
ORIGINAL ARTICLE

The method of solution of equations with coefficients that contain
measurement errors, using artificial neural network

Konrad Zajkowski

Received: 5 May 2012 / Accepted: 17 October 2012 / Published online: 2 November 2012

� The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract This paper presents an algorithm for solving

N-equations of N-unknowns. This algorithm allows to

determine the solution in a situation where coefficients Ai

in equations are burdened with measurement errors. For

some values of Ai (where i = 1,…, N), there is no inverse

function of input equations. In this case, it is impossible to

determine the solution of equations of classical methods.

Keywords Artificial neural network � Measurement

errors � Induction motor model � Parameter identification

1 Introduction

Mathematical models that describe electric dependencies in

the receiver tested are built from discrete components. For

a full description of such a model, it is required to identify

the parameters xi of these elements (see Eq. 1). Most fre-

quently, this identification is carried out indirectly through

the measurements of electrical quantities Ai on the object

tested [5, 8]. The parameters sought are determined from

the mathematical relations (1) that describe the object.

A1 ¼ f1 y1; y2; . . .; yi; . . .; yNð Þ
A2 ¼ f2 y1; y2; . . .; yi; . . .; yNð Þ
..
.

Ai ¼ fi y1; y2; . . .; yi; . . .; yNð Þ
..
.

AN ¼ fN y1; y2; . . .; yi; . . .; yNð Þ

8
>>>>>>>><

>>>>>>>>:

ð1Þ

where fi certain functions depending on the model, Ai the

values measured, yi parameters that describe the model.

The classic method to solve Eq. (1) consists in deter-

mining inverse functions (2). Measurement inaccuracies

that are contained in Ai are transferred to parameters yi to

be determined.

y1 ¼ g1 A1;A2; . . .;ANð Þ
y2 ¼ g2 A1;A2; . . .;ANð Þ
..
.

yN ¼ gN A1;A2; . . .;ANð Þ

8
>>><

>>>:

ð2Þ

In some cases, the determination of Eq. (2) may not be

possible [14, 16]. This means that for adopted coefficients

Ai, there are no inverse functions gi. Eq. (2) are determined

for the values of environment Ai and which contain

measurement errors. In this case, approximate solutions are

sought which satisfy Relation (3).

Ai � fi y1; y2; . . .; yNð Þj j � 0 ð3Þ

The solution will be close to coefficients Ai.

2 An example of a model for identification

The analysis covered a single phase on an induction motor.

The purpose of the analysis is to determine current–voltage

dependences on the terminals of one motor phase. These

relationships can be determined from the model that con-

sists of serially connected elements: Rs, Ls i es (Fig. 1).

Coefficients RS, LS, Em, ues, a that are being sought

represent many of the phenomena that occur in the motor

and the system that is driven. For example, the inertia of

the rotor and the system driven will affect es, and the

angular velocity will exert an influence on mutual induc-

tances, which are described with LS. When searching for
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the parameters of the model, the fact is also important that

these factors cannot be determined with the engine being

stopped. This means that the RS does not reflect the

winding resistance and LS does not reflect their inductance.

The parameters of the model are defined for a constant load

on the machine shaft and for constant rotations. When

changing the load, the parameters of the model change, as

well.

In this situation, the parameters that are being deter-

mined cannot in any way be unified. They should be

determined for a specific drive train (the motor and the

machine driven). These parameters can vary considerably

for the same engine with different mechanical properties of

the system driven.

The identification of the model consists in searching for

Em, ues, RS, and LS. These parameters can be determined on

the receiver [6, 7, 9–11] by making measurements in the

steady state (in the case of an induction motor: during

operation with a constant load and a constant speed) in the

system as shown below (Fig. 2):

According to the model adopted, we know that:

es ¼ Es

ffiffiffi
2
p

sin xt þ /esð Þ: ð4Þ

In the field of complex numbers, the following can be

written:

Es ¼ Ese
j/es ; ð5Þ

U ¼ Uej/u : ð6Þ

For one mesh, the voltage equation is as follows:

Ia Rs þ Rþ jXsð Þ þ Es � U ¼ 0; ð7Þ

where XS ¼ xLS:
Next, by transforming (7), we determine current Ia:

Ia ¼
U � Es

Rs þ Rþ jXs

ð8Þ

Voltmeter V measures the difference in the supply voltage

and in the voltage drop across internal resistance R. Thus,

in the field of complex numbers, there will be the

following:

