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Abstract: In this paper we extend and simplify previous results regarding the computa-

tion of Euclidean Wilson loops in the context of the AdS/CFT correspondence, or, equiva-

lently, the problem of finding minimal area surfaces in hyperbolic space (Euclidean AdS3).

If the Wilson loop is given by a boundary curve ~X(s) we define, using the integrable proper-

ties of the system, a family of curves ~X(λ, s) depending on a complex parameter λ known as

the spectral parameter. This family has remarkable properties. As a function of λ, ~X(λ, s)

has cuts and therefore is appropriately defined on a hyperelliptic Riemann surface, namely it

determines the spectral curve of the problem. Moreover, ~X(λ, s) has an essential singularity

at the origin λ = 0. The coefficients of the expansion of ~X(λ, s) around λ = 0, when appro-

priately integrated along the curve give the area of the corresponding minimal area surface.

Furthermore we show that the same construction allows the computation of certain

surfaces with one or more boundaries corresponding to Wilson loop correlators. We extend

the area formula for that case and give some concrete examples. As the main example we

consider a surface ending on two concentric circles and show how the boundary circles can

be deformed by introducing extra cuts in the spectral curve.
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1 Introduction

The AdS/CFT correspondence [1–3] set on firm footing the conjectured relation between

string theory and gauge theories in the planar limit. It opened the possibility of comput-

ing gauge theory quantities in the strong coupling limit by using the dual string theory.

Perhaps the most important observable in gauge theories is the Wilson loop. In AdS/CFT

it is related to surfaces ending on the curve associated to the Wilson loop [4–6]. In the

large ’t Hooft coupling limit, the surface that needs to be considered is the one of minimal

area. Among all Wilson loops the simplest ones are those determined by a two dimensional,

closed, smooth curve. Until recently, the only such example whose dual minimal area sur-

face could be computed was the circle [7–11]. The minimal area surface was simply given

by a half sphere. This was somewhat surprising given the known integrability properties

of the system [12, 13].
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Recent progress in [14] provided a new, infinite parameter family of minimal area sur-

faces that can be used to further explore the AdS/CFT duality. In that work the minimal

area surfaces were constructed analytically in terms of Riemann theta functions associated

to hyperelliptic Riemman surfaces closely following previous work by M. Babich and A.

Bobenko [15, 16]. It also follows related work where Wilson loops were studied or theta

functions were used in similar problems, for example in [17–29, 34–38].1 Much of that work

was motivated by the relation to scattering amplitudes [28, 29] which we do not pursue

here. A closely related approach can also be found in [39] where integrability properties

are applied to the computation of Wilson loops as minimal area surfaces. More recent

developments can be found in [40–50].

Here we continue the study of such solutions and show that, in particular, they also

provide an infinite parameter family of examples of surfaces ending on multiple curves.

The case we concentrate on is the one of concentric curves. The main technical difference

with the previous case is that a certain periodicity condition is required, which implies a

restriction on the position of the cuts and on the values of the spectral parameter. Since

it is only one condition, it still implies an infinite parameter family of solutions.

The paper is organized as follows: in the next section we review briefly the previous

results. Since the paper is essentially a continuation of the previous one we do not attempt

to make this paper self-contained and should be read in conjunction with [14]. On the other

hand we give new expressions for the boundary curve and the area that were derived by

simplifying the ones in [14]. After that, we present the method to find minimal area surfaces

ending on multiple curves and give a few examples with plots of the corresponding surfaces

and boundaries. In the following section we compute the area for the case of multiple curves

in complete parallel with the result for a single curve. Finally, as illustration, we give an ex-

ample of a surface ending in eight different curves and give our conclusion in the last section.

2 Single curve case revisited

In [14] it was shown, based on [15, 16] how to find an infinite parameter family of minimal

area surfaces ending on a curve at the boundary. The method uses integrability properties

of the equations to solve them in terms of Riemann theta functions. The technique is com-

mon to many integrable non-linear differential equations and is well described in several

references, for example, in the book [16].

In this section we briefly review those results and derive a simplified expression for the

boundary curve which allows the explicit computation of other important quantities. For

example, a simple expression is found for the Schwarzian derivative of the boundary curve.

Finally, a remarkable formula for the area of the curve is found in terms of the behavior of

the boundary curve near singular values of the spectral parameter.

To be concrete, we look for minimal area surfaces in hyperbolic space (EAdS3) which

can be parameterized by coordinates (X,Y, Z > 0) with a metric

ds2 =
dX2 + dY 2 + dZ2

Z2
=
dZ2 + dX̄dX

Z2
, X = X + iY (2.1)

1See e.g. [30–33].
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Given a contour (X(s), Y (s), Z = 0) ≡ (X(s) = X(s) + iY (s), Z = 0) at the boundary

Z = 0 we seek a surface of minimal area ending on it and parameterized as

Z(z, z̄), X + iY = X(z, z̄) (2.2)

where the coordinates (z, z̄) parameterize the complex plane. In that plane we find a closed

curve z(s) such that Z(z(s), z̄(s)) = 0. Such curve maps to the contour in the boundary

of (EAdS3) space, and the interior maps to a minimal area surface. At this time there is

no generic solution to such problem of finding the minimal area surface for an arbitrary

boundary. However we can give an infinite parameter family of minimal area surfaces

and the corresponding contours where they end. It is an open problem if such solutions

approximate all contours (and if so, in which sense).

The construction starts by choosing an auxiliary hyperelliptic Riemann surface M,

known as the spectral curve and given, as a subspace of C2 by

µ2 = λ

2g∏
j=1

(λ− λj) (2.3)

where (µ, λ) parameterize C2 and λi 6= λj if i 6= j. There is a reality condition that

requires the set of branch points {0,∞, λj=1...2g} to be symmetric under the involution

T : λ↔ −1/λ̄. A basis of one-cycles ai, bi is chosen such that the non-trivial intersections

are ai ◦ bj = δij and that under the involution behave as

Tai = −Tijaj , T bi = Tijbj (2.4)

where Tij is a g × g symmetric matrix such that T 2 = 1.

