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Abstract Channel sensing order setting is crucial for efficient channel exploration and
exploitation in cognitive radio (CR) networks. This paper investigates the sensing order
setting problem in multi-channel multi-user CR networks for both distributed scenario and
centralized scenario. As the optimal solution is too complicated, two suboptimal greedy
search algorithms with much less computational complexities are proposed. The channel
availability, channel achievable rate, multi-user diversity and collisions among CR users are
considered comprehensively in our proposed methods. For the distributed scenario, a novel
potential function is proposed to represent the relative advantage of a channel used by a user
among multi channels and multi users, based on which each user can get its own sensing
order. For the centralized scenario, a sensing matrix is obtained by a coordinator for all the
users. It is shown that, CR users’ average throughput increases and collision probability
decreases with the number of channels due to increased transmission opportunities. The total
network throughput increases with the number of user pairs due to multi-user diversity. Simu-
lation results validate the efficacy of the proposed schemes in elevating CR users’ throughput
and decreasing the probability of collision, and show the performance improvement of the
proposed schemes by comparisons with existing works.
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1 Introduction

Conventional wireless communication systems employ static spectrum allocation strategies,
which results in both spectrum scarcity and spectrum underutilization. Cognitive radio (CR)
is a promising technology to solve these spectrum inefficiency problems [1]. In cognitive
radio networks, the CR users (also referred to as secondary users, SUs) can select and reuse
some of the spectrum bands/channels opportunistically when the licensed users (also referred
to as primary users, PUs) are not active in these channels. In order to find available spectrum
opportunities and guarantee the smooth communication of the primary system, SUs need
to sense the spectrum channels before transmission [2]. For ease of implementation and
considering hardware constraints, we assume that SUs can sense and transmit on only one
channel at a time.

Since there are a number of potential channels available, SUs can choose one channel
to sense and transmit on it for the rest of the time slot if it’s available or wait until next
time slot otherwise; or SUs can sense the channel sequentially till an available channel is
found and transmit on it for the rest of the time slot. For the former case, Zhao et al. [3]
and [4] proposed optimal dynamic access strategies using periodic sensing based on Markov
decision process. In the latter case, SUs sense the channels sequentially, and after each
sensing, a decision on whether to continue sensing or to start transmission is made according
to the channel availability and channel quality. In this case, SUs can exploit multi-channel
diversity by opportunistically selecting a good channel for transmission. Sequential sensing
brings a new problem: channel sensing order setting, which means that the SUs need to
decide which channel to sense first. Channel sensing order is important for SUs to find a
good available channel as fast as possible, and better channels and shorter sensing time will
lead to higher throughput. Multi-armed bandit problems are used in [5–7] to solve the channel
sensing ordering problems in uncertain environments, and polynomial regrets are obtained.
In this paper, we assume that the primary users’ activity and channels’ achievable rates are
known a priori to SUs. The authors in [8] and [9] derive the optimal sensing-sequence for
channels with homogeneous capacities, which means that the intrinsic features of a multi-path
channel are not taken advantage of. Dynamic programming is used in [10] and [11] to obtain
the optimal channel sensing order for a single secondary user pair, heterogeneous channel
capacities are considered. In the above researches only one sensing order is considered.
However in this paper, we try to solve the sensing-order problem in a general multi-user
network where multiple autonomous CRs have to search multiple channels according to
their own sensing orders. Closely related to our research work here are [12–14]. However
[12] only considered the two-user case. Cheng and Zhuang [13] only considered channel
achievable rate in designing sensing orders. And Khan and Lehtomaki [14] proposed to
select sensing orders from a Latin Square which is not optimal. Compared to the above
works, we comprehensively consider the channel availability, channel achievable rate, multi-
user diversity and collisions among CR users in designing channel sensing orders for multi
users.

The main contributions of our paper are as follows. In the distributed case, with limited
information exchange among SUs, we derive a novel metric which exploits the multi-user
diversity simply and efficiently. Using this metric we have modified the potential function
of traditional single-user multi-channel greedy search algorithm for multi-user case. In the
centralized case, we first get the expected throughput of a CR network for given sensing orders
of all users. Then we propose a suboptimal greedy search algorithm which has much lower
complexity than the brute-force search. The mutual collisions among SUs are formulated
as a loss to the network throughput. Plenty of simulations are carried out to investigate the
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impacts of number of channels, sensing errors, number of SUs, etc. The efficacies of the
proposed schemes are validated by comparisons with existing works.

The remainder of this paper is organized as follows. The related works and our motivation
are presented in Sect. 2. Section 3 describes the system model. Distributed and centralized
channel sensing-order setting schemes are discussed in Sects. 4 and 5, respectively. The per-
formance of the proposed methods is evaluated in Sect. 6. Finally, conclusions are presented
in Sect. 7.

