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A robust Capon beamformer (RCB) against the uncertainty of nominal array steering vector (ASV) is formulated in this paper. The
RCB, which can be categorized as diagonal loading approach, is obtained by maximizing the output power of the standard Capon
beamformer (SCB) subject to an uncertainty constraint on the nominal ASV. The bound of its output signal-to-interference-plus-
noise ratio (SINR) is also derived. Simulation results show that the proposed RCB is robust to arbitrary ASV error within the uncer-
tainty set.
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1. INTRODUCTION

Adaptive array has been studied for some decades as an at-
tractive solution to signal detection and estimation in harsh
environments. It is widely used in wireless communica-
tions, microphone array processing, radar, sonar andmedical
imaging, and so forth. A well-studied adaptive beamformer,
for example, the Capon beamformer [1], has high perfor-
mance in interference suppression provided that the array
steering vector (ASV) corresponding to the signal of interest
(SOI) is known accurately.

When adaptive arrays are used in practical applications,
some of the underlying assumptions on the environment,
sources, and sensor array can be violated. Consequently,
there is mismatch between the nominal and actual ASVs.
Common array imperfections causing ASV mismatch in-
clude steering direction error [2, 3], array calibration error
[4], near-far field problem [5], multipath or reverberation
effects [6], and so forth. Since ASVmismatch gives rise to tar-
get signal cancellation in adaptive beamformer, robust beam-
forming is required in practical applications.

Some robust adaptive beamformers have been proposed
to avoid performance degradation due to array imperfections
(see [7, 8] and references therein). However, most of these
methods deal with steering direction error only. When ASV
mismatch is caused by array perturbation, array manifold
mismodeling, or wavefront distortion, these methods cannot
achieve sufficient improvement on robustness [9].

If ASV can be modeled as a vector function of some pa-
rameters, like steering direction error [10] and time-delay er-
ror or general-phase-error (GPE) between sensors [11, 12],
robust beamformer can be constructed by maximizing the
output power of the standard Capon beamformer (SCB) to
those parameters in their feasible ranges. Efficient gradient
descent-based method [13] can be derived to find the op-
timal parameters. With these estimated optimal parameters,
the error in ASV can be compensated. The signal cancellation
effect in the output is then reduced.

In this paper, we further extend the idea used in [10–12]
to design an adaptive array robust to arbitrary ASV error.
Since the output power of the SCB is a function of the as-
sumed ASV, in this paper, we maximize the output power of
the SCB with respect to all feasible ASVs instead of those pa-
rameters of the ASV in [10–12]. Although nonzero scaling of
ASV does not change the output signal-to-interference-plus-
noise ratio (SINR) of the SCB, it introduces an arbitrary scale
in the output power. To eliminate this ambiguity of output
power, we assume that the ASV has unit norm. If there is
no other constraint on the ASV, the design of the array pro-
cessor can be simplified to a principal (minor) component
analysis problem (PCA/MCA) [14]. Nevertheless, when the
target signal is not the dominant one, such array processor
may wrongly suppress the target signal and retrieve interfer-
ence as the output signal. To solve this problem, we introduce
an additional uncertainty constraint on the ASV. This un-
certainty constraint of the ASV is also used in some robust
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methods [15–18]. It assumes that the feasible ASV is in an
ellipsoid whose center is the nominal ASV. With this uncer-
tainty constraint, the designed Capon beamformer is robust
to arbitrary ASV error even with the existence of strong inter-
ferences. We also derive the robust beamformer using a new
idea by maximizing the output power of the SCB; the derived
RCB has similar mathematical form as the beamformer in
[18]. Theoretical analysis shows that the proposed RCB can
be generalized as a diagonal loading approach. The diagonal
loading factor is calculated from the constraint equation. In
this paper, we derive the optimal output SINR of the pro-
posed RCB. Unfortunately, the calculated diagonal loading
factor for the proposed RCB is not in the theoretical range of
the optimal factor, meaning that the proposed RCB cannot
achieve the optimal output SINR. However, numerical ex-
periments show that the RCB demonstrates outstanding ro-
bustness to ASV error and has relatively high output SINR.

This paper is organized as follows. The derivation of
RCB and the performance analysis are given in Sections 2
and 3, respectively. Some numerical results are shown in
Section 4 to evaluate the performance of the proposed RCB.
In Section 5, a brief conclusion is given.