As a matter of notation, a generic point in the Riemann surface M is denoted as

pi = (µpi , λpi) ∈ M. The coordinate λpi is called the projection of pi on the complex

plane. The origin and infinity play an important role and are denoted as p1 = 0, p3 =∞.

Except for the branch points, given a point p4 in one sheet there is another point denoted

as p4̄ on the other sheet of the Riemann surface such that λp4 = λp4̄
and µp4 = −µp4̄

. The

relation between p4 and p4̄ is the hyperelliptic involution associated with M.

Now we consider the basis of holomorphic differentials

νj =
λj−1

µ(λ)
dλ, i, j = 1 . . . g (2.5)

and define the matrices

Cij =

∮
ai

νj , C̃ij =

∮
bi

νj (2.6)

and the basis of normalized holomorphic differentials ωi=1···g

ωi = νj(C
−1)ji =

g∑
j=1

C−1
ji λ

j−1 dλ

µ(λ)
(2.7)

such that ∮
ai

ωj = δij , (2.8)
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which defines the periodicity matrix ∮
bi

ωj = Πij , (2.9)

and the theta function

θ(ζ) =
∑
n∈Zg

eiπ n
tΠn+2πi ntζ , ζ ∈ Cg (2.10)

It also defines the Jacobi map φ :M→ Cg for which the standard notation is

φ(p4) =

∫ p4

p1

ω =

∫ 4

1
(2.11)

where the point p1 = 0 is chosen as a distinguished point, p4 is an arbitrary point and∫ 4
1 is just notation for the same function. There is an ambiguity in choosing the path of

integration. Since two different paths from p1 to p4 can only differ by a closed cycle, φ(p4)

changes by

φ(p4) =

∫ 4

1
→

∫ 4

1
+ ε2 + Πε1 (2.12)

where ε1 and ε2 are vectors with integer components. Further, if p4 is another branch point,

the path 1→ 4 can be traced back on the lower sheet defining a generically non-trivial cycle.

By choosing a certain path from p1 = 0 to p3 =∞ we define the vectors ∆1,2 ∈ Zg through∫ 3

1
=

1

2
∆2 +

1

2
Π∆1 (2.13)

The path should be chosen such that ∆t
1.∆2 is an odd integer. With this vector we define

another function

θ̂(ζ) = exp

{
2πi

[
1

8
∆t

1Π∆1 +
1

2
∆t

1ζ +
1

4
∆t

1∆2

]}
θ

(
ζ +

∫ 3

1

)
(2.14)

Because ∆t
1.∆2 is odd it follows that θ̂(−ζ) = −θ̂(ζ) and in particular θ̂(0) = 0.

Further, consider the vector ω = (ω1, · · · , ωg) and expand it around p1 = 0. Since

p1 = 0 is a branch point an appropriate coordinate can be chosen as y = −2i
√
λ, namely

λ = −y2/4. It follows that

ω = (ω1 + y2ω12 + y4ω14 + · · · )dy (2.15)

for some constant vectors ω1, ω12, etc. that can be computed from eq. (2.7) by expand-

ing µ(λ). Near infinity, on the other hand, an appropriate coordinate is ỹ = 2√
λ

and the

expansion is

ω = (ω3 + ỹ2ω32 + ỹ4ω34 + · · · )dỹ (2.16)

The vectors ω1, ω3, ω12, ω32, . . . ∈ Cg play an important role and it is convenient to intro-

duce a notation for the gradient of a function along those directions

D1F (ζ) = (ω1.∇)F (ζ) (2.17)

D′′1F (ζ) = (ω12.∇)F (ζ) (2.18)
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D3F (ζ) = (ω3.∇)F (ζ) (2.19)

D′′3F (ζ) = (ω32.∇)F (ζ) (2.20)

Notice that D′′1 is a first derivative. Second derivatives are denoted e.g. as D2
1F (ζ) =

(ω1.∇)(ω1.∇)F (ζ). With all these ingredients in place, the solutions are given by

Z =

∣∣∣∣∣ θ̂(2
∫ 4

1 )

θ̂(
∫ 4

1 )θ(
∫ 4

1 )

∣∣∣∣∣ |θ(0)θ(ζ)θ̂(ζ)||eµz+νz̄|2

|θ̂(ζ −
∫ 4

1 )|2 + |θ(ζ −
∫ 4

1 )|2
(2.21)

X + iY = X = e2µz+2νz̄ θ(ζ +
∫ 4

1 )θ(ζ −
∫ 4

1 )− θ̂(ζ +
∫ 4

1 )θ̂(ζ −
∫ 4

1 )

|θ̂(ζ −
∫ 4

1 )|2 + |θ(ζ −
∫ 4

1 )|2
(2.22)

where the vector ζ(z, z̄) ∈ Cg is given by

ζ = 2ω1z̄ + 2ω3z (2.23)

and the constants µ, ν are given by

µ = −2D3 ln θ

(∫ 4

1

)
, ν = −2D1 ln θ̂

(∫ 4

1

)
(2.24)

which uses the directional derivatives D1,3 defined in eq. (2.20). Notice that eq. (2.23)

implies ∂zF (ζ(z, z̄)) = 2D1F (ζ(z, z̄)) and ∂z̄F (ζ(z, z̄)) = 2D3F (ζ(z, z̄)). The solution

contains an arbitrary parameter p4 = (µp4 , λp4) ∈ M. For eq. (2.22) to define a solution

it is necessary that |λp4 | = 1. Therefore, each spectral curveM actually defines a one real

parameter family of surfaces. It was shown in [14] that all those surfaces have the same area.

Since the boundary is at Z = 0, to find the curve where the surface ends we need to

find the zeros of Z or, equivalently, the zeros of θ̂. Typically the zeros are given by isolated

curves z(s) on the world-sheet from which one can be chosen. The solution eq. (2.22) maps

such curve z(s) to a curve X(s) at the boundary Z = 0 defining the shape of the Wilson

loop. The region of the world-sheet inside the curve z(s) is mapped, by eq. (2.22) to the

minimal area surface ending at the curve X(s).