2 Related Works

In the literatures, the channel sensing order setting problems have been discussed for both
single user and multi-user cases. The optimal sensing order setting problem is formulated
under the multi-armed bandit framework in [5–7], where a balance is found between long-
term channel exploration and short-term channel exploitation to optimize the total throughput
throughout the entire transmission of the SUs. However in this paper we focus on exploiting
the instantaneous channel condition under the assumption that the statistics of channel avail-
ability and channel achievable rate are known a priori. The authors in [8] and [9] proposed
an efficient sensing order setting scheme that incurs a small opportunity–discovery delay.
Channels are sensed at the descending order of channel idle probabilities, which is also
referred to as the intuitive sensing order. However the multi-channel diversity is not taken
advantage of. In [15], it is shown that fluctuating nature of heterogeneous spectrum bands is
crucial in spectrum decision. In [10], the optimal channel sensing order and the related stop-
ping rule is derived for a single-user case, with an assumption that recall (i.e., a previously
sensed channel can be accessed) and guess (i.e., an un-sensed channel can be accessed) are
allowed. Dynamic programming is used in [11] to obtain the optimal channel sensing order
considering heterogeneous channel capacities and channel availabilities jointly. The optimal
stopping rule is well studied in [16] and [17] under the homogeneous channel utilization
scenario, however the optimal sensing order setting problem is not solved. In [18] sensing
order and power allocation are jointly considered to achieve the maximum energy efficiency.
Our previous study in [19] proposed sensing order setting schemes for both real-time and
best-effort applications. However in the above researches the sensing ordering problem is
discussed only for single-user case. In this paper we focus on the sensing ordering problem
for multi-user case. In a multi-user network, two new factors will influence the channel uti-
lization and network throughput: collision (i.e., two or more SU pairs sense and transmit in
the same channel at the same time) and useless sensing (i.e., a SU senses a channel which is
being used by another SU).

The authors in [12] discussed the sensing ordering problem for a two-user case, it is shown
that the traditional stopping rule is not optimal anymore. Designing an optimal stopping rule
for multi-user case is nearly impossible. So in our work, we focus on sensing ordering
problem but ignore the stopping rule design. In [13] the channels are sensed according
to the descending order of their achievable rates, where the primary free probabilities are
not considered. A novel metric comprehensively incorporating the channel availability and
collision among SUs is proposed in [20], based on which the sensing order is obtained for
each user in a distributed manner. However the metric is designed improperly as it is mutable
and uncertain in the process of designing a sensing order. In [21], a systematic neural network-
based optimization approach is developed to set proper sensing order to maximize the average
throughput of a CR network. However the training process may be too long when the number
of SUs or channels is large, which is not suitable for adaption to changing environment.
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An adaptive persistent sensing order selection strategy is proposed in [14], sensing orders
are selected from a Latin Square matrix. It is assumed that none of the SUs can gain any
reward for the rest of the slot if a collision happens. However, under our framework, the
collision can be detected by the SUs using a probing signal, and then the SUs can keep
sensing the rest spectrum opportunities. So, though the strategy in [14] enables the CRs to
converge to collision-free channel sensing orders, the network throughput is not optimized.
In this paper, aiming to maximize the average SU throughput and minimize collisions, two
greedy search algorithms are proposed to obtain the sensing orders in both centralized and
distributed manners.

3 System Model

We consider a CR network with M cognitive transmitter/receiver pairs and a set N =
{1, 2, . . . , N } of channels, and we only consider the case that M ≤ N (for the case that
M > N , an admission control scheme similar to [22] can be adopted). The cognitive users
are synchronous with each other and they are synchronous with the primary network. Time is
partitioned into slots of duration T , and each channel is either busy (i.e., with primary activ-
ities) or free (i.e., no primary activities) for an entire time slot. We assume that the channel
availability probability and channel achievable rate are known to the SUs at the beginning of
each time slot.

In each timeslot, the source node of a SU pair needs to scan (sense and probe) the channels
according to its sensing sequence before transmission. Denote τ as the time duration needed
for scanning one channel, which satisfies Nτ < T . If a channel is found to be free, the SU
pair transmits in that channel. However, if no available channel is found after scanning all
N channels, the SU pair stays silent for the remaining duration of that time slot. The slot
structure is depicted in Fig. 1, where after sensing the first (k − 1) channels to be busy,
the SU finds the k-th channel is free and transmits on it for the reminder of that time slot.
Thus the period of time spent on channel scanning and that on data transmission are kτ and
T − kτ , respectively. Define the effectiveness of a slot as the ratio of the transmission phase
length to the slot length. Therefore, if a user stops at the k-th channel in its sensing order, the
effectiveness is ck = 1 − kτ/T .

As depicted in Fig. 1, after each sensing, a probing phase is carried out. In specific, once a
channel is sensed to be free, the SU transmitter transmits a channel probing packet (CPP) to
its receiver so as to estimate the channel gain of this transmission link. Then the SU receiver
feeds the estimated channel gain back to the transmitter with a probing feedback packet
(PFP). It is assumed that the SU transmitter and its receiver are always synchronized through
a centralized coordinator (or a dedicated control channel for the distributed case), so that they
always tune to the same channel for sensing, probing and transmission. A receiver will not
send back a PFP in two cases: (1) The receiver senses a channel to be busy, and (2) Probing

 Sm,1     Sm,2                  Sm,k

Channel Scanning k Data Transmission T-k

Sensing   Probing

Fig. 1 An illustration of the sequential channel sensing process of user m with its sensing order given as
{Sm,1, Sm,2, . . . , Sm,N }
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collision happens among multiple transmitters. In both cases the transmitter will skip the
channel and keep sensing. In the second case, multiple transmitters simultaneously sense the
same channel to be free and transmit a CPP on that channel. Thus a probing collision happens
and none of them can use that channel, a spectrum opportunity is wasted.