UV ¼ U � IaR: ð9Þ

From Eqs. (8) and (9), one can obtain the following:

UV ¼
1

Rs þ Rþ jXs

U Rs þ jXsð Þ þ EsR½ �: ð10Þ

Knowing that the forces and the current are equal,

respectively:

Pw ¼ Re UvI�a
� �

; Qw ¼ Im UvI�a
� �

; I�a ¼
U� � E�s

Rs þ R� jXs

We obtain the following equations:

Ia ¼ U�Es

RsþRþjXs

�
�
�

�
�
�

Uv ¼ 1
RsþRþjXs

UðRs þ jXsÞ þ EsR½ �
�
�
�

�
�
�

Pw ¼ Re
UðRsþjXsÞþEsR½ �� U��E�s½ �

ðRsþRÞ2þX2
s

� �

Qw ¼ Im
UðRsþjXsÞþEsR½ �� U��E�s½ �

ðRsþRÞ2þX2
s

� �

8
>>>>>>>>><

>>>>>>>>>:

: ð11Þ

Equation (11) is consistent with (1). The coefficients of

the model of the receiver that are obtained from the above

equations are not determinable for all the input parameters

(UV, Ia, PW, QW). There are those areas that result from

measurement inaccuracies where the system of Eq. (11) has

no solutions.

It was found that these coefficients cannot be determined

using the Newton’s interpolation algorithm [15, 16]. There

are no functions that are inverse to Eq. (11), either.

Rs 

Ls 

es 

R 

u 

t=t0 

W 

S 

where: 
tUu m ωsin=

( )
( )

( )⎩
⎨
⎧

≥+
<+

= −
0

0

sin

sin

ttteE

tttE
te

es
t

m

esm
S ϕω

ϕω
α

R – internal resistance of sources

Fig. 1 Electric model of the motor and the power source, where

u ¼ Um sin xt; eSðtÞ ¼
Em sinðxt þ /esÞ t\t0
Eme�at sinðxt þ /esÞ t� t0

�

; R internal

resistance of sources

~

Rs

Ls 

es 

~

R 

u

A

Ia

V Uv

W 
VAr 

Pw 

*
*

Qw 

Fig. 2 Measuring circuit for parametric identification

yi = random (ai,bi) 
for: i = 1, …, NL

solving equation      
(1) or (11) 

write vector σm 

m = m + 1 

Fig. 3 Construction of learning

vectors
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Process time constant 1/a that is being sought, and

which is mainly related to the inertia of the rotor and the

system driven, can be determined experimentally by

observing the course of voltage versus time at the motor

terminals immediately after commutation.

In [13], the authors proved that amplitude ES can be

equal to amplitude U. In this paper, it was also observed

that frequency ES is similar to the frequency of the mains

voltage. It was also noted that phase shift ues is equal to 0.

In this model, it is assumed that the frequencies of both

sources are identical. This assumption does not substan-

tially affect the results of further simulations.

3 Construction of an artificial neural network

Coefficients Em, RS, and LS can be determined from

Eq. (11) using a neural network. The network input

parameters x1 = Uv [V], x2 = Ia [A], x3 = Pw [W],

x4 = Qw [VAr] contain measurement errors. Due to the

nature of the adopted activation function [1–3], the output

neuron of the output layer must be within range y 2 0; 1ð Þ.
The initial values were as follows: y1 = Rs [kX], y2 = Ls

[H], y3 = Es [kV].

Training of the network must be for those learning

vectors r ¼ x1; . . .; xN0
; ; d

Lð Þ
1 ; . . .; d

Lð Þ
NL

�
�
�

h i
that do not con-

tain any measurement errors. Learning vectors are con-

structed from Eqs. (1) or (11) for random values y1, y2, y3

that lie within the set of permissible changes, and which is

limited with values a and b [4, 12].

The test vector is built according to Fig. 3 for values yi

that are not contained within the training set.

The neural network was built in a VBA environment in

EXCEL.

The script associated with the button in Fig. 4 deter-

mines the random values: d1 ¼ Rs 2 0:005� 0:2h ikX;
d2 ¼ Ls 2 0:005� 0:5h iH; d3 ¼ Es 2 0:15� Uh ikV.

Further values Uv, Ia, Pw and Qw are determined from

Eq. (11).

After tests of several neural networks, a decision was

made to build a neural network with topology (Fig. 5), with

one hidden layer. The weights of neurons are determined

by back propagation.

Individual neurons in the network are structured

according to Fig. 6.