2.1 Boundary curve

As just described the shape of the boundary curve, or equivalently of the dual Wilson loop,

follows from finding a curve z(s) on the world sheet such that

θ̂(ζs) = 0 (2.25)

where

ζs = 2ω1z̄(s) + 2ω3z(s) (2.26)

Once this function ζs is found, the shape of the curve follows from replacing ζ → ζs in the

expression for X, namely eq. (2.22) to get X(s) = X(s) + iY (s) [14]:

X(s) = e2µz(s)+2νz̄(s) θ(ζs +
∫ 4

1 )θ(ζs −
∫ 4

1 )− θ̂(ζs +
∫ 4

1 )θ̂(ζs −
∫ 4

1 )

|θ̂(ζs −
∫ 4

1 )|2 + |θ(ζs −
∫ 4

1 )|2
(2.27)
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However, it turns out that the result can be simplified by using eq. (A.9) derived in the

appendix. With this identity, eq. (2.27) reduces to

X(s) + iY (s) = X(s) = −e2µz(s)+2νz̄(s) θ̂(ζs +
∫ 4

1 )

θ̂(ζs −
∫ 4

1 )
(2.28)

which is a much simpler expression for the boundary curve. In fact the function X(s)

describes a family of curves parameterized by the point p4 in the Riemann surface. Now

we study the analytic properties of X(s, p4) as a function of p4.

2.2 Analytic properties of X(s, p4), analogy with the monodromy matrix

As discussed in the previous section, the function

X(s, p4) = −e2µz(s)+2νz̄(s) θ̂(ζs +
∫ 4

1 )

θ̂(ζs −
∫ 4

1 )
(2.29)

can be thought of as a family of curves parameterized by a point p4 on the Riemann surface

M. When |λp4 | = 1 the curve is such that the minimal area surface can be found from

eqs. (2.21) and (2.22). In this section we study the analytic properties of X(s, p4) as a

function of p4 and show that it is well defined on the Riemann surface but not on the

complex plane parameterized by λp4 where it has cuts. In that manner, X(s, p4) defines

the spectral curve in the same way as the monodromy matrix does in many integrable sys-

tems. Furthermore, it turns out that X(s, p4) has essential singularities at p4 = 0,∞, the

precise behavior around the singularities determines the area of the corresponding surface.

Finally, the Schwarzian derivative {X, s} is computed, and shown to have a remarkable

simple dependence on λp4 .

To understand the properties of X(s, p4) as a function of p4 first it has to be proven

that it is a well defined function on the Riemann surface. The reason it might not be is that

there is an ambiguity in choosing the path of integration defining
∫ 4

1 . Choosing another

path changes the integral by a period of the theta function. Using the quasi periodicity

properties of θ̂ i.e. eq. (A.2), it follows that

θ̂(ζs +
∫ 4

1 + ε2 + Πε1)

θ̂(ζs −
∫ 4

1 + ε2 + Πε1)
= e−4πiεt1ζe

2πi[∆t1ε2−ε
t
1∆2] θ̂(ζs +

∫ 4
1 )

θ̂(ζs −
∫ 4

1 )
(2.30)

= e−4πiεt1ζ
θ̂(ζs +

∫ 4
1 )

θ̂(ζs −
∫ 4

1 )
(2.31)

where we used that ∆t
1ε2 − εt1∆2 is an integer since ε1,2 and ∆1,2 are integer vectors.

Therefore the ratio of theta functions is not a well defined function on the Riemann sur-

face. However, the exponential factor also depends on p4 through the constants µ, ν defined

in eq. (2.24):

µ = −2D3 ln θ

(∫ 4

1

)
, ν = −2D1 ln θ̂

(∫ 4

1

)
(2.32)

To study their periodicity properties recall the definition

DpiF (ζ) = ω(pi)k∇kF (ζ) (2.33)
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and introduce a variable ζ to compute the derivatives

µ→ µ̃ = −2 Dp3 ln θ

(
ζ +

∫ 4

1
+ ε2 + Πε1

)∣∣∣∣
ζ=0

(2.34)

= −2 Dp3

[
ln θ

(
ζ +

∫ 4

1

)
− 2πiεt1ζ

]∣∣∣∣
ζ=0

(2.35)

= µ+ 4πiεt1ω3 (2.36)

Similarly

ν → ν̃ = ν + 4πiεt1ω1 (2.37)

Therefore the exponential factor transforms as

e2µz(s)+2νz̄(s) → e2µz(s)+2νz̄(s)e4πiεt1(2ω3z(s)+2ω1z̄(s)) = e2µz(s)+2νz̄(s)e4πiεt1ζs (2.38)

The factor precisely cancels the factor in eq. (2.31) coming from the ratio of theta functions

showing that X(s, p4) is the correct combination that is well defined on the Riemann surface.

Having proven that X(s, p4) is well defined on the Riemann surface, it is interesting to

study if it takes different values on the two sheets of the Riemann surface. This is indeed

so. Changing sheets on the Riemann surface is equivalent to change 4→ 4̄ or equivalently∫ 4

1
→ −

∫ 4

1
(2.39)

Since θ is even and θ̂ is odd, the functions µ and ν change sign under such change. The

ratio of theta functions is obviously inverted resulting in:

X(s, p4̄) =
1

X(s, p4)
(2.40)

Therefore the function X(s, λp4) defined on the complex plane has cuts. Thus, in some

sense, it is analogous to the monodromy matrix. Namely, the cuts in X(s, λp4) can be

removed by extending the function to X(s, p4) defined on a Riemann surface, the spectral

curve of the problem.

Let us now study the analytical properties of X(s, p4). Riemann’s theorem [54] ensures

that theta functions defined on a Riemann surface have g zeros and no poles. The ratio

that appears in the definition of X(s, λp4) therefore can have at most g zeros and g poles.