2. PROPOSEDMETHOD

Assume that the signals from K uncorrelated sources imping
on an array comprising M isotropic sensors. The power and
the ASV of the SOI are {σ2s , s0} and those of the interferences
are {σ2k , sk}, k ≥ 1. The theoretical covariance matrix of the
array snapshot is given by

R = σ2s s0s
H
0 +

K−1∑

k=1
σ2k sks

H
k +Q, (1)

whereM×M matrixQ is the covariance matrix of nondirec-
tional noise. It usually has full rank. In practical applications,
R is replaced by the sample covariance matrix R̂,

R̂ = 1
N

N∑

n=1
xnxHn , (2)

where N denotes the number of the snapshots and xn repre-
sents the nth snapshot.

If the steering vector s0 of the SOI is known, the Capon
beamformer is formulated as a linearly constrained quadratic
optimization problem. It minimizes the output power with
the constraint that the gain of the signal from the direction
of interest is unity, which can be expressed as

min
w

wH R̂w s.t. sH0 w = 1, (3)

wherew is the weight vector of the beamformer. The optimal
weight w0 and the output power σ̂2s of the SOI are

w0 = R̂−1s0
sH0 R̂−1s0

, σ̂2s =
1

sH0 R̂−1s0
. (4)

It is known that nonzero scaling of s0 does not change
the output SINR of the adaptive beamformer. However, it

changes the estimated output power in (4). Without loss of
generality, we assume that s0 has unit norm to eliminate the
ambiguity in the output power.

In practical applications, the ASV s0 is always unknown
or known but with some error. If s0 deviates from the true
one, target signal cancellation is inevitable. This results in de-
crease of output power in (4). A solution to this problem is to
search for an optimal ASV s, which results in maximal out-
put power σ̂2s [10–12]. Therefore, the robust beamformer can
be formulated as

max
s

min
w

wH R̂w s.t. sHw = 1, ‖s‖2 = 1, (5)

where ‖ · ‖2 denotes the Euclidian norm.
This optimization problem can be solved in two steps.

First, we fix s and search for the minimal output power.
Then we search for the maximal value of the minimal output
power to all the feasible s. For any given s, the output power
of the SCB is expressed in (4). Since sH R̂−1s is a scale, max-
imizing 1/sH R̂−1s is equivalent to minimizing sH R̂−1s. The
optimization in (5) is simplified to

min
s

sH R̂−1s s.t. ‖s‖2 = 1, (6)

which becomes a principal (minor) component analysis
problem [14]. The optimal ŝ is the eigenvector corresponding
to the largest eigenvalue of R̂.

However, if the target signal is not the dominant one, this
method leads to a wrong solution. Therefore, additional con-
straint must be incorporated in the optimization problem
(5). In many cases, s0 is assumed to be known but with some
error. For example, s0 belongs to the following uncertainty
set [15–18]:

s0 ∈
{
s | ∥∥s− s̄0

∥∥2 ≤ ε}, (7)

where s̄0 is the nominal ASV with unit norm.
With the uncertainty set of ASV (7), the robust beam-

former is constructed bymaximizing the output power of the
SCB when an imprecise knowledge of its steering vector s0 is
available:

max
s

min
w

wH R̂w s.t. sHw = 1, ‖s‖2 = 1,
∥∥s− s̄0

∥∥2 ≤ ε.
(8)

This is equivalent to

min
s

sH R̂−1s s.t. ‖s‖2 = 1, sH s̄0 + s̄H0 s ≥ 2− ε. (9)

The optimization problem (9) has analogous mathemat-
ical expression as that in [16–18] and it can be solved by the
Lagrange multiplier methodology [13]. Compare (8) and (9)
with (36) in [18]; the difference is the norm of the ASV s.
Hence, the solution of (8) can refer to [18]. The optimal so-
lution ŝ is given by

ŝ = −ĝ2
(
R̂−1 + ĝ1I

)−1
s̄0, (10)

where ĝ1 and ĝ2 are the estimated Lagrange multipliers. Since
the nonzero scale ĝ2 does not influence the output SINR of
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beamformer, it can be ignored in the analysis of output SINR.
It can be proved that ĝ1 ∈ (−1/λ1, +∞) using similar deriva-
tion in [18], where λ1 is the largest eigenvalue of the co-
variance matrix R̂. The corresponding optimal weight of the
beamformer is given by

w0 = R̂−1ŝ
ŝH R̂−1ŝ

, (11)

and the estimate of the signal power σ̂2s and the output SINR
ρ are given by

σ̂2s =
1

ŝH R̂−1ŝ
, ρ = wH

0 R̂sw0

wH
0

(
R̂i + R̂n

)
w0

, (12)

where R̂s, R̂i, and R̂n are the covariance matrices of the target
signal, interference, and nondirectional noise, respectively.

