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Abstract

Background: Although commercially available activity trackers can aid in tracking therapy and recovery of patients,
most devices perform poorly for patients with irregular movement patterns. Standard machine learning techniques
can be applied on recorded accelerometer signals in order to classify the activities of ambulatory subjects with
incomplete spinal cord injury in a way that is specific to this population and the location of the recording—at
home or in the clinic.

Methods: Subjects were instructed to perform a standardized set of movements while wearing a waist-worn
accelerometer in the clinic and at-home. Activities included lying, sitting, standing, walking, wheeling, and stair
climbing. Multiple classifiers and validation methods were used to quantify the ability of the machine learning
techniques to distinguish the activities recorded in-lab or at-home.

Results: In the lab, classifiers trained and tested using within-subject cross-validation provided an accuracy of 91.
6%. When the classifier was trained on data collected in the lab but tested on at home data, the accuracy fell to 54.
6% indicating distinct movement patterns between locations. However, the accuracy of the at-home classifications,
when training the classifier with at-home data, improved to 85.9%.

Conclusion: Individuals with unique movement patterns can benefit from using tailored activity recognition
algorithms easily implemented using modern machine learning methods on collected movement data.
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Background
Activity tracking can be performed using wearable sen-
sors, which provide a wealth of information to encourage
beneficial movement. Commercial activity tracking has
gained immense popularity with a number of consumer
devices available to help the general population track their
fitness goals [1, 2]. Patients with motor disabilities, such as
those with spinal cord injury, can benefit from activity
tracking especially in therapeutic or clinical environments
[3, 4]. Many of these devices, however, are not designed to
work effectively for movement-impaired populations as
they have not been validated in these populations. Precise

and automatic activity recognition has the potential to
help create and evaluate individualized treatments plans,
but more work must be done to improve the experience
for movement-impaired patient populations.
For individuals with spinal cord injuries, half of motor

recovery occurs within the first few months and full
neurological recovery occurs within 2 years of the injury
[5]. In this time of recovery, the vast majority of individ-
uals return home and are not institutionalized during re-
covery with only periodic assessments performed in a
clinical setting [6, 7]. During the extended recovery
phase, it can be beneficial to have accurate feedback on
the quality and quantity of patient movements [6]. How-
ever, when patients return home, there is currently no
standard practice of assessing the quality of their mobil-
ity without return clinical visits. Activity tracking offers
individuals with incomplete spinal cord injury needed
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data on their movement patterns to improve therapies
and monitor recovery.
There are obstacles, however, to bringing activity track-

ing to populations with motor disabilities. Consumer-
oriented activity trackers typically perform limited
analyses including calorie estimates, step count estimates,
or general activity levels [1, 2]. These same activity
trackers ignore physical symptoms of individuals with
motor disabilities that include muscle spasticity and
tremor. For clinical purposes, many consumer-oriented
activity trackers currently do not monitor movements ne-
cessary to the therapies of these individuals that include
lying, sitting, standing, wheeling and stair-climbing. Al-
though these activity trackers are inexpensive, their lim-
ited, proprietary analyses are often not validated for use in
a clinical setting for specific patient populations [7]. The
direct analysis of 3-axis accelerometers allows for cheap,
controlled, repeatable, and reliable activity recognition [8],
but most commercial systems for movement analysis are
designed to track the movements of healthy individuals.
Due to the irregular movement patterns of individuals
with motor disabilities, the probability of a misclassifica-
tion is much higher. Alternative approaches to activity
tracking are necessary to accurately and automatically
analyze movements in such populations.
The current methods of evaluating patients with motor

impairments have limits that motion tracking can address.
Performing periodic clinical assessments requires daily,
weekly, or monthly visits. These visits are time consuming
for the subject and expensive both financially and stra-
tegically in terms of clinician time and effort. Journaling is
another popular method for clinical evaluation. However,
the inconvenience of periodic journaling results in a low
compliance rate [9] and the subjective nature of journaling
produces data which is less reliable than objective mea-
sures. Wearable motion tracking, by contrast, can be used
inexpensively and unobtrusively at home and provides ob-
jective measures of performance.
Performing activity recognition in populations with

motor disabilities is particularly challenging. However,
activity recognition strategies can be tailored specifically
for populations with unique movement patterns. For ex-
ample, Parkinson’s disease symptoms including tremor,
slowed motion, rigid muscles, loss of common automatic
movements, and impaired posture [9] and such impaired
movements have been shown to dramatically affect ac-
tivity recognition algorithms [4]. Activity recognition has
been performed for many populations, including the eld-
erly [10], individuals with muscular dystrophy [11], and
Parkinson’s disease [12, 13]. The studies demonstrate
that it is possible to adapt activity recognition algorithms
to unique patient populations.
An additional complication in using activity recogni-

