitivity analyses
There are two key assumptions for the proposed approach
for partitioning the excess mortality into component
parts. Firstly, although cause of death information is not
used directly to identify patients who were reported to die
from excess CVD (due to the inherent difficulty of deter-
mining whether the death would have occurred had the
women not have been treated from breast cancer) it is
used indirectly to determine the number of CVD deaths
that occur in excess to what is expected in a popula-
tion free of breast cancer. In order to study the impact of
potential misclassification of CVD-events in the cause of
death recordings obtained from Swedish official statistics
we calculated the proportion of the observed CVD deaths
that would have had to be coded erroneously in order to
reduce the excess CVD mortality by 10, 15 and 20 per-
cent respectively. The results, including also the observed

and expected CVD counts in the data (stratified by age at
diagnosis and year of diagnosis), are presented in table 2.
The results show that, irrespective of covariate pattern,
a misclassification of 6 to 7 % of the CVD deaths would
decrease the excess CVD deaths by 10%. Nyström et al.
[23] have previously examined the quality of the cause
of death classification of 282,777 women (1,296 deaths)
who participated in the Swedish randomized mammogra-
phy trials between the years 1976 and 1982. The authors
retrieved copies of medical records including autopsy pro-
tocols, death certificates, and histopathology reports and
set up an end point committee to review the information
relevant for assessment of the cause of death and found a
high concordance concerning breast cancer as underlying
cause of death with the information reported to the official
statistics bureau in Sweden. The study supports the use
of official health statistic in the evaluation of the Swedish
screening trials. In this study cause of death was stratified
on cardiovascular outcomes but the findings of Nyström
et al. are nevertheless relevant even in this setting as



Eloranta et al. BMCMedical ResearchMethodology 2012, 12:86 Page 11 of 15
http://www.biomedcentral.com/1471-2288/12/86

Table 2 Sensitivity of cause-of-death classification

At risk Observed Expected Excess Proportion of misclassified CVD

CVD CVD deaths deaths required to reduce

deaths deaths (ED) the ED:s by 10,15 and 20 %

10% 15% 20%

Year of Diagnosis:

1973-1977

≤ 49 years 3339 35 11.9 23.1 6.6 10.0 13.1

50-59 years 3713 127 42.4 84.6 6.7 10.0 13.3

60-69 years 4522 600 205.3 394.7 6.6 9.9 13.2

70-79 years 4009 1313 621.8 691.2 5.3 7.9 10.5

Year of Diagnosis:

1978-1982

≤ 49 years 3447 28 10.5 17.5 6.4 9.3 12.5

50-59 years 3750 127 42.1 84.9 6.7 10.0 13.4

60-69 years 4933 607 219.4 387.6 6.4 9.6 12.8

70-79 years 4898 1592 733.7 859.3 5.4 8.1 10.8

Year of Diagnosis:

1983-1987

≤ 49 years 3894 29 9.5 19.5 6.9 10.0 13.4

50-59 years 3463 122 33.5 88.5 7.3 10.9 14.5

60-69 years 5055 571 203.1 367.9 6.4 9.7 12.9

70-79 years 5155 1554 696.3 857.7 5.5 8.3 11.0

Year of Diagnosis:

1988-1992

≤ 49 years 4640 44 12.2 31.8 7.3 10.9 14.5

50-59 years 4308 106 40.5 65.5 6.2 9.2 12.4

60-69 years 6200 598 240.6 357.4 6.0 9.0 12.0

70-79 years 5329 1485 630.9 854.1 5.8 8.6 11.5

The impact of misclassification of CVD deaths as non-CVD deaths among the cancer patients on excess mortality.