3. PERFORMANCE ANALYSIS

In this section, the bound of the output SINR of the pro-
posed beamformer is derived. A complete performance anal-
ysis of the SINR under general array imperfections represents
a formidable analytical task. In this paper, we assume that the
array processor only has steering vector error. The theoreti-
cal covariance matrix is used in the analysis. In such case,
the performance degradation of the Capon beamformer is
caused by the error in the nominal ASV. The output SINR of
the Capon beamformer is given in Lemma 1.

Lemma 1. Assume that the covariance matrices of the SOI and
the interference/noise are Rs and Rn, respectively. The covari-
ance matrix of array snapshot is R = Rs + Rn. When the nom-
inal ASV is given as s, and the true ASV is given by s0, the
output SINR ρ of the Capon beamformer is given by

ρ = ρo cos2(θ)

1 + sin2(θ)ρo
(
ρo + 2

) , (13)

where θ is the angle between vector s and s0, and ρo is the
output SINR of the Capon beamformer when accurate ASV is
known, and

cos2(θ) =
∣∣sH0 R−1n s

∣∣2
∥∥s0
∥∥2
R‖s‖2R

,

ρo = σ2s s
H
0 R

−1
n s0 = σ2s

∥∥s0
∥∥2
R,

(14)

where ‖x‖2R � xHR−1n x is the extended vector norm (Rn is a
positive matrix); σ2s is the power of the SOI. If Rn = σ2nI, the
extended vector norm ‖ · ‖R can be replaced by the Euclidian
norm, and

cos2(θ) =
∣∣sH0 s

∣∣2
∥∥s0
∥∥2‖s‖2

, ρopt = σ2s
σ2n

∥∥s0
∥∥2. (15)

Proof. Refer to [19].

Lemma 1 indicates that the output SINR of the Capon
beamformer is determined by the angle between the nominal

and the true ASVs. Moreover, it is easy to find that the out-
put SINR ρ is a monotonically increasing function of cos2(θ).
From (10) and (11), we find that the proposed RCB has sim-
ilar mathematical form as that of the Capon beamformer ex-
cept that the nominal vector s̄0 is replaced by the estimated
one ŝ. Therefore, the performance of the proposed RCB can
be analyzed via the angle between ŝ and s0. Herein, the bound
of output SINR of the proposed RCB is derived in Lemma 2.

Lemma 2. Assume that the covariance matrix of the interfer-
ence/noise is Rn and its eigendecomposition is

Rn =
[
Ui Un

][Σi 0
0 Σn

][
Ui Un

]
, (16)

where Ui and Un are the eigenvector matrices which span the
interference and noise subspaces, respectively. The diagonal ma-
trices Σi = diag{λ1, . . . , λK} and Σn = σ2nI are the correspond-
ing eigenvalue matrices. If λi � σ2n , i = 1, . . . ,K , the upper
bound ρu of the output SINR is

ρu = σ2s
∥∥PUns0

∥∥2

σ2n
, (17)

which is achieved when

g1 = −1
σ2n + σ2s

∥∥PUns0
∥∥2 , (18)

provided that sH0 PUn s̄ �= 0. The matrix PUn = UnUH
n is the

projection matrix to the subspace spanned by Un. The power
and ASV of the SOI are σ2s and s0, respectively.

Proof. Refer to the appendix.

Lemma 2 indicates that the optimal output SINR of the
RCB is achievable with negative diagonal loading factor.
Since λ1 ≥ σ2n + σ2s ‖s0‖2 ≥ σ2n + σ2s ‖PUns0‖2, the optimal
value of g1 is not in the range (−1/λ1,∞) of the solution for
the proposed RCB. Nevertheless, the simulation results in the
next section will show that the proposed RCB still has high
output SINR.

