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Abstract

In this contribution, we present a simple importance sampling technique to considerably speed up Monte Carlo
simulations for bit error rate estimation of orthogonal space-time block coded systems on spatially correlated
Nakagami fading channels.
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1 Introduction
In digital communications, the bit error rate (BER) serves
as a fundamental performance measure. For complicated
systems, analytical assessment of the BER becomes very
difficult, if not impossible, and Monte Carlo (MC) sim-
ulations must be applied to estimate the BER. In the
case of low BER, however, the computation time associ-
ated with MC simulations can be very long, since many
bits must be sent to generate a sufficient number of
bit errors. In order to speed up these simulations with-
out losing precision, importance sampling (IS) [1] can be
employed. The latter technique aims to reduce the vari-
ance of the BER estimator by using a biased distribution
for the input variables that increases the bit error proba-
bility during simulation. The use of the biased distribution
is corrected for by weighting the results with the ratios
of the actual to the biased probability density functions
(PDFs), yielding an unbiased BER estimate with lower
variance.
Although the application of IS is well documented,

the search for a convenient biased distribution remains
a challenging task. In conventional importance sampling
(CIS) [2], the variance of the additive Gaussian noise is
increased, resulting in a scaled noise distribution and
more errors. The improved importance sampling (IIS)
technique proposed in [3], on the other hand, shifts the
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mean of the actual PDF of the input random variables
(RVs) directly towards the error region. Both techniques
are combined in [4] for efficient simulation in Rayleigh
fading. In order to speed up the simulation of orthogo-
nal space-time block codes (OSTBCs) on Rayleigh-faded
multiple-input multiple-output (MIMO) channels, it is
shown in [5] that scaling the channel distribution is more
efficient than scaling the noise distribution. However,
an optimal biased channel distribution was not derived.
An IS methodology based on the stochastic gradient
descent (SGD) algorithm is presented in [6] for simula-
tion of adaptive systems in frequency-flat Rayleigh fading
channels.
In spite of the numerous papers on IS, an easy-to-use

biased distribution for simulation over non-Rayleigh fad-
ing channels is not yet available from the literature to the
best of our knowledge. In this contribution, we propose an
IS technique for simulation over a frequency-flat MIMO
fading channel, where we maintain the actual distribu-
tion for the channel noise and the data symbols, but use
a biased channel distribution. Furthermore, we illustrate
how the presented technique enables to derive a practi-
cal biased channel distribution for the case of OSTBCs
transmitted over a spatially correlated Nakagami-m fad-
ing channel. Although perfect channel knowledge (PCK)
is assumed for the derivation of the biased distribution,
this distribution allows accurate BER estimation in a wide
range of scenarios, such as pilot-based [7] or blind chan-
nel estimation, and in the presence of residual frequency
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offset, IQ imbalance, and phase noise. Moreover, the tech-
nique can easily be extended to the case of multicarrier
communication on dispersive MIMO channels, using for
instance OSTBCs or orthogonal space-frequency block
codes.

2 Importance sampling
Let us assume that a vector s consisting of Ns information
symbols is coded and transmitted over a frequency-flat
MIMO channel, the coefficients of which are comprised
in the vector h. Collecting both s and h and the vector w
consisting of the additive Gaussian noise samples into a
single input vector x = [s,w,h], the average BER can be
written as

Pb = E [F(x)] , (1)

where F(x) is the fraction of bit errors corresponding to
given x and E [.] denotes expectation over the PDF p(x) of
the vector x. The fraction F(x) is given by

F(x) = 1
Nb

Nb∑
n=1

In(x), (2)

where Nb is the number of bits contained in the symbol
vector s and In(x) equals 1 when the decision about the
nth bit is wrong and zero otherwise.When analytical aver-
aging over x is too complex, a closed-form BER expression
cannot be obtained. Using the MC method, however, the
average BER can be easily estimated by independently
generating a set ofN realizations {xi} of the input vector x
according to the actual PDF p(x) and simulating for each
realization the system operations that yield the bit deci-
sions at the receiver. An estimate of the BER is obtained as
the ratio of the number of counted bit errors to the total
number of bits transmitted

P̂b � 1
N

N∑
i=1

F(xi). (3)