In the network being built, the following indications

were accepted:

t iteration step, t = 1, 2, …
y
ðkÞ
i ðtÞ ith output of the neuron N

ðkÞ
i

y
Lð Þ

i tð Þ ith output of the network

k network layer, k = 1, …, L

L network output layer, the number of

network layers

i neuron number in layer, i = 1,…, Nk

x
ðkÞ
j ðtÞ input signal in the kth layer

xjðtÞ ¼ x
ð1Þ
j ðtÞ input of the network

j number of the input signal in the kth layer,

j = 1,…, Nk-1

N0 number of inputs to the network

Nk number of neurons in the kth layer

NL number of neurons in the last layer

s
ðkÞ
i ðtÞ neuron membrane potential N

ðkÞ
i in the kth

layer

Fig. 4 The workbook that builds learning vectors

d(1) = Int(((200 - 5) * Rnd) + 5) / 1000 ' Rs [kOHm]= 0.005 - 0.200
d(2) = Int(((500 - 5) * Rnd) + 5) / 1000 ' Ls [H] = 0.005 - 0.500
d(3) = Int(((U - 150) * Rnd) + 150) / 1000 ' Es [kV]  = 0.150 - U
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w
ðkÞ
i;j ðtÞ weight of the jth input of the ith neuron

N
ðkÞ
i in the kth layer

d
ðLÞ
i ðtÞ ith reference signal output from the

learning vector

eðLÞi ðtÞ error of the ith network output, eðLÞi ðtÞ ¼
d
ðLÞ
i ðtÞ � y

ðLÞ
i ðtÞ

g network learning rate

Q(t) error at the output of the network for one

reference vector

Q*(t) error at the output of the network for the

entire epoch

The output of neuron N
ðkÞ
i (Fig. 6) at time t is described

with the following relation:

y
ðkÞ
i ðtÞ ¼ f s

ðkÞ
i ðtÞ

� 	
ð12Þ

while membrane potential s
ðkÞ
i is equal to:

s
ðkÞ
i ðtÞ ¼

XNk�1

j¼0

w
ðkÞ
i;j ðtÞ � x

ðkÞ
j ðtÞ ð13Þ

The input neuron for k = 1 layer is equal to network

inputs xjðtÞ ¼ x
ð1Þ
j ðtÞ. Each layer has one input x

ðkÞ
0 ðtÞ ¼ 1.

Other inputs are the outputs of the previous layer.

xk
j ðtÞ ¼

xjðtÞ for k ¼ 1

yk�1
j ðtÞ for k ¼ 2; . . .; L

1 for j ¼ 0; k ¼ 1; . . .; L

8
<

:
ð14Þ

The error at the output of the network for one learning

vector r is:

QðtÞ ¼
XNL

i¼1

ðeL
i ðtÞÞ

2 ¼
XNL

i¼1

ðdL
i ðtÞ � yL

i ðtÞÞ
2 ð15Þ

The weights of the individual neuron inputs are determined

from the steepest descent rule:

wðt þ 1Þ ¼ wðtÞ � g � gðwðtÞÞ ð16Þ

where gðwðtÞÞ ¼ oQ tð Þ
ow1 tð Þ ;

oQ tð Þ
ow2 tð Þ ;

oQ tð Þ
ow3 tð Þ ; . . .; oQ tð Þ

own tð Þ

h iT

is the vector gradient.

From Eq. (16), for any weight in any layer, the fol-

lowing is obtained:

w
ðkÞ
i;j ðt þ 1Þ ¼ w

ðkÞ
i;j ðtÞ � g

oQðtÞ
ow
ðkÞ
i;j ðtÞ

¼ w
ðkÞ
i;j ðtÞ þ 2gdðkÞi ðtÞx

ðkÞ
j ðtÞ ð17Þ

Parameter dðkÞi ðtÞ is determined differently than for the

output layer and the hidden layer:

dðkÞi ðtÞ ¼
eðLÞi ðtÞ � f

0
s
ðLÞ
i ðtÞ

� 	
for k ¼ L

f
0

s
ðkÞ
i ðtÞ

� 	
�
PNkþ1

m¼1

dðkþ1Þ
m ðtÞwðkþ1Þ

i;m ðtÞ for k 6¼ L

8
><

>:

ð18Þ

where eðLÞi ðtÞ ¼ d
ðLÞ
i ðtÞ � y

ðLÞ
i ðtÞ:

Network training is carried out by an incremental

updating of weights, that is, each time after the entry of a

successive learning vector, responses are determined and

the weights are modified. The simulation is continued until

the total output error for entire epoch Q*(t) is smaller than

the accepted set Qmin.