4. NUMERICAL STUDY

In this section, some numerical simulations were carried out
to evaluate the performance of the proposed RCB. A uniform
linear array containing eight sensors with half-wavelength
spacing is used to estimate the power of the SOI in the pres-
ence of strong interferences as well as uncertainty in the ASV.
There are two kinds of uncertainty under consideration. One
is the well-studied steering direction error, the other is ar-
bitrary ASV error. In the simulations, the array steering di-
rection error Δ is assumed to be 3◦. The arbitrary ASV error
is generated as random zero-mean complex Gaussian vector
with norm 0.4. The standard Capon beamformer (SCB) and
the generalized-phase-error-based beamformer (GPEB) [11]
are included for the purpose of performance comparison.

In the simulations, the estimate of signal power and
SINR were the average of 200 Monte Carlo experiments. The
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Figure 1: Output power and SINR versus the uncertainty level ε
(configuration 1).

nondirectional noise is a spatially white Gaussian noise
whose power is −10 dB. The powers and DOAs of the two
interferences are (σ21 = 20 dB, θ1 = 60◦) and (σ22 = 20 dB,
θ2 = 80◦), respectively. The assumed direction of arrival
(DOA) of the SOI is θ0 = 0◦. To show the performance of
the RCB under different input SINR, two configurations of
the SOI are used. In configuration 1, the SOI, which is not
the dominant signal, has power σ20 = 10 dB. In configuration
2, the SOI is assumed to be the dominant signal with power
σ20 = 30 dB.

In the first simulation, the output power and SINR of the
RCB versus ε are studied. The results shown in Figure 1 are
obtained with configuration 1. The ideal output power and
SINR of the SCB with known ASV are also shown. For any
kind of array imperfections, the output SINR of the RCB has
a peak value. This can be explained as follows. If small ε is
used, the uncertainty constraint does not include the true
ASV so that the output SINR is low. When ε is larger than
the optimal one, some signal components of the interfer-
ences are included in the output signal, resulting in the in-
crease of output power and the decrease of the output SINR,
as shown in Figure 1. As we discussed in Section 2, when ε
is large enough, the uncertainty constraint is inactive during
optimization. In such case, the output power maximization
results in target signal cancellation. When correct ε is used,
the output of the RCB has highest SINR. However, its output
SINR is lower than the ideal one. If the SOI is the dominant
signal (configuration 2), the results shown in Figure 2 are dif-
ferent from those shown in Figure 1. When ε is greater than a
certain value, the output SINR of the RCB remains constant.
The reason is that the optimization problem is simplified as
PCA problem in such case. The performance does not change
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Figure 2: Output power and SINR versus the uncertainty level ε
(configuration 2).

with the increase of ε. From the results shown in Figures 1
and 2, we find that the selection of ε is important, especially
when the SOI is not the dominant signal. In practical appli-
cation, εopt can be selected as

εopt = min
φ

∥∥s0 − e− jφs
∥∥2, (19)

where s is the ASV with error as discussed in [18].
In the next simulation, we evaluate the performance of

the RCB versus the number of sensors.The two curves shown
in Figure 3 are obtained using configurations 1 and 2, respec-
tively. The performance of the RCB increases with the num-
ber of sensors for both configurations. However, whatever
the configuration of signals, the performance of RCB does
not change significantly when the number of sensors is larger
than a certain value. The reason is that for a given configura-
tion, a certain degree of freedom (DOF) is necessary for in-
terference suppression. Extra DOFs cannot improve the out-
put SINR significantly. On the contrary, it causes target sig-
nal cancellation when there are array imperfections [20–22].
This is also the motivation of the partially adaptive beam-
former [21, 22]. Another property is that the RCB has higher
SINR improvement when the input SINR is low.

The covariancematrix in the simulation is estimated with
limited number of snapshots. It is well known that the co-
variance matrix estimated using sample averaging method
asymptotically approaches the true one. In the case where
only a small number of snapshots are available, the estimated
error in covariance matrix also affects the performance of
beamformer. The results shown in Figure 4 indicate that the
output power of the RCB is close to the true one although
the number of snapshots is small. With increasing number
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Figure 3: Output SINR improvement versus the number of sensors
(configuration 1: the SOI is not a dominant signal; configuration 2:
the SOI is a dominant signal).

of snapshots, the output SINR is improved for the proposed
RCB. However, for the SCB, due to steering direction error,
the target signal is cancelled and the output SINR remains at
low level. Similar conclusion can be obtained from the results
shown in Figure 5, which are obtained with random ASV er-
ror.