Note that E
[
P̂b

]
= Pb. As the vectors xi in (3) are inde-

pendently generated, the variance of the BER estimator is
given by

E

[(
P̂b − Pb

)2] = 1
N

(
E

[
F2(x)

] − P2b
)
, (4)

which can be reduced by increasing the number of simula-
tion runs N. Nevertheless, when differences in the vectors
{xi} have a great impact on F(xi), N must be prohibitively
large (especially for small Pb) in order to obtain a suf-
ficient estimation accuracy. When using IS, N∗ vectors
{xi} are generated independently according to a biased
distribution q(x), and the BER estimate is computed as

P̂∗
b � 1

N∗
N∗∑
i=1

F (xi)
p (xi)
q (xi)

, (5)

where the correction factors p(xi)/q(xi) guarantee an
unbiased BER estimate. Note that the biased distribution
q(x) provides us with an additional degree of freedom
which can be used to reduce the variance σ ∗2 of the BER
estimate, which is given by

σ ∗2 = 1
N∗

(
E

∗
[(

F(x)p(x)
q(x)

)2
]

− P2b

)
, (6)

where E
∗[·] denotes expectation over the biased distri-

bution q(x). Using a proper biased distribution, the sim-
ulation time to estimate the BER with a given precision
can be reduced substantially as compared to conventional
MC simulation, i.e., N∗ � N . The variance σ ∗2 is min-
imized when the expectation in (6) is minimized; clearly,
this occurs for

q(x) = F(x)p(x)
Pb

, (7)

which yields σ ∗2 = 0. However, the biased distribution
from (7) is impractical, as it depends on the unknown
bit error rate Pb that is to be estimated by simulation.
Nevertheless, (7) indicates that an efficient biased dis-
tribution should be proportional to an approximation of
F(x)p(x).
In this contribution, we propose an IS approach where

we keep the actual PDFs for the data symbols s and the
additive channel noise w unchanged and search for a con-
venient biased distribution q(h) for the channel h. Hence,
we have

p(x) = p(s,w,h) = p(s,w|h)p(h), (8)

q(x) = q(s,w,h) = p(s,w|h)q(h). (9)

Using (8) and (9), it can be shown that (6) reduces to

σ ∗2 = 1
N∗

(
E

∗
[(

F̃(h)
p(h)

q(h)

)2
]

− P2b

)
, (10)

where E∗ [·] reduces to averaging over the biased channel
distribution q(h) and F̃(h) is defined as

F̃(h) =
√
Es,w|h

[
F2(s,w,h)

]
, (11)

with Es,w|h[·] denoting expectation over the conditional
PDF p(s,w|h). Considering the similarity of (6) and (10),
it follows that σ ∗2 from (10) is minimum for

q(h) ∝ F̃(h)p(h), (12)
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where ∝ denotes proportionality. However, a closed-form
expression for F̃(h) from (11) is usually not available or
too complex to yield a practical biased distribution.
In order to find a suitable biased distribution, we rear-

range (5) as

P̂∗
b = 1

Nb

Nb∑
n=1

P̂∗
b,n, (13)

where

P̂∗
b,n = 1

N∗
N∗∑
i=1

In(xi)
p(xi)
q(xi)

(14)

is the IS estimate of the probability that a detection error
for the nth bit occurs. As the variance of P̂∗

b is hard to com-
pute because of the correlation of the quantities P̂∗

b,n, we
look for the biased distribution of the form (9) that mini-
mizes the variance of the individual terms P̂∗

b,n rather than
the variance of P̂∗

b. Using the same reasoning that led to
(12), this biased distribution that corresponds to the bit
index n is

qn(h) ∝ Ĩn(h)p(h), (15)

where

Ĩn(h) =
√
Es,w|h

[
I2n(s,w,h)

] =
√
Es,w|h [In(s,w,h)].

(16)

Note that Es,w|h [In(s,w,h)] represents the conditional
error probability of the nth bit, conditioned on h. By
introducing Pb,n(h) � Es,w|h [In(s,w,h)], the biased dis-
tribution (15) reduces to

qn(h) ∝ √
Pb,n(h)p(h). (17)

The exact expression of the conditional bit error prob-
ability Pb,n(h) depends on the observation model and
the type of receiver considered and is often unknown.
Hence, a suitable approximation of Pb,n(h) is needed to
obtain a biased distribution (17) that adequately reduces
the variance of the estimate P̂∗

b,n.