tion is the discrepancy between movements recorded in

the clinic under supervision when compared to at-home
movements. When asked to complete a series of move-
ments in a controlled clinical setting, patients will often
move in a stereotypical way that is often dissimilar to
their normal movement patterns. Much like the tailoring
of activity recognition methods to impaired movement
populations versus those with healthy mobility, activity
recognition algorithms should also be tailored to the
unique at-home movement profiles of subjects. This is
especially important as accurate at-home data is more
beneficial than accurate identification in clinical settings.
Machine learning approaches that can be used to tailor
activity recognition for unique patient populations can
also be adapted to at-home movements with the right
data available.
Here we tailor the activity recognition algorithms for a

waist-worn accelerometer to the movements of patients
with incomplete spinal cord injury. We recorded instructed
movements both in the clinic and at home. Using this data,
we compared and contrasted the accuracy of methods
based on laboratory training alone versus an approach
which included at-home data for training as well. By tailor-
ing the activity recognition algorithms to not only the indi-
vidual population, but also the at-home movements of that
population, we expect much greater accuracy in tracking
their movements in a context much more relevant to their
everyday lives.

Methods
Thirteen ambulatory subjects with incomplete spinal
cord injuries (9 M/4 F, ages 22–50) participated in this
study. Informed, written consent was acquired for all
subjects. The Northwestern University Institutional Re-
view Board approved this study.
Two instructed activity sets were developed for the

subjects to carry out in-lab and at-home. In-lab data was
collected while subjects were instructed to perform the
following activities: lying, sitting, walking, standing, wheel-
ing, and stair climbing. The order of these instructed ac-
tivities, as shown in Fig. 1, was to allow every combination
of transitions between activities. In order to capture move-
ments at home, subjects were instructed to perform a
similar set of activities in order, at three distinct times per
day and record the time each activity set was performed.
All subjects were instructed to wear an Actigraph wGT3X
tri-axial accelerometer on their waist using a provided
waist strap; the accelerometer sampled at a rate of 100 Hz
with a dynamic range of +/− 8 g’s.

Data processing and classification
The recorded accelerometer data was first labeled using
an in-house developed MATLAB GUI. Activities were
visually identified based on the accelerations and the ex-
pected temporal order of the instructed activities. The
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recordings were then parsed into ten second clips.
One-thousand and One-hundred seventy samples
were recorded in-lab and 1089 samples were recorded
at-home. On these clips a standard set of time series
features were automatically selected, weighed, and
combined using standard machine learning classifiers,
as summarized in Table 1.
Three validation methods were used to explore the influ-

ence of context on classification accuracy - cross-validation
analysis of in-lab collected data, training on in-lab and
testing on at-home data, and cross-validation analysis of
at-home data. All three validation methods used 10-fold
cross-validation over the entire set of subjects.
Six different classifiers were initially considered for clas-

sification: support vector machine; naïve bayes; regularized
logistic regression; K nearest neighbors; and decision trees.
The hyperparameters for the classifiers were found by a
grid search of 10× where × is an integer between −5 and 5
or using a suitable range specified below. Hyperpara-
meters were selected by minimizing the 10-fold cross-

validation using only in-lab activity but were robust to
other validation methods. We applied the following the
following parameters for the classifiers. The support vec-
tor machine (SVM) classifier yielded the most promising
results. For SVM, we normalized each feature to have 0
mean and unit variance. We applied radial basis functions,
giving us two hyperparameters—the soft slack variable, C,
and the size of the Gaussian kernel, γ. The values found
by cross validation were C = 10 and γ = 1. Naïve Bayes had
no hyperparameters. K nearest neighbor employed a 1–30
search with a k value equal to 5. For the decision tree
classifier, the minimum number of samples needed to split
a node was found to be 10 after a 1–30 search. For logistic
regression we used an L1 penalty (lasso) and a
regularization strength, λ, of 0.01.