One however is at p4 = p1 and therefore cancels. In fact for the others it is clear that if p4

is a zero then p4̄ is a pole. So X(s, p4) has (g − 1) zeros and (g − 1) poles conjugate from

each other on the Riemann surface (that means on opposite sheets). On the other hand

the exponential function is quite interesting. The function

µ = −2D3 ln θ

(∫ 4

1

)
= −2

D3θ(
∫ 4

1 )

θ(
∫ 4

1 )
(2.41)

has potential singularities on the g zeros of θ(
∫ 4

1 ). However, the derivative also vanishes

on those zeros except at p4 = p1. Since µ has a pole at p4 = p1 = 0 then X(s, p4) has an

essential singularity. The same happens at p4 = p3 in view of the function ν.

– 7 –
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To summarize: X(s, p4) as a function of p4 is a well defined function on the Riemann

surface with (g − 1) zeros and (g − 1) poles and essential singularities at p4 = p1 = 0 and

p4 = p3 =∞.

Given the symmetry λ ↔ −1/λ̄ it suffices to study the function near λ = 0. Since

λ = 0 is a branch point a more appropriate coordinate y can be chosen as

y = −2i
√
λ (2.42)

Using the expansion from eq. (2.15)

ω(y) = (ω1 + ω12y
2 + · · · )dy (2.43)

it follows that ∫ 4

1
ω = ω1y +

1

3
ω12y

3 + · · · (2.44)

A simple Taylor expansion in y gives

ln

(
−
θ̂(ζs +

∫ 4
1 )

θ̂(ζs −
∫ 4

1 )

)
= 1 + y

D2
1 θ̂(ζs)

D1θ̂(ζs)
+ · · · (2.45)

Finally the expansion

µ = −2D13 ln θ(0)y + · · · (2.46)

ν = −3
2

y
− 2

3
y

(
D3

1 θ̂(0)

D1θ̂(0)
− D′′1 θ̂(0)

D1θ̂(0)

)
+ · · · (2.47)

and eq. (A.37) in the appendix, result in

ln X = −4

y
z̄(s)

+y

[
−4

3

(
D3

1 θ̂(0)

D1θ̂(0)
− D′′1 θ̂(0)

D1θ̂(0)

)
z̄(s)− 4D13 ln θ(0)z(s) + 2D1 ln θ(0)

]
+O(y3) (2.48)

This expansion is remarkable in two respects. First, the residue of the pole 1
y contains

z(s), namely the parameterization of the conformal world-sheet coordinate in terms of the

boundary parameter. Second, as we will see later the constant term determines the area

of the minimal area surface with this boundary. Actually the area of the whole family

of minimal area surfaces parameterized by p4 such that |λp4 | = 1. It is also instructive

to compute the expansion of the Schwarzian derivative {X, p4} based on the expansion of

ln X. If, as shown, X has an expansion

X =
a1

y
+ a2y +O(y3) (2.49)

and since

{X, y} = {ln X, y} − 1

2
(∂y ln X)2 (2.50)
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it follows that

{X, y} = − a2
1

2y4
+
a1a2

y2
+O(1) (2.51)

where the two leading terms come from the last term in eq. (2.50). It follows that

{X, y} = − 8

y4
(z̄(s))2

−4z̄(s)

y2

[
−4

3

(
D3

1 θ̂(0)

D1θ̂(0)
− D′′1 θ̂(0)

D1θ̂(0)

)
z̄(s)− 4D13 ln θ(0)z(s) + 2D1 ln θ(0)

]
+O(1) (2.52)

2.3 Conformal invariant ratios and Schwarzian derivative

In the case of the monodromy matrix one can consider its trace which is a well defined

function on the complex plane since the cuts are removed. In the present case we can

consider functions of X(s, p4) which are invariant under inversion. Those are well defined

in the complex plane. For example the functions

Y [4](s1, s2, s3, s4, λp4) =
(X(s1, p4)−X(s2, p4))(X(s3, p4)−X(s4, p4))

(X(s1, p4)−X(s3, p4))(X(s4, p4)−X(s2, p4))

Y [2](s1, s2, λp4) =
∂s1X(s1, p4)∂s2X(s2, p4)

(X(s1, p4)−X(s2, p4))2
(2.53)

Y [1](s, λp4) = {X(s), s} =
∂3
sX(s, p4)

∂sX(s, p4)
− 3

2

(
∂2
sX(s, p4)

∂sX(s, p4)

)2

(2.54)

are invariants depending on four, two and one point of the curve respectively. In fact

they are invariant under the full Möbius group. The last one introduces the Schwarzian

derivative which is conformally invariant. On the left hand side we emphasized that these

are functions of λp4 namely the projection of p4 on the complex plane. As functions of λp4

they have no cuts. The invariant Y [4] can be simply written by using eq. (2.29). On the

other hand Y [2] requires evaluating ∂sX. From eqs. (2.29), (2.26) it follows that

∂s ln X = 2µ∂sz + 2ν∂sz̄ + 2∂szD1 ln
θ̂(ζs +

∫ 4
1 )

θ̂(ζs −
∫ 4

1 )
+ 2∂sz̄D3 ln

θ̂(ζs +
∫ 4

1 )

θ̂(ζs −
∫ 4

1 )
(2.55)

Using the definition of µ ,ν i.e. eq. (2.24) and eqs. (A.23), (A.29) for the derivatives of the

theta function we immediately find that

∂s ln X = −2∂sz
θ̂(2
∫ 4

1 )D3θ̂(0)

θ2(
∫ 4

1 )

θ2(ζ)

θ̂(ζs +
∫ 4

1 )θ̂(ζs −
∫ 4

1 )
(2.56)

Equivalently

∂sX = 2∂sz e
2µz(s)+2νz̄(s) θ̂(2

∫ 4
1 )D3θ̂(0)

θ2(
∫ 4

1 )

θ2(ζs)

θ̂2(ζs −
∫ 4

1 )
(2.57)
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Thus

Y [2](s1, s2, λp4) =

(
θ̂(2
∫ 4

1 )D3θ̂(0)

θ2(
∫ 4

1 )

)2

× (2.58)

× 4∂sz1∂sz2θ
2(ζs1)θ2(ζs2)

[eµz12+νz̄12 θ̂(ζs1 +
∫ 4

1 )θ̂(ζs2 −
∫ 4

1 )− e−µz12−νz̄12 θ̂(ζs1 −
∫ 4

1 )θ̂(ζs2 +
∫ 4

1 )]2

with the notation z12 = z1 − z2, z̄12 = z̄1 − z̄2 and z1 = z(s1), z2 = z(s2).