they suggest that we are not likely to underestimate CVD
deaths in this study as a consequence of breast cancer
deaths being reportedmore frequently among the patients
than they would in a disease free population. However,
we recommend careful considerations of the quality of the
national statistics prior to applying this method in other
settings.
Secondly, relative survival analyses require the assump-

tion that survival from the disease under study is inde-
pendent of survival from other causes. The patients are
also assumed to be exchangeable to the background
population had they not been diagnosed with cancer.
In the current study where we in fact study two out-
comes in parallel the independence assumption is applied
twice. Firstly, in order to accurately estimate excess CVD
mortality among the patients we assume that the CVD
risk among the patients (in the absence if cancer) is

the same as the risk in the general population con-
ditional on age, calendar year and sex. An equiva-
lent assumption is also made for the remaining excess
mortality. It is known, due to a differential distribu-
tion of risk factors, that the risk for breast cancer is
greater among women from higher social classes, indi-
cating that the distribution social class differs between
patients and the general population. This suggests that
the assumption of exchangeability may be violated as
the background mortality rates are not stratified on
social class. If this is the case the comparison popula-
tion used is likely to have worse survival than what we
would expect under independence. This could poten-
tially bias the excess mortality rates for the component
parts downwards suggesting that the observed estimates
may, to some degree be, underestimated. It has, how-
ever, been demonstrated previously that such a bias is
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negligible in situations when the primary objective of
the study is not to compare patient survival by social
class [24].
Lastly, flexible parametric models use restricted cubic

splines for modelling the log cumulative baseline excess
mortality rate. Lambert et al. [14,20] have previously
shown that the excess mortality rates are robust to the
choice of number and placement of the knots used to
define the spline terms. As a sensitivity analysis we fit-
ted 6 models, all similar to the model described in the
first part of section Crude probability of cancer death, to
study the impact of the configuration of the knots used
for modelling the component-specific baseline excess
mortality rates as well as the restricted cubic splines
involved in estimating the time-dependent effects of age
and calendar year on the predicted excess mortality rates.
Table 3 shows the distribution of knots used for each
model (including model a) which generated figure 2) as
well as the associated AIC (Akaike information crite-
rion) and BIC (Bayesian information criterion). Varying
degrees of freedomwere used for the baseline log cumula-
tive excess hazards, dfb and the time-dependent effects of
the covariates, dft (covariate × time interaction). Figure 7
shows that the estimated excess mortality for the different
models are very insensitive to the placement and number
of knots used to model the spline terms. We do recognize
from table 3 that the model a) is formally not the best-
fitting model, based on the reported AIC or the BIC, but
given the descriptive purposes of this application and the
fact that the models provide extremely similar estimates
of the excess mortality rates it was nevertheless used for
demonstration of the method.

Conclusions
We have shown how excess mortality due to cancer can
be partitioned into component parts by fitting a flexible
parametric survival model stratified on cause of death.
The model is useful for simultaneously studying disease
patterns and temporal trends for defined causes of cancer-
consequent deaths. We have illustrated this by studying

trends in the excess CVD mortality and remaining excess
mortality among patients who have been exposed to a
potentially cardiotoxic treatment following a diagnosis of
breast cancer. These excess mortality rates quantify the
transition rates to the events of interest in the situation
where the patients are allowed to experience either of the
events under investigation. The main advantage of mod-
elling the different endpoints simultaneously is that, in
contrast to fitting separate models for each outcome, it
allows us to assume that the effects of some covariates
are common for all outcomes. Moreover, likelihood-ratio
tests or Wald tests may be used to formally assess this
assumption [7].
In addition, we have shown how the model estimates

may be used post-estimation to calculate crude proba-
bilities of death due to the component parts. The two
methods help to answer different questions but the crude
probabilities of death will generally be of more interest
to clinicians and patients when making decisions about
treatments as these estimates provide an estimate of the
probability of dying from, for example, treatment-related
CVD in the presence of other causes of death.

Future directions
The proposed model offers a possibility to monitor tem-
poral trends in treatment-related excess mortality. From a
public health perspective, being able to study if changes in
clinical practise towards reducing treatment-related mor-
tality have had an impact on patient survival is clearly of
importance. In this article we chose to apply the method
to study excess CVD among women with breast cancer,
but we believe the basic idea of the method is useful also
in other applications. Possible extensions of the method
described in this paper include additional partitioning of
the excessmortality. For example, an increased risk of lung
cancer following treatment with radiotherapy has been
reported among women with breast cancer [25]. Similarly,
treatment for Hodgkin lymphoma has also been reported
to increase the risk for secondary malignancies [26]. Finer
partitioning of excess cancer mortality would, however,