Results
Our first goal was to predict the activities of individuals
with incomplete spinal cord injury in a laboratory setting.
Using in-lab activity data, we were able to accurately pre-
dict the activity with 91.6% accuracy (89.9–93.2%, bino-
mial 95% confidence interval) (Table 2). Walking was the
most accurately predicted with 97.0% recall followed by
lying at 95.9% and wheeling at 95.8%. In-lab activity pos-
sessed an overall precision of 91.34% and a recall of 90%.
The lower accuracies were the result of misclassification
of similar physical activities. The recorded signals from
walking and stair climbing are quite similar, with mis-
classification of each due to the other similar activity in
80.8% of the misclassifications. A similar pattern is seen
for sitting and moving in the wheelchair (wheeling).
After assessing in-lab activity recognition, we assessed

classification accuracy for data collected in the home.
When using classifiers trained on the previous in-lab
collected data, we would expect at-home activity recog-
nition to be much lower due to the lack of supervision
and increased variability in at-home movement patterns.

a

c

d

b

Fig. 1 Experimental protocol. a At home, subjects performed the
following set of physical activities in the order shown. b In the lab,
subjects performed the physical activities in the displayed sequence
in order to record every pair of transitions between activities. c Data
from a tri-axial accelerometer was collected while performing these
activities. d Data processing. A series of features were extracted from
10 s clips of data, and supervised machine learning was used to train
an activity recognition classifier

Table 1 Features used for activity recognition

Description Total number
of values

Mean, absolute value of the mean 6

Moments: standard deviation, skew, kurtosis 9

Deviation, skew, kurtosis 12

Root mean square 3

Smoothed root mean square (5 pt kernel, 10 pt kernel) 6

Extremes: min, max, abs min, abs max 12

Histogram: includes counts for −4 to 4 z-score bins 27

Fourier components: 32 samples for each axis 96

Overall mean acceleration 1

Cross product means: xy, xz, yz 3

Abs mean of the cross products 3
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Using at-home activity data for testing, accuracy was
54.6% (51.6–57.6%) (Table 3). Note, by combining the
data of two easily misclassified similar activities, walking
and stair climbing, accuracy increases roughly ten per-
cent to 63.5%. However, that low percentage is based on
at-home activity classification using in-lab collected data.
If the classifier is trained using at-home data, the accur-
acy significantly improves to 85.9% (83.6–87.9%) using
within-subject cross-validation and the SVM classifier.
We tested the accuracy of multiple machine learning

classifiers. Overall, the SVM classifier was most accurate
with 91.6% for in-lab activity and 85.5% for at-home ac-
tivity using within-subject 10-fold cross-validation
(Table 4). Naïve Bayes performed with the highest accur-
acy at 91.8% for the in-lab only condition, although sig-
nificantly dropping in accuracy in other categories
(Table 5). Regularized logistic regression, K-nearest
neighbor, and decision trees were also tested, but
performed poorly.

Discussion
We recorded individuals performing a series of physical
activities both in-lab and at-home and identified those
activities using machine learning classifiers. Our results
noted a large difference in recognition accuracy depend-
ing on the subject being in the lab or at home. We found
that activities could be classified with 91.6% accuracy
using within-subject cross-validation on data collected

in the lab setting. The poorest classification accuracy
was found when testing was performed at home using
classifiers built from in-lab training data. To improve
performance of at-home activity classification we dem-
onstrated how at-home training data can be used to
restore the accuracy.
There has been a significant body of research on the use

of accelerometers in activity recognition for specific patient
populations [14, 15], including the use of accelerometer-
enabled smart phones which make activity tracking possible
with only the download of an application on the phone
[15–17]. Accelerometer-enabled activity recognition has
been used in populations recovering from stroke [18]. The
study participants wore triaxial accelerometers on their an-
kles in which machine-learning was used to recognize dif-
ferences between walking, exercise, and cycling and speed.
A similar study on stroke patients used an accelerometer
placed in the shoe to automatically classify standing, sitting,
and walking [19]. Activity recognition of this kind has also
been used to monitor falls in elderly populations through
accelerometers in mobile phones [20]. Mobile phone activ-
ity recognition was also successful applied in populations
with Parkinson’s disease [4]. These studies have demon-
strated that by using accelerometers on dedicated devices
and smart phones it is possible to monitor activities in spe-
cific patient populations.
Our previous work using mobile phone activity recogni-

tion in Parkinson’s disease demonstrated the need to use
population-specific activity classification [13]. Phone-
based activity recognition for control subjects had an
accuracy of 96.1% for a similar set of activities. When
Parkinson’s patient movements were analyzed using the
algorithm developed from the control subjects the accur-
acy was only 60.3%. However, when PD patient move-
ments were used to train the classifier, accuracy was
restored to 92.2%. Such a significant drop in accuracy,
then subsequent improvement, reflects the necessity for
patient population specific data analysis. Analogously,
movements differ between the in-clinic and at-home envi-
ronments, which suggested to us the need to collect data
in these specific environments as well.