In this paper, we consider sensing order setting problem for both distributed and centralized
cases. In the distributed case, each SU pair should determine their own sensing order by
themselves. Before carrying out sensing and probing, a negotiation phase is needed where
the SUs exchange their primary free probability and channel achievable rate information with
neighbors on a common channel. In the centralized case, a coordinator exists in the cognitive
radio network. According to estimated primary free probabilities and channel achievable
rates, the coordinator determines the sensing orders of the SU pairs and announces the
sensing orders to the pairs. Thus the coordinator needs to determine a sensing matrix S with
dimensions of M × N , in which the m-th row Sm = {Sm,1, Sm,2, . . . , Sm,N } is the channel
sensing order dedicated to the m-th SU pair. Each row Sm = {Sm,1, Sm,2, . . . , Sm,N } is a
permutation of the set (1, 2, . . . , N ), where Sm,k denotes the channel that user m senses at the
k-th position in its sensing order. In this study, we assume that each SU pair can potentially
see different primary user occupancy behavior on each channel due to their geographic
dispersion. And we focus on the simplest complete-interference case when all secondary
users interfere with each other and must therefore each be allocated distinct channels. The
same assumption is also adopted in [7] and [20], and is discussed in [23]. We use a M × N
matrix PI to denote the primary free probabilities where its element Pm,i is the primary free
probability of channel i for user m, and Pm,i is uncorrelated with Pl,i for m �= l; and a M × N
matrix R to denote the channel achievable rates where its element Rm,i is the achievable rate
of channel i for user m, and Rm,i is uncorrelated with Rl,i for m �= l. We assume that PI
and R are known to the users a priori, the estimation of them is not our concern. We ignore
the effect of the missed detection (due to strict protection of primary network) and only
consider the effect of false alarm Pf . Thus we define the unconditional probabilities matrix
that the SUs determine that the channels are idle as θ with its element θm,i = Pm,i (1 − Pf )

representing the probability that user m determines channel i to be free.

4 Sensing Order Selection for Distributed Case

4.1 Greedy Search Algorithm for Single User Scenario

We first briefly introduce the main idea of the greedy search algorithm for single user scenario
in this section. Consider a single user pair m with its aim to maximize the average throughput.
Let S0

m = {Sm,1, Sm,2, . . . , Sm,N } be the optimal channel sensing order of user m. The
expected throughput using this optimal sensing order can be obtained as

U 0
m =

N∑

k=1

[
k∏

i=1

(
1 − θSm,i−1

)
]
θSm,k ck RSm,k (1)

where we define θSm,0 = 0, θSm,k

∏k
i=1

(
1 − θSm,i−1

)
is the probability that the user stops at

the k-th channel, and ck Rsm,k is the obtained normalized throughput if the user transmits in
the k-th channel.

The optimal sensing sequence can also be expressed as {Lk−1, Sm,k, Sm,k+1, Lc
k+2}, where

Lk−1 = (sm,1, . . . , sm,k−1) is the former part of the sequence and Lc
k+2 = (sm,k+2, . . . , sm,N )

is the later part. Let S∗
m be the counterpart of S0

m constructed by switching the order of k-th and
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k + 1-th channels, S∗
m = {Lk−1, Sm,k+1, Sm,k, Lc

k+2}. Since S0
mis the optimal sensing order,

the expected throughput U 0
m should be no less than that of its counterpart U∗

m, U 0
m ≥ U∗

m .
We have:

U 0
m −U∗

m =
k−1∏

i=1

(
1−θSm,i

){θSm,k (T −kτ)RSm,k +(
1−θSm,k

)
θSm,k+1(T −(k + 1)τ )RSm,k+1

− θSm,k+1(T − kτ)RSm,k+1 − (
1 − θSm,k+1

)
θSm,k (T − (k + 1)τ )RSm,k } ≥ 0

⇒ RSm,k

τ/θSm,k + T − (k + 1)τ
≥ RSm,k+1

τ/θSm,k+1 + T − (k + 1)τ
(2)

Thus we define the potential function of channel i at the k-th round in a sensing order for
user m as:

gm(i, k) = Rm,i/(τ/θm,i + T − (k + 1)τ ) (3)

which satisfies that:

gm(i, k) ≥ gm( j, k) ⇒ Um({Lk−1, i, j, Lc
k+2}) ≥ Um({Lk−1, j, i, Lc

k+2}) (4)

Then a greedy search algorithm can be obtained as follows:
Let Lk−1 be the set of already chosen channels, at the initial step of the algorithm (k =

1), L0 = ∅. For finding the k-th channel in the optimal sensing sequence, the channel i with
the largest potential function gm(i, k) is chosen, where i ∈ {1, 2, . . . , N }\Lk−1. Till k = N ,
the whole optimal sequence is obtained.

4.2 Greedy Search Algorithm for Multi-user Scenario

When multiple autonomous SUs search multiple potentially available channels synchro-
nously, then from an individual SU’s perspective one of the following three events will
happen in each sensing step [14]: (1) The SU senses a channel to be free, then it sends a
probing signal on this channel to its receiver and successfully receives the response, the SU
then has the channel for itself for the remainder of the time slot; (2) The SU senses a channel
to be busy (occupied by primary users or another SU), then it keeps quiet for the probing
phase and keeps looking in the next sensing step; (3) The SU senses a channel to be free,
then it sends a probing signal, but so does at least one other SU; thus a collision occurs,
none of these SUs can use this channel and they all skip into next sensing step, a spectrum
opportunity is wasted. From above discussions, we can conclude that the optimal sensing
order setting of an individual SU is not only affected by the channel free probabilities and
channel achievable rates of its own perspective, but also affected by the sensing orders of
other SUs.