Q�ðtÞ ¼
XM

m¼1

QmðtÞ	QMin ð19Þ

where M is the number of learning vectors in the epoch.

The neuron activation function was adopted as a con-

tinuous unipolar function of the signum type:

f ðsiðtÞÞ ¼
1

1þ e�b�siðtÞ
ð20Þ

where b is the steepness factor.

With low values of coefficient b, the function is usually

mild. By increasing b, the plot becomes steeper until the

threshold course is obtained.
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Fig. 6 Diagram of neuron N
ðkÞ
i
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Fig. 5 Structure of the neural network
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The derivative of the activation function is as follows:

f
0 ðsiðtÞÞ ¼

b � e�b�siðtÞ

1þ e�b�siðtÞð Þ2
¼ b � f ðsiðtÞÞ � ð1� f ðsiðtÞÞÞ ð21Þ

The calculation sheet in Fig. 7 allows an observation of the

characteristic values of the network tested. Starting of the

network training produces a script written in VBA that

executes in a loop of a neural network algorithm according

to (12) 7 (21) and the block diagram in Fig. 8.

The start of the algorithm is possible for the weights that

are selected at random from range �1; 1h i or the reading

stored from the previous simulations (Fig. 9).

4 Learning of the network

The set of learning vectors that form one epoch consists of

200 elements. Owing to the ability to read and write data, it

is possible to pause the simulation and to change its

parameters during operation [4, 12].

Reading of the stored data allows a continuation of the

previously stopped simulation. The window in Fig. 9

retrieves the values from the appropriate data sheet (Fig. 10).

The output values of the neurons (Fig. 8a) are deter-

mined by analyzing the neurons in layers starting from the

input layer; the output layer comes last.

Fig. 7 Sheet for the

visualization of the network

operation
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For all the layers, the steepness factor b (20) of acti-

vation function fx was assumed as equal to 0.1.

The determination of value dðkÞi ðtÞ (Fig. 8b) shall be in

accordance with Formula (18). This determination takes place

starting from the output layer; the input layer comes last.!

START 

Set the random weights 
of neurons 

random sort  
M learning vectors 

use the mth vector xm(t)  
to the network 

Calculate output values of neurons 
in front. 

Calculate network output y(t)

Calculate errors δ
on output layer 

Calculate errors δ
in previous layer  

(back-propagation method) 

Update weights  
of neurons 

m > M

Calculate resultant error 
Q on network output   

Calculate error Q*

for all epoch

( ) min
* QtQ ≤

STOP 

Read the values of weights  
from the previous simulations 

F 

F 

T 

T 

(a) 

(b) 

(c) 

Fig. 8 Block diagram of the network learning algorithm

Fig. 9 The reading window of the recorded data

Fig. 10 Sheet with the saved results of the simulation
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Correction of the values of weights (Fig. 8c) is carried

out according to Relation (17).

Network learning factor g from Formula (17) was

adopted on the first stage of the simulation as being con-

stant and equal to 0.1. After an analysis of ca. 70,000

epochs, the value of target function Q*(t), which was cal-

culated in accordance with Formula (19), began to oscillate

on the level of 1.42. A decrease in Q*(t) occurred only after

a reduction in network learning rate g. The correct proce-

dure for the network training should provide for an ability

to change this ratio during the analysis (Fig. 11).

Oscillations around the optimal solution are manifested

with a momentary increase in the value of Q*(t).

Q�ðtÞ�Q�ðt � 1Þ ð22Þ

Once the required value of Q*(t) from Eq. (19) has been

reached, the network test is performed (Fig. 12).

5 Network test

The network test consists in determining the values of UV,

Ia, PW, and QW from Relation (11). These values are then

substituted into the neural network input, whose solution

is RS, LS, and ES. The window in Fig. 12 also allows a

determination of the network’s solution for a selected set of

weights.

Table 1 illustrates the network test for randomly selec-

ted values of RS, LS, and ES.

The relative error for all the output neurons for the

randomly adopted input vectors is:

d1 ¼
y1 � RS

RS

; d2 ¼
y2 � LS

LS

; d3 ¼
y3 � ES

ES

ð23Þ

The total network error for the accepted values of RS, LS,

and ES are:

d ¼ y1 � RS

RS

�
�
�
�

�
�
�
�þ

y2 � LS

LS

�
�
�
�

�
�
�
�þ

y3 � ES

ES

�
�
�
�

�
�
�
�: ð24Þ

The percentage error made by the network is determined

from the largest error (the top bar in the chart in Fig. 13),

and it is equal to 26.8 %.