3 Application to OSTBCs over Nakagami-m fading
channels

In this section, we derive a proper biased channel distri-
bution for OSTBC systems operating over spatially corre-
lated Nakagami-m fading channels. As an approximation
of the actual conditional bit error probability Pb,n(h) of the
system affected by channel estimation errors, we take the
conditional bit error probability P(ML)

b,n (h) of a maximum-
likelihood (ML) receiver with PCK, which in turn is well
approximated by [8]

P(ML)
b,n (h) ∝ Q

(√
β
Es
N0

‖h‖2
)
, (18)

where Q(·) is the Gaussian Q-function, β = 2λ in the
case of binary phase-shift keying (BPSK), β = 3λ

M−1 in
the case of M-quadrature amplitude modulation (QAM)
transmission with Gray mapping, and the parameter λ

depends on the specific OSTBC [7]. A further approx-
imation involves replacing Q(x) by the Chernoff upper
bound (1/2) exp(−x2/2) [8]. It follows from (17) that the
resulting biased distribution is given by

qn(h) ∝ exp
(

−β

4
Es
N0

‖h‖2
)
p(h), (19)

which is independent of the bit index n, so that the bit
index can be dropped. Hence, the same biased distribu-
tion can be used to reduce the variance of the individual
bit error probability estimates P̂∗

b,n for n = 1, . . . ,Nb, and
therefore, it is expected to efficiently reduce the variance
of the BER estimate P̂∗

b as well.
The Nakagami-m distribution is a versatile statistical

distribution able to accurately model a variety of fading
environments by selecting a proper value for the fading
parameter m ≥ 1/2 [8]. It also includes the Rayleigh dis-
tribution for m = 1. Assuming a MIMO channel vector
h = [h1, . . . , hL] with L elements, the correlation between
the channel coefficients is represented by the L× L power
correlation matrix �, the entries of which are defined as
([8] Eq. 9.195)

(�)i,n � cov(α2
i ,α2

n)√
var(α2

i ) var(α2
n)
, (20)

where α� = |h�| and i, n = 1, 2, . . . , L. For integer
and identical fading parameters, i.e., m� = m, ∀�, it
is shown in [9] that L correlated Nakagami-m RVs α�

can be obtained from 2m i.i.d. real-valued zero-mean
(ZM) Gaussian random vectors {y1, . . . , y2m}, where yk =[
yk,1, yk,2, . . . , yk,L

]T and yk,l with k = 1, 2, . . . , 2m and
l = 1, 2, . . . , L are called auxiliary variables. In particular,
by defining

α2
� �

2m∑
k=1

y2k,�, (21)

it is readily verified that α�’s are correlated Nakagami-m
RVs with E

[
α2

�

] = �� and power correlation matrix �,
if the covariance matrix Q = E

[
yk yTk

]
of the column

vectors yk is given by

Q = 1
2m

�◦ 1
2 �G �◦ 1

2 , (22)

where the L × L diagonal matrix � is given by � =
diag {�1,�2, . . . ,�L} and �G = �◦ 1

2 , with X◦ 1
2 denoting

the element-wise square root of a matrix X.
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Since the channel coefficients are obtained from aux-
iliary variables, we derive the biased distribution of the
auxiliary variables rather than of the channel coefficients.
Introducing the vector y = [

yT1 , y
T
2 , . . . , y

T
2m

]T and taking
into account that ||h||2 = ||y||2 = ∑2m

k=1 yTk yk and the vec-
tors {yk} are i.i.d., the biased distribution q(y) of the aux-
iliary random variables reduces to q(y) = ∏2m

k=1 q0(yk),
where

q0(yk) ∝ exp
(

−β

4
Es
N0

yTk yk
)
p0(yk), (23)

and the PDF p0(yk) of the random vector yk is ZM
Gaussian with covariance matrixQ, i.e.,

p0(yk) = 1
(2π)

L
2
√
det(Q)

exp
(

−1
2
yTkQ

−1yk
)
. (24)

It follows from (23) and (24) that q(yk) is the joint PDF
of L correlated ZMGaussian RVs with a covariance matrix
Q′ given by

Q′ =
(
Q−1 + β

2
Es
N0

IL
)−1

. (25)