For example, consider a CR network with N = 3 channels and M = 2 users, the scanning
time for each channel is 0.1, slot duration is 1, and the achievable rate for each channel is
1. The channel free probabilities for user 1 are θ1,1 = 0.9, θ1,2 = 0.5 and θ1,3 = 0.2; the
channel free probabilities for user 2 are θ2,1 = 0.7, θ2,2 = 0.4 and θ2,3 = 0.6. If the users
search their sensing orders individually and don’t consider the other user’s sensing order, the
sensing order setting of the two users is (1,2,3) for user 1 and (1,3,2) for user 2, and the total
throughput can be calculated as 0.5576 + 0.5755 = 1.1331. However By brute-force search,
we can obtain the optimal sensing order setting of the two users, which is (1,2,3) for user 1 and
(3,1,2) for user 2, and the total throughput can be calculated as 0.8528 + 0.6614 = 1.5142.
We can see that in the former sensing order setting, both users sense channel 1 at their first
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sensing step. So a collision will happen with a high probability θ1,1θ2,1 = 0.63 (when both
users sense channel 1 to be free and send a probing signal), the spectrum opportunity of
channel 1 is wasted which causes the decrease of the network throughput.

Although it is possible that a SU can obtain the optimal channel sensing order by brute-
force search individually with the knowledge of the channel free probabilities and chan-
nel achievable rates of its own and all other SUs, the complexity of brute-force search is
O((N !)M ) if the complexity to calculate the expected network throughput with a specific
sensing-order setting is O(1), which is unacceptable for an individual user due to hardware
constraint. Thus in this section we try to give a simple yet efficient greedy search algo-
rithm for the distributed network scenario by modifying the potential function in Eq. (3) as
follows:

gmod
m (i, k) = (gm(i, k) − 1

M − 1

∑

l=M\m

gl(i, k)) + (gm(i, k) − 1

N − 1

∑

j=N\i

gm( j, k))

(5)

where M and N are the sets of all SUs and potential channels, gm(i, k) is presented as
in Eq. (3). gm(i, k) − 1

M−1

∑
l=M\m gl(i, k) represents the relative advantage of channel i

being used by user m at its k-th sensing step compared with which being used by other
users; gm(i, k) − 1

N−1

∑
j=N\i gm( j, k) represents the relative advantage of channel i being

used by user m at its k-th sensing step compared with other channels being used by user
m. gm(i, k) − 1

M−1

∑
l=M\m gl(i, k) guarantees that channel i should be first allocated to

user m which can get a larger reward than other users; gm(i, k) − 1
N−1

∑
j=N\i gm( j, k)

guarantees that user m should first choose the channel i which can bring larger reward than
other channels.

Using this modified potential function, the greedy search algorithm for multi-user case in
distributed network scenario can be stated as follows:

Step 1: Negotiation. Users exchange their channel free probability and channel achievable
rate information, θ and R, with their neighbors on a common control channel;
Step 2: Initialization. k = 1, the set of already chosen channels of user m is Lk−1

m =
L0

m = ∅.
Step 3: Find the k-th channel in the optimal sensing order, Sm,k = arg max

i∈{1,2,...,N }\Lk−1
m

gmod
m (i, k). And Lk−1

m = Lk−1
m ∪ {Sm,k}.

Step 4: If k = N , end; else, k = k + 1, go to step 3.

Let’s briefly explain how this modified potential function works in the former men-
tioned example. We have gmod

1 (1, 1) = 0.25, gmod
1 (2, 1) = 0.1142 and gmod

1 (3, 1) =
−0.5449; gmod

2 (1, 1) = 0.0301, gmod
2 (2, 1) = −0.1428 and gmod

2 (3, 1) = 0.2933. For
the first channel in the sensing order, user 1 will choose channel 1 and user 2 will choose
channel 3 (though from user 2’s individual perspective channel 1 is the best and should be
chosen first, our method can choose another but still good one to avoid the collision), finally
our greedy search method will get the same optimal sensing orders as brute-force search
does.

From the procedure of the algorithm, the complexity of the greedy search algorithm is
N +(N − 1)+· · ·+1 = N (N − 1) /2 if the complexity of calculating one modified potential
function is O(1), which is much less than the brute force search O((N !)M ).
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5 Sensing Matrix Setting for Centralized Case

5.1 Problem Formulation

In our centralized scenario, a coordinator exists to help the SUs to set their channel sensing
orders. The coordinator needs to decide a M × N sensing matrix S to maximize the network
throughput, in which the m-th row Sm = {Sm,1, Sm,2, . . . , Sm,N } is the channel sensing order
dedicated to the m-th SU pair. Each row Sm = {Sm,1, Sm,2, . . . , Sm,N } is a permutation of the
set (1, 2, . . . , N ), where Sm,k denotes the channel that is at the k-th position in the sensing
order of user m. For a given sensing matrix, let φm,k denotes the probability that user m
successfully stops and transmits at its k-th sensing step. Let p(i, Sm) denotes the position of
channel i in user m’s sensing order Sm.

We can note that given a sensing matrix, for each channel Sm,k there are four possible
cases might occur: (1) The channel is neither in the prior positions (<k) nor in the k-th
position of any other users’ (other than user m) sensing order; (2) The channel is not in the
prior positions (<k) of any other users’ sensing order but is in the k-th position of some
other users’ sensing order; (3) The channel is in the prior positions (<k) of some other users’
sensing order but is not in the k-th position of any other users’ sensing order; (4) The channel
is in the prior positions (<k) and in the k-th position of some other users’ sensing order. By
analyzing the above four possible cases of a channel, φm,k can be obtained as follows:

For k = 1,

φm,k =
⎧
⎨

⎩

θm,Sm,k , for case 1;

θm,Sm,k

∏
l

(
1 − θl,Sl,k

)
, for case 2. (6)

For k > 1,

φm,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 −
k−1∑
j=1

φm, j )θm,Sm,k , for case 1;

(1 −
k−1∑
j=1

φm, j )θm,Sm,k

∏
l

(
(1 −

k−1∑
j=1

φl, j )(1 − θl,Sl,k ) +
k−1∑
j=1

φl, j

)
, for case 2;

(1 −
k−1∑
j=1

φm, j )θm,Sm,k

∏
l∗

(
1 − φl∗,p(Sm,k ,Sl∗ )

)
, for case 3;

(1 −
k−1∑
j=1

φm, j )θm,Sm,k

∏
l

(
(1 −

k−1∑
j=1

φl, j )(1 − θl,Sl,k ) +
k−1∑
j=1

φl, j

)

×∏
l∗

(
1 − φl∗,p(Sm,k ,Sl∗ )

)
, for case 4.