Table 3 Sensitivity to knot configuration

Model Baseline, dfb Age, dfa Year, dfy Number of parameters AIC BIC

a 5 3 3 38 304202 304537

b 4 3 3 36 304219 304537

c 3 3 3 34 304291 304592

d 5 2 3 35 304207 304517

e 5 4 3 41 304165 304527

f 5 3 2 35 304197 304507

g 5 3 4 41 304204 304565

Degrees of freedom for the baseline log cumulative excess mortality, dfb , the time-dependent effect of age at diagnosis, dfa and year at diagnosis, dfy .
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Figure 7 Sensitivity to knot configuration. Comparison of the predicted component-specific excess mortality rates (per 1,000 person-years) from
models with varying number and location of the knots for the restricted cubic splines that represent the baseline excess mortality functions and
time-dependent effects of age at diagnosis and calendar period.

require additional use of the information stated on the
death certificates and further work should address under
what situations finer stratification is feasible. Moreover,
because life-tables stratified on cause of death are typi-
cally not readily available, additional work examining the
possible need for applying different smoothing techniques
on the expected mortality rates might be of particular
importance for studying rare outcomes.
Another interesting possible extension of the model

would be to combine the proposed model with statistical
cure models. Cure models within the framework of flex-
ible parametric models have recently been proposed as
an alternative to parametric cure models [27]. A limi-
tation of cure models is that they are not appropriate
unless long-term excess mortality tends to zero (i.e., a
cure proportion exists). If the long-term excess mortality
is due to one specific cause (e.g., excess CVD) then we
can potentially partition out that component and subse-
quently fit a cure model. For example, combining the two
proposedmethodologies would allow for estimation of the
a theoretical cure proportion after having partitioned out

the excess mortality due to excess CVD mortality among
patients diagnosed with lung cancer.

Appendix
Methods for generating life-tables stratified on
cause of death
Data
We obtained individual level data containing information
about year of death, age at death, sex, underlying cause
of death and any contributing causes of death for all peo-
ple (n = 2,650,158) who died in Sweden between 1961
and 2007 and whose cause of death had been recorded
as any disease of the circulatory organs. Cause of death
is recorded in the Swedish official statistics according to
the International Classifications of Diseases (ICD). For
the current study the following ICD-codes were used to
identify diseases of the circulatory organs,

• ICD7(1961-1968):400-468,
• ICD8(1969-1986):390-458,
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• ICD9(1987-1996):390-459 and
• ICD10(1997-2007):I00-I99.

The life-tables used in the analysis were stratified based
on the underlying cause of death only, leaving 2,051,269
(77%) recorded cardiovascular events in the raw data. Of
these, individuals older than 99 at the time of death were
excluded (n = 520).
Data on the total number of deaths in Sweden as well

as population counts, stratified on age, sex and calen-
dar time was obtained in period format i.e., by year of
occurence) from the Human Mortality Database (HMD)
[28]. The HMD is a collaborative project sponsored by the
University of Berkeley and the Max Planck Institute for
Demographic Research. The raw data consist of birth and
death counts from vital statistics plus population counts
from official population estimates. A detailed documenta-
tion of the data cleaning [29] of raw data files is published
on the HMD web-page [28].

Calculation of cause-specific death rates
Data on population size (N), the total number of deaths
(d) in Sweden and the total number of CVD deaths (dCVD)
for the years 1973-2007 were collapsed over sex, age and
calendar year. Probabilities of death due to CVD and non-
CVD causes were estimated by taking the ratio of the
death counts and population at risk in matched intervals
of age (i), sex (j) and time (k). The correspondingmortality
rates were then calculated using

λCVD,i,j,k = −ln(1 − dCVD,i,j,k
Ni,j,k − dCVD,i,j,k

2

)

and

λnon−CVD,i,j,k = −ln(1 − d − dCVD,i,j,k
Ni,j,k − (d−dCVD,i,j,k)

2

).

The cause-specific event rates were subsequently
merged to the cancer patient data set (reshaped into long
format) with respect to sex, age and year at each patient’s
event time.
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