Finally, the Schwarzian derivative is harder to compute since it involves up to third

order derivatives. However, it turns out that the result is remarkably simple. The second

derivative can be computed in a similar way as the first one resulting in

∂σ ln ∂σX =
∂2
σX

∂σX
=
∂2
σz

∂σz
+ 2∂σz

(
µ+ 2D3 ln

θ(ζ)

θ̂(ζ −
∫ 4

1 )

)
(2.59)

In fact now, the Schwarzian derivative can be evaluated as

{X, s} = {z, s}+ 8(∂sz)
2

D2
3 ln

θ(ζs)

θ̂(ζs −
∫ 4

1 )
−

(
D3 ln

θ(ζs)

θ(
∫ 4

1 )θ̂(ζs −
∫ 4

1 )

)2


−8(∂sz̄)
2

(
D1θ̂(0)θ(

∫ 4
1 )

θ(0)θ̂(
∫ 4

1 )

)2

(2.60)

The term in square brackets can be simplified by first using eq. (A.39) to replace D2
3 ln θ̂(ζs−∫ 4

1 ) and then eqs. (A.20), (A.44) to further reduce the result. The second line in eq. (2.60)

is simplified by the identity (A.42). In that manner the result

{X, s} = {z, s} − 2λp4(∂sz)
2 +

2

λp4

(∂sz̄)
2 − 8(∂sz)

2

[
D3

3 θ̂(ζs)

D3θ̂(ζs)
− 3

D2
3θ(ζs)

θ(ζs)

]
(2.61)

is obtained. The last term can be rewritten using eq. (A.41)

{X, s} = {z, s} − 2λp4(∂sz)
2 +

2

λp4

(∂sz̄)
2 (2.62)

+8(∂sz)
2

[
2D2

3 ln θ(ζs)−
D3

3 θ̂(0)

D3θ̂(0)
+
D2

3θ(0)

θ(0)

]
(2.63)

A completely equivalent expression can be found in terms of derivatives D1:

{X, s} = {z̄, s} − 2λp4(∂sz)
2 +

2

λp4

(∂sz̄)
2 (2.64)

+8(∂sz̄)
2

[
2D2

1 ln θ(ζs)−
D3

1 θ̂(0)

D3θ̂(0)
+
D2

1θ(0)

θ(0)

]
(2.65)

The most important point is that the dependence in λ is very explicit in eq. (2.61). We

believe this to be one of the main results of this paper since {X, s} gives a conformal

invariant characterization of the Wilson loop.
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2.4 Area

In [14] the following formula for the finite part of the area of the minimal area surface was

derived:

Af = 16D13 ln θ(0)

∫
dσdτ +

1

2

∮
∇2θ̂(ζs)

|∇θ̂(ζs)
d` (2.66)

where (σ, τ) are world-sheet coordinates such that z = σ + iτ and

d` =
√
dσ2 + dτ2 =

√
(∂sσ)2 + (∂sτ)2ds (2.67)

is the element of arc-length on the boundary curve z(s) = σ(s) + iτ(s). In this section we

simplify the result and relate it to the expansion of X(s, p4) near the singularity at p4 = 0.

In fact, the second term in eq. (2.66) can be rewritten as

1

2

∮
∇2θ̂(ζs)

|∇θ̂(ζs)
d` =

∮
∂z∂z̄ θ̂(ζs)

√
∂sz∂σ z̄∂z θ̂(ζs)∂z̄ θ̂(ζs)ds (2.68)

Using that ∂z θ̂ = 2D3θ̂, ∂z̄ θ̂ = 2D1θ̂ and that the contour of integration is such that

θ̂(ζs) = 0, the formula for the area can be rewritten as

Af = 16D13 ln θ(0)

∫
dσdθ − 2i

∮
D1 lnD3θ̂(ζs)ds (2.69)

where the sign was chosen according to the conventions in figure 1.

We can further use that

∂σ lnD3θ̂(ζs) = 2∂szD3 lnD3θ̂(ζs) + 2∂sz̄D1 lnD3θ̂(ζs) (2.70)

and eq. (A.35) to find

Af = 16D13 ln θ(0)

∫
dσdτ + 4i

∮
D3 ln θ(ζs)dz − i lnD3θ̂(ζs)

∣∣∣sf
si

(2.71)

where si,f are the initial and final values of s. Since the curve is periodic,

lnD3θ̂(ζs)
∣∣∣sf
si

= 2πin (2.72)

for an integer n known as the turning number of the curve. It is the number of times the

unit normal to the curve goes around the unit circle when the point goes once around the

curve. With the assumptions of figure 1 it is n = 1. The final result for the area is therefore

Af = −2πn+ 16D13 ln θ(0)

∫
dσdτ + 4i

∮
D3 ln θ(ζs)dz (2.73)

which is simpler than the one found in the previous paper [14]. Equivalently we can write

Af = −2πn− 8iD13 ln θ(0)

∮
z̄(s)∂sz(s)ds+ 4i

∮
D3 ln θ(ζs)∂sz(s)ds

= −2πn+ 8iD13 ln θ(0)