Taking the PDFs p0(yk) and q0(yk) into account, it fol-
lows that the correction factor p(x)/q(x) in (5) depends
only on y and is given by

p(x)
q(x)

= p(s,w, y)
q(s,w, y)

=
exp

(
β
4

Es
N0

‖y‖2
)

[
det

(
IL + β

2
Es
N0

Q
)]m . (26)

It is important to note that, although (18) is obtained
under the assumption of PCK, the resulting biased distri-
bution is convenient also in the case of imperfect channel
estimation (ICE), as demonstrated in Section 4, or in the
presence of impairments, such as residual frequency off-
set, IQ imbalance, and phase noise, in which case P(ML)

b,n (h)

in (18) is regarded as an approximation of the actual
Pb,n(h). In addition, the proposed IS technique can easily
be extended to the case of multicarrier communication on
dispersive MIMO channels, using for instance OSTBCs
or orthogonal space-frequency block codes. In multicar-
rier systems, the relevant channel distribution is the joint
distribution of the channel transfer function values at
the subcarrier frequencies, which is to be derived from
the joint distribution of the channel impulse response
samples. In the important case of jointly Gaussian chan-
nel impulse response samples (i.e., Rayleigh or Rice fad-
ing), the channel transfer function values are also jointly
Gaussian.

4 Numerical results
In this section, we illustrate the computation time savings
that can be achieved by using the biased sampling dis-
tribution proposed in Section 3. In order to guarantee a
certain accuracy for the simulated BER results, we require
that the ratio of the variance of the simulated BER to the
square of its expectation does not exceed a prescribed
value ε2

var
[
P̂b

]
(
E

[
P̂b

])2 ≤ ε2, (27)

where P̂b is given by (3) or (5). Since the N realizations
{xi} of the vector x are independently generated, we have
var

[
P̂b

]
= 1

N var [F(x)], so that for a given accuracy ε2,
the number of simulation runs N needs to satisfy

N ≥ var [F(x)]
ε2P2b

. (28)

In the following, the lower bound (28) will be computed
from the simulations by substituting Pb and var [F(x)]
by the sample mean and variance resulting from {F(xi)},
respectively.
First, we consider BPSK transmission over a 1 × 2

SIMO channel affected by Nakagami-m fading with fading
parameterm = 2 and power correlation matrix

� =
[

1 0.3
0.3 1

]
. (29)

The receiver has perfect channel knowledge and per-
forms ML detection. In the simulations, for each BPSK
symbol, a new realization of x is generated. For MC
simulations with and without IS, Figure 1 shows the min-
imal number of realizations N required to ensure a given
accuracy associated with ε2 = 10−4 as a function of
Eb/N0, where Eb = Es/ log2(M) denotes the energy
per information bit (for BPSK, M = 2). Although in
both cases the required simulation time increases with
the signal-to-noise ratio (SNR), it is observed that huge
run-time savings of several orders of magnitude can be
achieved by using the proposed biased sampling distri-
bution, especially for high SNR values where the BER
is low.
Now we consider a 2 × 2 MIMO system employing

Alamouti’s code [10]. The receiver performs pilot-based
linear minimum mean-square error (LMMSE) channel
estimation, followed by mismatched ML detection [11].
To this end, the transmission is organized in frames con-
taining 100 coded data symbols and 14 pilot symbols.
The channel coefficients, which are assumed to remain
constant during a frame, are distributed according to the
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Figure 1 Number of transmitted bits required to ensure
ε2 = 10−4 for BPSK transmission over a spatially correlated
Nakagami channel.

Nakagami-m distribution with m = 2 and have a power
correlation matrix given by � = �t ⊗ �r, with �r = I2
and

�t =
[

1 0.64
0.64 1

]
. (30)

In the simulations, a fixed number of N = 104 data
frames is used, and for each data frame, a new real-
ization of x is generated. Figure 2 displays the simu-
lated BER, for both 4-QAM and 16-QAM transmissions.
With IS, N = 104 frames yield accurate results for
BER values down to 10−10. In particular, an accuracy of
ε2 = 0.025 is obtained for Eb/N0 = 20 dB and 4-
QAM transmission. When no IS is used, a substantial

Figure 2 BER for Alamouti’s code on a 2× 2 Nakagami channel
with ICE.