Table 2 Classification matrix for in-lab activity using the SVM
classifier

Activity Lie Stand Sit Wheel Walk Stairs

Lie 191 5 2 0 1 2

Stand 5 148 8 0 1 1

Sit 5 8 135 14 0 0

Wheel 0 0 9 239 0 1

Walk 0 0 0 0 259 8

Stairs 0 2 0 0 28 100

Rows correspond to true activities, columns are predicted activities. Overall
accuracy 91.6% (89.9–93.2%). The highest accuracy classifier for each
validation method is indicated in bold

Table 3 Classification matrix for in-lab training and at-home
testing using the SVM classifier

Activity Lie Stand Sit Wheel Walk Stairs

Lie 209 60 39 28 6 8

Stand 1 77 29 6 1 5

Sit 27 22 24 11 0 3

Wheel 36 30 9 39 0 14

Walk 3 6 3 11 134 38

Stairs 0 8 0 8 72 112

Note the overall accuracy of 54.6% (51.6–57.6%) - a substantial reduction from
in-lab only validation. The highest accuracy classifier for each validation
method is indicated in bold

Table 4 Classification matrix for at-home activity using the SVM
classifier

Activity Lie Stand Sit Wheel Walk Stairs

Lie 327 5 4 5 5 4

Stand 7 99 6 2 1 4

Sit 12 10 66 6 2 1

Wheel 5 0 3 116 4 0

Walk 1 0 3 0 161 30

Stairs 3 1 0 0 30 166

Overall accuracy 85.9% (83.6–87.9%)

Albert et al. Journal of NeuroEngineering and Rehabilitation  (2017) 14:10 Page 4 of 6



Similar to the Albert et al. 2012 study, the obtained clas-
sification accuracies suggest a need to collect movement
data specific to the population and context. The highest
accuracy for our incomplete SCI patients (91.6% within-
subject) was obtained on the movement data collected in
the laboratory setting. This is expected, as these move-
ments were instructed, directly observed, and likely more
stereotypical. This was also observed anecdotally in the
variability in acquired accelerometer signals between in-
lab and at-home samples. Training on movements col-
lected in the lab and later testing on movements collected
at home provided the least accurate classification (54.6%
within-subject). Unfortunately, this reflects the potential
inaccuracy of activity recognition systems designed and
testing in a clinical setting. However, by including
movement data measured at home in the training set, the
accuracy was increased to 85.9% within-subject demon-
strating an advantage to collecting at-home data for
activity recognition.
The conclusions of this study are limited by aspects of

data labeling and the large variations in patient disability.
For consistency, labeling was performed by a single
researcher; however this labeling was not evaluated for
test-retest reliability, which would produce an upper
bound on the accuracy of any classifier. Although all activ-
ities transitions were represented during in-lab recording,
the at-home recordings were a fixed sequence for all par-
ticipants; this limits generalizability, as there may be
sequence-specific alterations to movement patterns. Video
recordings, as opposed to labeling of accelerometer read-
ings from fixed activity sequences, would improve the
reliability of the labeling used for validation. As indicated
in the classification matrices, some pairs of activities are
more likely to be misclassified than others. Specifically,
standing and sitting—as they are both sedentary and in
the same orientation for many people—are more likely to
be misclassified. A similar ambiguity exists between walk-
ing and stair climbing, as both classes have significant,
similar movements. By labeling these classes more gener-
ally (e.g. active or sedentary) higher accuracies would be
expected. Beyond the labeling concerns, subjects pos-
sessed a wide range of movement impairments—some
used walkers while others required other forms of support.
For wheelchair recognition, some subjects used joystick-
controlled wheelchairs, which made wheeling motions
almost indistinguishable from sitting in many of the clips.

Although including these various levels of patient move-
ment ability lead to lower accuracy, this set of data pro-
vides a better validation set due to its relationship to
movements expected in practice.

Conclusion
There were two main goals for this study. First, we dem-
onstrate how activity recognition can easily be adapted to
a population with a particular class of movement patterns,
such as patients with incomplete spinal cord injury. Our
second goal was to demonstrate that recording move-
ments in the correct context is necessary for accurate ac-
tivity recognition, especially in populations with limited
mobility. Both population-specific models and context-
trained models can be designed with specialized data sets
to increase accuracy—by using modern machine leaning
methods both population and context-specific models can
be created using only a change in the data set. The im-
proved ability to track patient activities can lead to better
data-driven therapeutic interventions for better functional
gains in mobility impaired individuals.
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