6 Conclusions

The large error value is shown for the input values that

occur least frequently in the training set. An improved

performance is possible by enlarging the training set or by

reducing the range of acceptable changes of the values

being sought.

Neural Network with  
η-learning rate  

( ) ( )tQtQ ** 1 ≥−

Read the values of weights  
from the previous simulations

STOP 

10
ηη =

F 

T 

Fig. 11 The method to reduce the coefficient of network learning
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Owing to the method presented of the selection of the

electrical model parameters from the values that are mea-

sured on the receiver, it is not required to build any com-

plex physical and electrical dependences. The engineering

method of voltage, current, and power measurement allows

one to determine the parameters of the model for constant

electrical and mechanical conditions in the engine. The

method presented is particularly useful in situations where

measurement errors make it impossible to solve Eq. (2).

Building of a network with the use of the VBA envi-

ronment is relatively simple. It requires the knowledge of

the language basics. An important advantage of this

approach is the ability to build its own networks of any

topology. The design loop iteration depends largely on how

one defines those variables that describe the network.

Table 1 Verification of the network error

Random values Network input Network output Relative error

x1 x2 x3 x4 y1 y2 y3 d1 d2 d3 d
RS LS ES UV Ia P Q R’S L’S E’S

[X] [H] [V] [V] [A] [W] [VAr] [X] [H] [V] – – – –

20 0.2 180 229.95 0.7576 53.21 165.88 19.721 0.210 168.626 -0.014 0.050 -0.063 0.127

151 0.315 193 229.97 0.2048 39.395 25.7897 147.083 0.354 192.849 -0.026 0.124 -0.001 0.151

150 0.09 197 229.96 0.2159 48.794 9.18694 152.107 0.093 197.019 0.014 0.033 0.0001 0.048

147 0.3 197 229.97 0.1888 36.563 23.415 147.413 0.352 192.976 0.003 0.173 -0.020 0.197

47 0.46 193 229.99 0.2434 17.368 53.211 41.373 0.409 195.946 -0.120 -0.111 0.015 0.246

150 0.09 193 229.95 0.2421 54.707 10.301 151.590 0.092 196.866 0.011 0.022 0.020 0.053

45 0.448 190 229.98 0.2706 19.015 59.256 41.182 0.408 195.771 -0.085 -0.089 0.030 0.205

145 0.4 190 229.97 0.2083 36.218 31.353 145.773 0.357 192.810 0.005 -0.108 0.015 0.128

50 0.03 160 229.73 1.3705 309.422 58.163 58.641 0.026 159.829 0.173 -0.133 -0.001 0.307

150 0.1 200 229.96 0.1955 44.0056 9.20584 152.394 0.093 197.103 0.016 -0.070 -0.014 0.100

140 0.317 189 229.96 0.2384 44.6931 31.755 146.133 0.354 192.544 0.044 0.117 0.019 0.179

40 0.317 195 229.98 0.3259 28.036 69.507 40.416 0.402 195.029 0.010 0.268 0.0002 0.279

135 0.4 195 229.97 0.1896 31.937 29.691 143.751 0.358 192.972 0.065 -0.105 -0.010 0.180

145 0.3 190 229.96 0.2311 44.568 28.936 146.443 0.353 192.636 0.010 0.177 0.014 0.201

140 0.4 190 229.97 0.2125 36.378 32.615 145.157 0.356 192.790 0.037 -0.110 0.015 0.162

Fig. 12 The window for testing

and results analysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d1

d3

0

0,05

0,1

0,15

0,2

0,25

0,3

Iδ1I 

Iδ2I 

Iδ3I 

Fig. 13 Mistake made by the network
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In the present solution, the individual variables occupy

adjacent bytes of the memory. A sample definition of the

variable holding the weights of neurons is:

Public w(1 To Lweights)As Single

where Lweights is the number of weights of all neu-

rons.This solution facilitates the construction of a loop

program, but special attention is to be paid to assigning the

weight number with the neuron number.

An alternative is to build one’s own variable (using the

opportunity to build one’s own type of variables) that

represents the neuron, and then group all the parameters

that describe the type of the neuron in this variable. This

approach will make the program more transparent, but

there are problems in the construction of iterative loops.

This will make the source code longer and will require

more CPU load.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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