deterioration of the accuracy can be observed for BER val-
ues below 10−4; for BER ∈ (10−6, 10−4), the deviation
w.r.t. IS is up to 37.8%, and for BER values below 10−6,
the results without IS are highly unreliable. The num-
ber of frames required to obtain an accuracy of ε2 =
0.025 with and without using IS is shown in Figure 3
for 4-QAM and 16-QAM transmissions. Note that for
given Eb/N0, 16-QAM requires fewer frames than does
4-QAM to achieve a given estimation accuracy, because
the formed constellation yields a larger BER than the lat-
ter. Again, it is observed from the figure that substantial
run-time savings can be achieved using the proposed IS
technique.
Let us now define the efficiency gain γIS that is attained

by applying IS as the ratio of the number of frames
required to achieve a certain accuracy ε2 by using straight-
forwardMC simulations to the number of frames required
to achieve the same accuracy when using IS. Obviously,
this efficiency gain is directly related to the run-time
savings achieved by IS. From (28), it follows that

γIS = var [F(x)] |MC
var [F(x)] |IS , (31)

where the variances var [F(x)] |IS and var[F(x)] |MC for
MC simulations with and without IS, respectively, are
obtained from the MC simulation results {F(xi)} con-
ducted with and without using IS. In order to investi-
gate the impact of spatial correlation and the number of
receive antennas on the efficiency gain, we consider Alam-
outi’s code transmitted on a Nakagami-mMIMO channel
with fading parameter m = 2 and captured by an ML
receiver equipped with 1, 2, or 3 antennas. Taking into
account that the power correlation matrix of the MIMO
channel is given by � = �t ⊗ �r, the diagonal ele-
ments of �t and �r are assumed to be given by 1, whereas

Figure 3 Number of transmitted frames required to ensure
ε2 = 0.025.
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Figure 4 BER for Alamouti’s code on a Nakagami channel with
ICE.

the non-diagonal elements are given by ρ. Furthermore,
we consider 4-QAM transmission, LMMSE channel esti-
mation, and data frames consisting of 100 coded data
symbols and 14 pilot symbols per transmit antenna. In
Figure 4, the simulated BER is shown for a fixed number
of N = 106 data frames transmitted. Obviously, straight-
forward MC simulation allows accurate BER estimation
down to about 10−7, whereas employing IS enables accu-
rate BER values down to 10−17 with the same number of
data frames. In addition, it is observed from the figure
that spatial correlation with ρ = 0.85 results in a sub-
stantial degradation of the BER as compared to the case
where all spatial channels are uncorrelated (ρ = 0). In
Figure 5, we display the efficiency gain γIS achieved by IS
corresponding to the BER curves from Figure 4. For SNR

Figure 5 Efficiency gain γIS attained by IS for Alamouti’s code on
a Nakagami channel with ICE.

values below 10 dB, efficiency gains between 2 and 50 can
be observed. For SNR values above 10 dB, however, rapidly
increasing efficiency gains up to 5 ∗ 103 can be appre-
ciated. Moreover, even higher efficiency gains are to be
expected for the receiver with three antennas and, in the
case of uncorrelated channels, the dual-antenna receiver.
In general, it follows from the figure that for high SNR,
the efficiency gain grows when the BER decreases, i.e.,
for increasing number of receive antennas and decreas-
ing level of spatial correlation. As a result, the proposed IS
sampling distribution allows practical BER simulation for
OSTBC systems on spatially uncorrelated and correlated
Nakagami fading channels, even when very low BERs are
considered.

5 Conclusions
In this contribution, we presented a simple but efficient
IS technique to speed up by orders of magnitude the
BER simulations of OSTBC systems operating on spatially
correlated frequency-flat Nakagami-m fading channels.
While maintaining the actual distributions for the channel
noise and the data symbols, we proposed a suitable biased
distribution for the fading channel.
This IS technique can be extended to the case of

multicarrier communication on dispersive MIMO chan-
nels, using for instance OSTBCs or orthogonal space-
frequency block codes (OSFBCs). In multicarrier systems,
the relevant channel distribution is the joint distribution
of the channel transfer function values at the subcar-
rier frequencies, which is to be derived from the joint
distribution of the channel impulse reponse samples. In
the important case of jointly Gaussian channel impulse
response samples, i.e., Rayleigh or Rice fading, the channel
transfer function values are also jointly Gaussian.
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