∮
z(s)∂sz̄(s)ds− 4i

∮
D1 ln θ(ζs)∂sz̄(s)ds

– 11 –



J
H
E
P
0
5
(
2
0
1
4
)
0
3
7

�✁✂✄☎✆

✝

✞

✟

✠✡☛ ☞✌✍
✎✎

✏✑✒✓✔✕

✖✗✘✙✚✛

✜✢✣ ✤✥

Figure 1. The world-sheet is parameterized by a complex coordinate z. The function θ̂(ζ)

depends on z through the vector ζ = 2ω(p1)z̄ + 2ω(p3)z where ωp1,3 are complex vectors. Our

convention is that the shaded region where θ̂(ζ) > 0 maps to the minimal area surface. The

contour θ̂(ζs) = 0 maps to the boundary of the surface, i.e. the Wilson loop. The contour is

parameterized counterclockwise by s. The gradient ∇θ̂(ζs) is normal to the boundary and point

towards the interior. Finally, the region where θ̂(ζs) < 0 also maps to a minimal area surface and

the corresponding can be easily changed to cover that case. Slightly more involved is the case

when θ̂(ζ) is purely imaginary but nothing fundamentally different changes.

(2.74)

Consider now the expansion in eq. (2.48). It immediately follows that

Af = −2πn−
(

2i

y

∮
lnX∂sz̄ds

)∣∣∣∣
y→0

(2.75)

where we recall that y = −2i
√
λp4 is the appropriate coordinate around the branch point

p4 = 0. Also the integral of a total derivative was discarded. Quite remarkably, the function

z̄(s) is also contained in the expansion, in fact

− 1

4
y∂s ln X

∣∣∣∣
y→0

= ∂sz̄ (2.76)
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We can then write the slightly more cumbersome formula

Af = −2πn− 2i

π2

(∮ [∮
y=0

dy

y2
lnX(s, y)

] [∮
y′=0

dy′∂s lnX(s, y′)

]
ds

)
(2.77)

The integrals on spectral parameters y, y′ are complex contour integrals (given by the

residues) around the points y = 0, y′ = 0. The integral along the real parameter s is an

integral around the boundary curve.

2.5 Genus g = 1 case

In the case of genus one the theta functions reduce to Jacobi theta functions and the

solutions can be written in terms of elliptic functions or, equivalently, elliptic integrals.

In the previous work [14] this case was not described since it had already been studied

in [25] and [26]. More recently, these solutions were analyzed including the evaluation of

the first quantum correction [38]. In this subsection however, revisiting this case is useful

as a starting point for the next section. For genus one there is only two cuts, namely four

branch points. They are taken to be p1 = 0, p3 =∞, λ1 = a ∈ R, λ2 = − 1
a in view of the

λ↔ −1/λ̄ symmetry. The spectral curve is described by the equation

µ2 = λ(λ− a)

(
λ+

1

a

)
(2.78)

an is illustrated in figure 2 where it is also shown a choice of cycles a1, b1. The only

holomorphic differential is

ν1 =
dλ

µ(λ)
(2.79)

which needs to be properly normalized. Computing

C1 =

∮
a1

dλ

µ(λ)
= 2i

∫ a

0

dλ√
(a− λ)λ(λ+ 1

a)
= 4i
√
kk′ K (2.80)

C̃1 =

∮
b1

dλ

µ(λ)
= −2

∫ 0

− 1
a

dλ√
(a− λ)(−λ)(λ+ 1

a)
= −4

√
kk′ K′ (2.81)

where the standard notation for elliptic functions was used (see [55] )

k =
a√

1 + a2
, k′ =

√
1− k2 =

1√
1 + a2

, K = K(k), K′ = K(k′) (2.82)

The formulas from [14] reduce to

Π = C̃1C
−1
1 = i

K′

K
(2.83)

ω = − i

4
√
kk′ K

dλ

µ(λ)
(2.84)

ω1 = −ω3 =
i

4
√
kk′K

(2.85)
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We also have ∆1 = 1, ∆2 = 1. Taking the involution T = −1 we find

Π̄ = −TΠT, T∆1,2 = −∆1,2 Tω3 = ω̄1 (2.86)

as it should be for the reality condition to be satisfied. Let us introduce also the half-period

â that defines θ̂ and which is a zero of θ:

â =
1 + Π

2
(2.87)

Now it is possible to define the variable ζ

ζ = 2ω1z̄ + 2ω3z =
τ√
kk′K

(2.88)

where z = σ+iτ . Now we can relate the Riemann theta functions to Jacobi Theta functions

(we use the convention in [55]) by:

θ(ζ) = θ3(πζ, q), θ̂(ζ) = θ

[
∆1

∆2

]
(ζ) = −θ1(πζ, q), with q = eiπΠ, (2.89)

Some convenient formulas are [55]

D1θ(â) = ω1θ
′
3

(
1 + Π

2

)
= iπω1q

− 1
4 θ′(0) (2.90)

and

θ3(0) =

√
2K

π
, θ′1(0) = θ2(0)θ3(0)θ4(0) θ2(0)θ4(0) =

√
kk′θ2

3(0) (2.91)

The world-sheet metric (or Lagrange multiplier Λ) is determined by

e2α =
θ2

3(πζ)

θ2
1(πζ)

=
1

kk′

(
dn( 2τ√

kk′
, k)

sn( 2τ√
kk′
, k)

)2

(2.92)

In the last equation α was written in terms of Jacobi elliptic functions, perhaps the easiest

expression to check the validity of the cosh-Gordon equation

1

4
∂2
τα = e2α + e−2α (2.93)

for such function. The last step is to choose the spectral parameter λ such that |λ| = 1.