Compare the performance of the RCB and GPEB shown
in Figure 4. It is clear that the GPEB has higher output SINR
than that of the RCB when the covariance matrix is esti-
mated with large number of snapshots. The reason is that,
when the array imperfection can be modeled as GPE, the
GPEB can achieve the same output SINR as the ideal SCB
[11]. However, when the covariance matrix is estimated with
small number of snapshots, the performance of the GPEB
degrades, while the RCB still has higher performance than
that of the GPEB. When the array has random ASV error,
the results shown in Figure 5 indicate that the performance
of the GPEB is poor because the model of the array imper-
fection used in GPEB is violated. These simulations demon-
strate that the RCB can deal with more kinds of array imper-
fections.

In the next experiment, the power estimates of the
signals at different directions are evaluated when the ar-
ray has arbitrary ASV error. The covariance matrix is es-
timated from 100 snapshots. The direction and power of
the five sources are (−55◦, 10 dB), (−25◦, 20 dB), (0◦, 10 dB),
(20◦, 20 dB), and (50◦, 20 dB), respectively. With the exis-
tence of ASV error, the serious target signal cancellation ef-
fect on the SCB gives rise to large error in the estimated
output power. On the other hand, the proposed RCB does
not suffer from target signal cancellation. The simulation re-
sults in Figure 6 show that the proposed RCB gives estimates
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with steering error (ε = 0.13).
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Figure 5: Output power and SINR versus the number of snapshots
with random ASV error (ε = 0.03).

with significantly higher accuracy than that of the SCB esti-
mates.

From the simulation results shown in Figures 1 and 2, we
find that the RCB cannot achieve the highest output SINR
of the SCB with known ASV. Although the derived optimal
output SINR ρu in Lemma 2 is very close to the ideal output
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SINR when the dimension of Un is high, we point out in
Section 3 that the RCB cannot achieve this optimal output
SINR. The last experiment is carried out to compare the out-
put SINR of the RCB with its bound. The output SINR of the
SCBwith known ASV is also evaluated. In the simulation, the
steering direction error changes from 1◦ to 10◦. The results
in Figure 7 show that the bound of the RCB is lower than the
SINR of the SCB with known ASV. The output SINR of the
RCB is close to its bound when the steering error is small. Al-
though the output SINR of the RCB is lower than its bound,
it still demonstrates high robustness to steering vector error
as shown in all experiments.

5. CONCLUSION

The proposed robust beamforming method can be consid-
ered as maximizing the output power of the standard Capon
beamformer. The derivation clearly shows the relationship
between the proposedmethod and the beamformingmethod
based on principal component analysis technique. Due to
the existence of strong interference, uncertainty constraint is
applied on the nominal array steering vector to prevent the
RCB from target signal cancellation. Simulation results show
that the proposed beamformer is robust to arbitrary array
steering vector. The study on SINR improvement of the RCB
also shows that the RCB does not achieve its optimal output
SINR. Future work can be carried out to further improve its
output SINR.

APPENDIX

PROOF OF LEMMA 2

The proposed RCB uses the ASV ŝ0 given in (10) instead
of the nominal ASV s̄0 in the calculation of optimal weight
vector (11). Refer to Lemma 1; the bound of output SINR of
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Figure 7: Comparison of output SINR of the RCB with its bound.

the proposed RCB can be obtained by studying the angle be-
tween the ASV ŝ0 and the true one s0. Another proof can be
found in [23].

The array covariance matrix can be expressed as

R = σ2s s0s
H
0 + Rn. (A.1)

Using matrix inversion lemma, we have

R−1 = R−1n − σ2s
1 + ξ

(
R−1n s0

)(
R−1n s0

)H
, (A.2)

where ξ = σ2s s
H
0 R−1n s0.

Using matrix inversion lemma again,

(
R−1 +gI

)−1 = (R−1n +gI
)−1

+
k
(
I + gRn

)−1
s0sH0

(
I + gRn

)−1

1− ksH0
(
Rn + gR2

n

)−1
s0

,

(A.3)
where k = σ2s /(1 + ξ).

Substituting (A.3) into (10), we have

ŝ0 =
(
R−1 + g1I

)−1
s̄0

= (R−1n + g1I
)−1

s̄0 + d
(
I + g1Rn

)−1
s0,

(A.4)

where d = ksH0 (I + g1Rn)−1s̄0/(1− ksH0 (Rn + g1R2
n)
−1s0).