(7)

where (1 −∑k−1
j=1 φm, j )θm,Sm,k is the probability that user m reaches the k-th step and senses

channel Sm,k to be free. l satisfies l ∈ {1, 2, . . . , M}\m and p(Sm,k, Sl) = k, is the user (other
than user m) that selects channel Sm,k at the k-th position of its sensing order; l∗ satisfies
l∗ ∈ {1, 2, . . . , M}\m and p(Sm,k, Sl∗) < k, is the user (other than user m) that selects

channel Sm,k at the prior k − 1 positions.
∏

l

(
(1 − ∑k−1

j=1 φl, j )(1 − θl,Sl,k ) + ∑k−1
j=1 φl, j

)

is the probability that channel Sm,k is not simultaneously sensed to be free (or be sensed)
by other users (other than user m),

∑k−1
j=1 φl, j is the probability that user l successfully

stops and transmits at the previous k − 1 sensing steps (so does not reach the k-th step),
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(1 − ∑k−1
j=1 φl, j )(1 − θl,Sl,k ) is the probability that user l reaches the k-th step but senses

channel Sm,k to be busy.
∏

l∗
(
1 − φl∗,p(Sm,k ,Sl∗ )

)
is the probability that channel Sm,k has not

been occupied by any other users at the previous k − 1 sensing steps.
Using Eqs. (6) and (7) we can iteratively get all the φm,k for each m and k. Then given a

sensing matrix, the expected network throughput can be obtained:

U =
M∑

m=1

N∑

k=1

φm,k Rm,Sm,k ck (8)

The coordinator’s aim is to find the optimal sensing matrix S0 to maximize the expected
network throughput. This can be stated formally as:

S0 = arg max
S1,1,S1,2,...,SM,N

U (9)

Given this optimization problem, the coordinator can find the optimal sensing matrix by
brute-force search. However the complexity of brute-force search is O((N !)M ) which will
result in massive computational burden and is not scalable regarding to both M and N . This
paper targets at suboptimum algorithm that has much less complexity but is still efficient, as
discussed in the following section.

5.2 Greedy Search Algorithm

As discussed before, for a target user to determine which channel to sense in its k-th sensing
step, if a channel has already been in other users’ prior (≤ k) sensing positions, the probability
that this channel is occupied by other users should be considered. And the throughput loss
caused by collisions should also be considered when two or more users proceed to sense the
same channel at the same time. Based on above observations, in this section, we will propose
a greedy search algorithm which contains N rounds. Let Sm denotes the channel selection
vector of user m. Sm will be updated after each rounds. So it contains k chosen channels after
the k-th round. In the k-th round the coordinator needs to determine (S1,k, S2,k, . . . , SM,k)

for the users, where Sm,k ∈ Sm = N\Sm. Figure 2 depicts the channel selection process with
an example.

Let p(i, Sm) denotes the position of channel i in Sm if it is in Sm. For a user m selecting
Sm,k among channels from Sm, the coordinator estimates the probability that each channel
is free from primary users and other SUs, and accordingly assign each channel a reward.
We define G(m)

i (k) the reward of channel i selected by user m as the k-th channel in its
sensing order. It is set to the contribution of the user m to the network throughput if channel
i is selected. Then the channel with the largest reward is selected as Sm,k for user m. The
selecting process is as follows:

1 2 5

3 4

5 1

SU 1 sensing order

SU 2 sensing order

SU 3 sensing order

Round 1 2 3 4 5 Means a channel is 
determined in the 
Sensing Matrix

Means no channel is 
determined in the 
Sensing Matrix

Fig. 2 An example of channel selection process. The coordinator is going to choose the third channel from
{1, 2, 5} for SU 2. The probability that these channels may be already occupied by the other two users should
be considered. Specifically, the possible collision with SU 1 should be considered when selecting channel 5
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5.2.1 Round-1

At the beginning, the set of already selected channels for each user is empty (Sm = ∅ for user
m). We start with the first SU. The coordinator needs to choose S1,1 for user 1 from S1 = N.
For a channel i ∈ S1, we can obtain that G(1)

i (1) = θ1,i R1,i c1. Thus, the first channel to be
sensed by user 1 is:

S1,1 = arg max
i∈S1

G(1)
i (1) (10)

After S1,1 is determined, we have S1 = {S1,1}.
While for the m-th user in the first round, a channel i may have already been in the sets

of selected channels of other users (i ∈ Sl, l ∈ M\m). Thus we have:

G(m)
i (1) = Rm,i c1θm,i

∏

l∈M\m
i∈Sl

(
1 − θl,i

)
(11)

where θm,i
∏

l∈M\m
i∈Sl

(
1 − θl,i

)
means the probability that channel i is free from primary users

and all other SUs. If channel i has already been in the other users’ selected channel set, user
m selects it as the first channel will cause throughput loss to the network due to the collision
with other users. Thus we can get the loss of reward as follows:

L(m)
i (1) = θm,i

∑

l∈M\m
i∈Sl

⎛

⎝c1 Rl,iθl,i

∏

l

(1 − θl,i )

⎞

⎠ (12)

where l is the user which has already selected channel i, l satisfies that l ∈ M\m, i ∈ Sl∗ and
l �= l. c1 Rl,iθl,i