In terms of λ we define

v =

∫ 4

1
= − i

4
√
kk′ K

∫ λ

0

dλ

µ(λ)
(2.94)

The solution can then be written in terms of Jacobi theta functions as

µ = 2πω1∂v ln θ3(v) (2.95)

ν = ∓2πω1∂v ln θ1(v) (2.96)

ψ1 = −2πω1
θ′1(0)θ1(v)θ1(x+ v)

θ3(0)θ3(v)θ1(x)
e−

α
2 eµz+νz̄ (2.97)
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ψ2 = ±θ3(x+ v)

θ3(x)
e
α
2 eµz+νz̄ (2.98)

ψ̃1 = 2πω1
θ′1(0)θ1(v)θ1(x− v)

θ3(0)θ3(v)θ1(x)
e−

α
2 e−µz−νz̄ (2.99)

ψ̃2 = ±θ3(x− v)

θ3(x)
e
α
2 e−µz−νz̄ (2.100)

ψ1ψ̃2 − ψ2ψ̃1 =

∣∣∣∣θ1(2v)θ3(0)

θ2
3(v)

∣∣∣∣ (2.101)

ζ = 2ω1(±z̄ − z) (2.102)

λ =

(
θ1(v)

θ3(v)

)2

(2.103)

where v is an additional parameter which corresponds to
∫ 4

1 in eq. (2.22). The formulas

for ψ1,2 and ψ̃1,2 refer to the functions defined in [14] and are included for completeness.

They are not used in this paper. Finally, the solution is written as

Z =

∣∣∣∣θ1(2v)θ3(0)

θ2
3(v)

e−2µz−2νz̄

∣∣∣∣ θ1(x)θ3(x)

|θ1(x+ v)|2 + |θ3(x+ v)|2
(2.104)

X + iY = e−2µ̄z̄−2ν̄z θ3(x+ v)θ̄3(x− v)− θ1(x+ v)θ̄1(x− v)

|θ1(x+ v)|2 + |θ3(x+ v)|2
(2.105)

As before the boundary curves are found by finding the zeros of θ̂ = −θ1. Since the variable

ζ+ depends only on τ ( or ζ− on σ), the world-sheet region is a strip between two zeros of

θ1. Generically the edges of the strip map to two infinite boundary curves with the shape

of a spiral. However if we take λ = 1 for a > 1 and λ = −1 for a < 1 we have the following

interesting result

• a > 1, λ = 1, the Wilson loop is given by two concentric circles of radii r1,2, satisfying

ln
r2

r1
= πRe

(
θ′3(v)

θ3(v)
+
θ′1(v)

θ1(v)

)
(2.106)

The ratio, by definition, is smaller than one, but, analyzing the previous result, it

shows that it has a minimum value larger than zero. For each value of the ratio r2
r1

in that range there are two possible values of v. However they do not give the same

solution, namely, for each allowed ratio r2
r1

there are two solutions, one world-sheet is

close to the boundary and the other extends towards the interior.

• a < 1, λ = −1 the Wilson loop is given by a cusp.

The following limits are of interest

• a→∞ gives a circle.

• a→ 1+ gives two parallel lines.

• a→ 1− gives two parallel lines.

– 15 –



J
H
E
P
0
5
(
2
0
1
4
)
0
3
7

Figure 2. g=1 Riemann surface.

• a→ 0 gives a straight line.

For the case a = 1 corresponding to two parallel line the spectral curve coincides with the

one given in [39]:

µ2 = λ(λ2 − 1) (2.107)

suggesting that both approaches are equivalent.

3 Surfaces ending on two contours

In the previous section we discussed, following [26] a solution ending on two concentric

circles and corresponding to two cuts. It seems evident that adding two small cuts to the

spectral curve will just slightly deform the solution. This is correct except that generi-

cally the periodicity is broken and therefore the curves become infinite spirals instead of

two closed curves. To be precise, the theta functions are periodic but there is also the

exponential factor in eq. (2.28) which is periodic when the exponent is purely imaginary,

a condition that needs to be satisfied. Both periods have to match. It is clear that for

particular positions of the cuts the periodicity would be restored but it requires some nu-

merical effort to find them. In this section we present several examples. The number of
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Figure 3. g=3 hyperelliptic Riemann surface.

branch cuts is four, the situation is depicted in figure 3 where also the choice of cycles is

made evident. Due to the involution λ → −1/λ̄ , the branch point c = −1/b. The points

b̄ and c̄ are the complex conjugates of b and c, respectively.

As we shrink the bb̄ and cc̄ branch cuts we should get results close to the concentric

circles for a > 1. Unlike the g = 1 case, even if we take λ = 1, the solutions are not

automatically periodic; we must pick a suitable value of a > 1 as we move b to get periodic

concentric curves.

The ratio of Riemann theta functions in eq. (2.28) is periodic if the argument shifts by

an integer vector, also, the exponential function is periodic under a 2π shift in the imagi-

nary direction. Both periods have to match. This can be achieved in practice by moving

the branch points around. We found values for a and b such that we can match 2,3,4 and

5 periods of the theta function into a single period of the exponential. In each case we

obtained concentric Wilson loops. The curves deviate from a circle in a way such that the

periodicity is manifest as can be seen in figures 4 and 5. The corresponding positions of

the branch points is shown in table 1 below. It is also possible to fit one period of the

theta function into e.g. two periods of the exponential in (2.28). It turns out that we get

a boundary made of self-intersecting concentric curves. For appropriate choices of a and b
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n=2 n=3 n=4 n=5

a = 1.28088 a = 1.102149 a = 1.035312 a = 1.0304752

b = 0.5 + 0.01i b = 0.5 + 0.1i b = 0.7 + 0.2i b = 0.7 + 0.3i

Table 1. Positions of the branch points; n corresponds to the number of periods of the exponential

prefactor in each period of the ratio of theta function.

�✁✂

�✁✄

Figure 4. Wilson loops and corresponding minimal area surfaces for two concentric curves. In this

case, two and three periods of the theta functions are fit into one period of the exponential as is

evident from the shape of the curves.

each individual curve resembles a circle which is described twice as shown in figure 6. It is

also made clear the claim that as we shrink the bb̄ branch cut the surface approaches the

one corresponding to the concentric circular Wilson loops.
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�✁✂

�✁✄

Figure 5. Wilson loops and corresponding minimal area surfaces for two concentric curves. Now,

four and five periods of the theta functions are fit into one period of the exponential as is evident

from the shape of the curves.