Assuming that the angle between ŝ0 and s0 is θ, we have

cos2(θ) =
∣∣ŝH0 R−1n s0

∣∣2
∥∥s0
∥∥2
R

∥∥ŝ0
∥∥2
R

. (A.5)
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The items in (A.5) can be calculated as

ŝH0 R
−1
n s0 = s̄H0

(
I + g1Rn

)−1
s0 + d∗sH0

(
Rn + g1R2

n

)−1
s0,

∥∥ŝ0
∥∥2
R = ŝH0 R

−1
n ŝ0

= s̄H0
(
I + g1Rn

)−2
Rns̄0 + 2Re

{
ds̄0
(
I + g1Rn

)−2
s0
}

+ |d|2sH0
(
I + g1Rn

)−2
s0,

(A.6)

where Re{·} is the real operator.
If we assume that the eigenvalues of Σi are far greater

than the variance of noise σ2n , using the eigendecomposition
in (16), (A.6) can be approximated as

ŝH0 R
−1
n s0 = s̄H0

(
I + g1Rn

)−1
s0 + d∗sH0

(
Rn + g1R2

n

)−1
s0

≈ s̄H0 UnUH
n s0

1 + σ2ng1
+
d∗sH0 UnUH

n s0
σ2n
(
1 + σ2ng1

)

= ψc

1 + σ2ng1
+

d∗ψ0

σ2n
(
1 + σ2ng1

) ,

∥∥ŝ0
∥∥2
R = s̄H0

(
I + g1Rn

)−2
Rns̄0 + 2Re

{
ds̄0
(
I + g1Rn

)−2
s0
}

+ |d|2sH0
(
I + g1Rn

)−2
s0

≈ σ2n s̄
H
0 UnUH

n s̄0(
1 + g1σ2n

)2 + 2Re

{
ds̄0UnUH

n s0(
1 + g1σ2n

)2

}

+
|d|2sH0 UnUH

n s0(
1 + g1σ2n

)2

= σ2nψb
(
1 + g1σ2n

)2 + 2Re

{
dψc

(
1 + g1σ2n

)2

}
+

|d|2ψ0
(
1 + g1σ2n

)2 ,

(A.7)

where

ψc= s̄H0 UnUH
n s0, ψ0= sH0 UnUH

n s0, ψb= s̄H0 UnUH
n s̄0.
(A.8)

If the angle between ŝ0 and s0 is θ, we have

f = cos2(θ) =
∣∣ŝHR−1n s0

∣∣2
∥∥s0
∥∥2
R‖ŝ‖2R

=
∣∣ψc +

(
d∗ψ0/σ2n

)∣∣2
∥∥s0
∥∥2
R

(
σ2nψb + 2Re

{
dψc

}
+
(|d|2ψ0/σ2n

)) .

(A.9)

Substitute

d = ksH0
(
I + g1Rn

)−1
s̄0

1− ksH0
(
Rn + g1R2

n

)−1
s0

≈ kσ2nψ
∗
c

σ2n
(
1 + g1σ2n

)− kψ0
= kσ2nψ

∗
c

β
,

(A.10)

where β = σ2n(1 + g1σ2n) − kψ0. Substituting d into (A.9), we
have

f (β) =
∣∣ψc +

(
d∗ψ0/σ2n

)∣∣2
∥∥s0
∥∥2
R

(
σ2nψb + 2Re

{
dψc

}
+ (|d|2ψ0/σ2n)

)

=
∣∣ψc

∣∣2(β + kψ0
)2

∥∥s0
∥∥2
R

(
σ2nψbβ2 + 2kσ2n

∣∣ψc

∣∣2β + k2σ2nψ0
∣∣ψc

∣∣2
) .

(A.11)

It is obvious that if |ψc|2 = 0, then cos2(θ) ≡ 0. In such a
case, the beamformer cannot work. The maximum value of
cos2(θ) is achieved when df (β)/dβ = 0. After some straight-
forward algebraic manipulations, it yields

β = 0. (A.12)

Hence,

σ2n
(
1 + g1σ

2
n

)− kψ0 = 0. (A.13)

Therefore, the upper bound of the output SINR is achieved
when the value of g1 satisfies

g1 = −1
σ2n + σ2s ψ0

= −1
σ2n + σ2s

∥∥PUns0
∥∥2 , (A.14)

and the corresponding output SINR is

ρo = σ2s
∥∥PUns0

∥∥2

σ2n
. (A.15)
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