∏
l (1 − θl,i ) is the reward of channel i using by user l. A collision happens

if user m senses channel i as free at the same time (with probability θm,i ), and then the reward
of user l is lost. Therefore, the reward in Eq. (11) should be rewritten for user m selecting
channel i as its first channel:

G(m)
i (1) = Rm,i c1θm,i

∏

l∈M\m
i∈Sl

(
1 − θl,i

) − L(m)
i (1) (13)

Then the coordinator selects the channel that has the largest reward as the first channel for
user m:

Sm,1 = arg max
i∈Sm

G(m)
i (1) (14)

5.2.2 Round-k

After the k − 1-th round, the coordinator has selected k − 1 channels for each user, which
means we have got a matrix of selected channels with a dimension of M × (k − 1). Thus
using this matrix and Eqs. (6) and (7) we can get the φm, j for each user m and j ∈ [1, k − 1].

At the k-th round, we define P f ree
i (k) as the probability that channel i is not occupied by

any SU in the previous k − 1 sensing steps. We have:
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P f ree
i (k) =

∏

l∗∈M
p(i,Sl∗ )<k

(
1 − φl∗,p(i,Sl∗ )

)
(15)

where l∗ represents the user that has already selected channel i at the previous k − 1 rounds.
At the k-th round, the coordinator should first determine with which SU it should start.

Similar to [12], to achieve a certain level of fairness, we start with the user that has a less
cumulative reward in the previous k − 1 rounds. The cumulative reward gained during the
previous k − 1 rounds for user m is calculated as,

φm,1c1 Rm,Sm,1 + φm,2c2 Rm,Sm,2 + · · · + φm,k−1ck−1 Rm,Sm,k−1 (16)

When user m selects a channel i ∈ Sm as its k-th channel, this channel may has already
been selected by other users at the same round. So the collision free probability should be
considered when selecting a channel. The reward gained by user m selecting channel i at the
k-th round can be obtained:

Gm
i (k) = ck Rm,iθm,i P f ree

i (k)
∏

l∈M\m
p(i,Sl)=k

⎛

⎝
k−1∑

j=1

φl, j + (1 − θl,i )

⎛

⎝1 −
k−1∑

j=1

φl, j

⎞

⎠

⎞

⎠ (17)

where P f ree
i (k) is defined in Eq. (15), l is the user that has already selected channel i at the

k-th round. The formula in
∏

represents the collision free probability for user m selecting
channel i . A collision happens if user m and l sense channel i to be free at the same time. So
the reward of user l may be lost because of user m selecting channel i . The loss of reward
caused by user m selecting channel i at the k-th round is calculated as:

L(m)
i (k) = ckθm,i P f ree

i (k)
∑

l∈M\m
p(i,Sl)=k

×Rl,i

⎛

⎝θl,i (1 −
k−1∑

j=1

φl, j )
∏

l

⎛

⎝1 − θl,i (1 −
k−1∑

j=1

φl, j )

⎞

⎠

⎞

⎠

︸ ︷︷ ︸
F

(18)

where l satisfies that l ∈ M\m, p(i, Sl) = k and l �= l. F represents the probability that
user l is the only one that senses channel i as free regardless of the effect of user m. So the
considered loss of reward is only because of user m selecting channel i at the k-th round.
Therefore, the reward in Eq. (17) should be rewritten as follows:

Gm
i (k) = ck Rm,iθm,i P f ree

i (k)
∏

l∈M\m
p(i,Sl)=k

⎛

⎝
k−1∑

j=1

φl, j +(1−θl,i )

⎛

⎝1−
k−1∑

j=1

φl, j

⎞

⎠

⎞

⎠−Lm
i (k)

(19)

Then the coordinator selects the channel from Sm that has the largest reward as the k-th
channel for user m:

Sm,k = arg max
i∈Sm

G(m)
i (k) (20)

After Sm,k is selected, Sm is updated, Sm = {Sm,1, Sm,2, . . . , Sm,k}.
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In the last round, the only channel in Sm is selected as Sm,N for user m. Till the whole
sensing matrix is got, the algorithm is done.

5.2.3 Modification of Reward

Let’s rewrite the reward Eq. (19) as follows:

Gm
i (k) = ck Rm,i P f ree

m,i − Lm
i (k) (21)

Where P f ree
m,i = θm,i P f ree

i (k)
∏

l∈M\m
p(i,Sl)=k

(∑k−1
j=1 φl, j + (1 − θl,i )(1 − ∑k−1

j=1 φl, j )
)

is the

probability that channel i is free for user m from primary users and all other SUs. Thus
from an individual user’s perspective, the preceding greedy search algorithm is just like the
greedy algorithm discussed in Sect. 4.1, just changing the potential function from Eq. (3)
to gm(i, k) = ck Rm,iθm,i . From the simulation result in [24] and our numerical analysis,
the performance of greedy algorithm using the former potential function is better than that
of using the later one. So it’s reasonable to change our reward in Eq. (21) according to the
structure of Eq. (3), gm(i, k) = Rm,i/(τ/θm,i +T −(k+1)τ ). We modify Eq. (21) as follows:

Gm
i (k) = Rm,i/(τ/P f ree

m,i + T − (k + 1)τ ) − Rm,i/(τ/P f ree
m,i + T − (k + 1)τ )

ck Rm,i P f ree
m,i

L(m)
i (k)

(22)

Where P f ree
m,i is the same of that in Eq. (21).

From the preceding procedure, we can see that the complexity of this greedy search
algorithm is (N + N − 1 + · · · + 1)M = N (N+1)

2 M if the complexity of calculating one
reward is O(1), which is much less than the complexity of brute-force search, O((N !)M ).
In order to further have a mid-term farness, we suggest that at the beginning of Round 1, the
coordinator chooses the user to start with in a round robin way.

6 Performance Evaluation

6.1 Simulation Settings

In our simulations, we consider a network with M SUs and N potential channels. The primary
activity is modeled as i.i.d. in both frequency channel and timeslot dimensions. We assign
the values of primary free probability PI and channel achievable rate R randomly for each
user and each channel at the beginning of each slot. We set the channel sensing\probing time
τ = 0.02s and slot duration T = 1s. The achievable rates of the channels are uniformly
distributed on (0,10)kbps. The performance metrics considered in this work are: Average SU
throughput—the average number of successful bits transmitted per second per SU; Through-
put difference—the average ratio of the standard deviation of the SUs’ throughputs to the
average SU throughput in a slot, which represents the fairness between the SUs in a slot;
Collision—the average times that two or more SUs sense the same channel as free (thus the
probing signals collide and none of the SUs can use the channel) in a slot. We perform the
simulations 10,000 time slots for each run. We then average the performance measurements
over the timeslots.
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6.2 Simulation Results

We evaluate the performance of the proposed greedy search algorithms versus PI, M, N and
Pf . We compare the performance of our distributed greedy search algorithm with reference
[20], and compare the sensing matrix proposed in our centralized greedy algorithm with the
Latin Square matrix proposed in [14].

(1) Effect of primary free probability, PI

We study the impact of the primary free probability on the performance of proposed
algorithms, and keep the other parameters to be M = 5, N = 7 and Pf = 0. We keep the
standard deviation of the primary free probability to be 0.25, and change the average value
between [0.25, 0.75]. The simulation results are depicted in Figs. 3, 4 and 5.

Figure 3 shows the impact of primary free probability on the average SU throughput. We
can see that the values of average SU throughput of all algorithms increase as the primary free
probability increases. This is easy to understand that larger primary free probability means
more transmission opportunity for the SUs. It is shown that both of our distributed algo-
rithm and centralized algorithm gain more throughput than reference [20] and Latin Square
method in [14]. To be specific, the proposed distributed greedy search algorithm outperforms
reference [20] by 14.78–8.56 % when PI increases from 0.25 to 0.75; the proposed central-
ized greedy search algorithm outperforms Latin Square method by 28.89–54.33 % when PI
increases from 0.25 to 0.75. And the centralized greedy search algorithm outperforms the
distributed algorithm by 1.82–4.66 %. We can see that the average SU throughput of distrib-
uted greedy search algorithm increases more slowly than that of the centralized algorithm
as PI increases. This is because that when PI increases the relative difference between free
probabilities of different channels decreases, so the advantage of the distributed algorithm
(which takes advantage of the relative difference of different channels, see Eq. (5)) decreases.

The throughput difference versus primary free probability is depicted in Fig. 4. It is
shown that the throughput difference of each algorithm decreases as the primary free prob-
ability increases. This is because that when primary free probability is smaller, it’s more
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Fig. 3 Average SU throughput of different channel sensing algorithms versus the average value of primary
free probability (M = 5, N = 7 and P f = 0)
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Fig. 4 Throughput difference of different channel sensing algorithms versus the average value of primary
free probability (M = 5, N = 7 and P f = 0)
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Fig. 5 Collision of different channel sensing algorithms versus the average value of primary free probability
(where M = 5, N = 7 and P f = 0)

likely that some users can’t find an available channel which makes the difference between
SUs throughputs larger. We can see that the throughput difference of our distributed greedy
algorithm and centralized greedy algorithm is smaller than that of reference [20] and Latin
Square method, which means that our methods can guarantee better fairness among the
SUs than reference [20] and Latin Square method do. Specifically, when PI increases from
0.25 to 0.75, the throughput difference of the distributed greedy algorithm is 71.73–28.9 %,
and 70.69–26.27 % for the centralized greedy algorithm, 76.26–35.38 % for reference [20],
78.09–51.14 % for Latin Square method. The centralized greedy algorithm is the best because
that it adopts a measure to guarantee the fairness among SUs, see Eq. (16) and the related
analysis.
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Figure 5 shows the collision of different methods. The collisions of the distributed greedy
method and reference [20] increase with PI. This is because the probability that two or more
SUs sense the same channel to be free increases with PI. We can see that the collision of the
distributed greedy algorithm is smaller than that of reference [20] in most cases. The collision
of the Latin Square method is zero, and the collision of our centralized greedy algorithm is
far smaller (from 0.06 to 0.02) than those of distributed greedy algorithm and reference [20].
Though Latin Square method is collision-free, it can’t get the optimal SUs throughput. This
is because that when a collision happens, the SU can continue to sense the rest channels in
its sensing order in the slot. The collision is not a dominant factor that influences the SUs
throughput. However the collisions can waste available channel opportunities, thus cause
throughput loss in some degree [see Eq. (18)]. So our centralized greedy algorithm which
has considered this impact can get the largest SUs throughput and very low collision.

(2) Effect of the number of channels,N

We study the impact of the number of channels on the performance of proposed algorithms,
and keep the other parameters to be M = 5, Pf = 0 and PI is randomly distributed on (0, 1).
Figure 6a depicts the effect of number of channels on the average SU throughput. It is shown
that the average SU throughput of each method increases with the increase of the number of
channels. This is because that more potential channels means more transmission opportunity
for the SUs. We can see that the distributed greedy algorithm outperforms reference [20] by
21.94–8.39 % when the number of channels increases from 5 to 10; the centralized greedy
algorithm outperforms Latin Square method by 32.54–57.76 %; and the centralized greedy
algorithm outperforms distributed greedy algorithm by 8.46–1.86 %. Figure 6b depicts the
effect of the number of channels on the throughput difference. The throughput difference
of each method decreases with the increase of the number of channels. This is because that
with more potential channels it is more likely that every SU can get an available channel
with good quality. It is shown that both of our distributed greedy algorithm and centralized
greedy algorithm have smaller throughput difference than reference [20] and Latin Square
method which confirms the fairness among the SUs when using the proposed methods. We
can see that when the number of channels gets larger, the performance (both average SU
throughput and throughput difference) of the distributed greedy algorithm gets closer to that
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Fig. 6 Effect of number of channels on the performance (where M = 5, P f = 0 and PI = rand(0, 1)).
a Average SU throughput of different methods; b Throughput difference of different methods
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Fig. 7 Effect of number of SUs on the performance (where N = 10, P f = 0 and PI = rand(0, 1)). a Average
SU throughput of different methods. b Throughput difference of different methods

of the centralized greedy algorithm. This is because that the second part of Eq. (5) will give
a bigger effect with a larger number of channels.

(3) Effect of the number of SUs, M

Figure 7 depicts the effect of the number of SUs on the performance of the algorithms,
where the other parameters are kept as N = 10, Pf = 0 and PI is randomly distributed on
(0,1). It is shown in Fig. 7a that the average SU throughput of each algorithm decreases with
the increase of the number of SUs, since more SUs means less available channel opportunity
for each SU. However the total network throughput increases with the increase of the number
of SUs due to the multi-user diversity. We can see that both of our distributed greedy algo-
rithm and centralized greedy algorithm gain more throughput than the traditional methods. In
specific, the distributed greedy algorithm outperforms reference [20] by 8.39–51.11 % when
the number of SUs increases from 5 to 10; the centralized greedy algorithm outperforms
Latin Square method by 57.54–48.95 %; and the centralized greedy algorithm outperforms
distributed greedy algorithm by 1.73–4.55 %. It is shown in Fig. 7b that the throughput dif-
ference of each algorithm increases as the number of SUs increases. This is because that
when the number of SUs increases, it’s harder to satisfy that each SU can get an available
channel with good quality and it’s likely that some SUs even can’t get an available channel
in a slot, so the throughput difference among the SUs increases. We can see that our distrib-
uted greedy algorithm and centralized greedy algorithm have smaller throughput difference
than reference [20] and Latin Square method. Specially, the performance of reference [20]
decreases very fast with the increase of the number of SUs. In contrast, both of our proposed
methods can get far better performance (up to about 50%) than the traditional ones.

(4) Effect of false-alarm probability, Pf

We study the impact of false alarm probability on the performance of the proposed algo-
rithms, and keep the other parameters to be M = 5, N = 7 and PI is randomly distributed
on (0,1). The simulation results are shown in Fig. 8. From Fig. 8a we can see that the average
SU throughput of each method decreases with the increase of false alarm probability. This
is because that with larger false alarm probability, it’s more possible that the SUs miss an
actual available channel opportunity. It is shown that our proposed methods gain more SU
throughput: the distributed greedy algorithm outperforms reference [20] by 11.93–13.44 %
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Fig. 8 Effect of false alarm probability on the performance (where M = 5, N = 7 and PI = rand(0, 1)). a
Average SU throughput of different methods. b Collision of different methods

when false alarm probability increases from 0 to 0.25; the centralized greedy algorithm out-
performs Latin Square method by 43.63–36.29 %; and the centralized greedy algorithm out-
performs distributed greedy algorithm by 3.83–2.68 %. Figure 8b depicts the collisions of the
methods versus false alarm probability. We can see that Latin Square method is collision-free,
the collisions of distributed greedy algorithm and reference [20] decrease with the increase
of false alarm probability, while the collision of centralized greedy algorithm increases with
the increase of false alarm probability. As we mentioned before, our centralized greedy algo-
rithm has considered the throughput loss caused by collisions [Eq. (18)], so it can get a
very low collision compared to the distributed greedy algorithm and reference [20]. However
with the increase of false alarm probability, the value of Eq. (18) (thus its impact) decreases,
which causes the increase of collision. In contrast, both the distributed greedy algorithm and
reference [20] do not consider the impact of collisions on throughput loss, so their collisions
decrease with the increase of false alarm probability because of the decrease of the probability
that a channel is sensed to be free by two or more SUs simultaneously.

7 Conclusions

In this paper, we study the channel sensing order setting problem for a multi-channel multi-
user cognitive radio network. Two suboptimal greedy search algorithms are proposed for
both distributed scenario and centralized scenario. In the distributed greedy search algo-
rithm, a novel potential function is proposed to represent the relative advantage of a channel
used by a user among multi channels and multi users. In the centralized greedy search
algorithm, a sensing matrix is obtained by a coordinator for all the users. The loss caused
by collisions is considered and the fairness between SUs is guaranteed in this centralized
greedy search algorithm. Simulation results show that our distributed greedy algorithm
gets more average SU throughput, better fairness and lower collision than the distributed
method in the reference. And the sensing matrix obtained by our centralized greedy algo-
rithm outperforms the Latin Square matrix in the reference. The distributed greedy algo-
rithm has a very low computation complexity, and its performance gets very close to the
centralized greedy algorithm (with a difference about 1 %) when the primary free prob-
ability is small, the number of channels is large and the false alarm probability is large.
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The stopping rules are not adopted in this paper because it should be jointly designed
with the sensing order setting from a systematic point of view, this will be our future
concern.
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