4 More than two boundary curves

As the size of the cuts is varied, closed curves appear in the region between the two periodic

curves giving rise to surfaces with more boundaries. An example is shown in figure 7. The

curves depicted are zeros of θ̂ in the world-sheet and correspondingly of the function Z(z, z̄).

That means that they map into multiple curves at the boundary. The region surrounded

by one of the closed curves maps into a minimal area surface ending in the corresponding

single curve. On the other hand the complement of those regions maps to a minimal area

surface ending in multiple curves, those closed curves we described plus two infinite curves

(of spiral shape) given by the upper and lower periodic curves. Again, for λ = 1 and

particular positions of the cuts, the period of those curves match those of the exponential

and the result is a surface ending in multiple closed curves. A particular example is

illustrated in figures 8, 9 and 10. Admittedly, the surface is not simple to describe or plot

since it ends in eight different and self-intersecting curves. The boundary curves are shown
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Figure 6. In this case, two periods of the exponential are fit in two periods of the theta function

giving rise to concentric self-intersecting curves. In the first example the position of the cuts is

given by a = 2.412712, b = 2 + 0.05I and in the second a = 2.414205, b = 2 + 0.003I. The second

one is shown as illustration of the fact that the surface can be made to approximate the (double

cover) of the concentric circles.

in figure 9, notice however that different scales are used. As an intermediate representation,

contours of equal Z are depicted in figure 8. Finally, the surface is plotted in figure 10.

5 Area

Consider again the surfaces ending on two concentric curves, namely those in figure 4, 5

and compute their area. The formula in eq. (2.75) applies to this case if we take the

turning number of the curve to be n = 0. Remember that this is the turning number of the

boundary curve in the world-sheet. In figure 7 it is clear that, as one moves along the upper

and lower curves, the tangent to the curves does not wrap around the unit circle. The area

of the world-sheet can also be explicitly written term of a parameterization τ1,2(σ) of the
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Figure 7. World-sheet of the string where the zeros of θ̂ are depicted. Those curves map to the

boundary. For particular position of the cuts, the period of the figure in the σ direction matches

the period of the exponential function and a surface ending in several closed curves is obtained.

upper and lower curves giving

Af = 4Dp1p3 log θ(0)

∫
(τ2(σ)− τ1(σ))dσ +

1

2

(∫
τ2(σ)

+

∫
τ1(σ)

)
∇2θ̂

|∇θ|
dl

= −2=

{
D13 log θ(0)

∮
zdz̄ +

(∫
τ2(σ)

−
∫
τ1(σ)

)
D1 log θ(ζ)dz̄

}
(5.1)

Recall also that the total area is given by

Atotal =
L

ε
+Af (5.2)

where L is the length of the Wilson loop and ε → 0 is the regulator defined by cutting

the surface at Z = ε. The analytical results thus obtained are in agreement with a direct

numerical evaluation of the Area as shown in table 2.
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0 1 2 3 4 5 6
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0

Figure 8. Contour lines indicating the surface heights above the boundary Wilson loop.

Areas n=2 n=3 n=4 n=5

Atotal by fit −13.80 + 19.8644
ε −20.55 + 17.25

ε −40.23 + 12.23
ε −55.48 + 9.64

ε

Atotal by eq. (5.2) −13.80 + 19.86
ε −20.55 + 17.25

ε −40.27 + 12.23
ε −55.66 + 9.63658

ε

Af by eq. (2.74) −13.80 −20.55 −40.27 −55.66

Table 2. Numerical values of the Area of minimal surfaces in figures 4 and 5.
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Figure 9. Image on the boundary of the curves depicted in figure 7.

6 Conclusions

In this paper we have simplified and extended the results in [14]. Given a boundary curve

X(s), a one complex parameter family of curves X(s, λ) can be given by solving the linear

problem associated with the flat connection. Studying the analytical properties of X(s, λ)

it turns put that the function is naturally defined on a hyperelliptic Riemann surface M,

the spectral curve. We then denote it as X(s, p4) with p4 ∈ M. In that way it plays a

similar role to the monodromy matrix for standard integrable systems. The first part of the

paper is devoted to the study of such function. In particular we find a simple expression for

the Schwarzian derivative {X, s}. It is also shown that X(s, p4) has an essential singularity

at p4 → 0 and the behavior near the singularity determines the area of the surface.

The second part of the paper is devoted to the study of surfaces ending in multiple

contours. In particular examples for surfaces ending in two or more contours are given,

generalizing previous results of Drukker and Fiol [26]. Again, a relatively simple expression

is given for the area of such curves.
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Figure 10. Example of minimal area surface embedded in Euclidean AdS3 and ending on multiple

contours.

A Theta functions identities

In this appendix we derive several identities for the Riemann theta functions that are needed

in the main text. Some of the calculations are done in detail to illustrate the procedure.

We use a basic knowledge of the theory of theta functions as can be found, for example,

in the classic book on Riemann surfaces by Farkas and Kra [54]. In fact everything follows

from the quasi periodicity property and the trisecant identity. Specialized books on theta

functions such as [51–53] contain many of these results, we just briefly rederive them in

this particular context and using the notation of this paper.
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A.1 Quasi periodicity of θ and θ̂

Given two integer vectors ε1,2 it follows from the definition of θ(ζ) and θ̂(ζ), i.e.

eqs. (2.10), (2.14) that

θ(ζ + ε2 + Πε1) = e−2πi[εt1ζ+
1
2
εt1Πε1]θ(ζ) (A.1)

and

θ̂(ζ + ε2 + Πε1) = e−2πi[εt1ζ+
1
2
εt1Πε1]eiπ[∆t

1ε2−εt1∆2]θ̂(ζ) (A.2)

As discussed in eq. (2.12), the function φ(p4) =
∫ 4

1 is holomorphic on M but defined

only up to integer periods. The quasi periodicity of the theta function allows to write

holomorphic functions on M as ratios

f(p4) =

∏n
v=1 θ(ζv +

∫ 4
1 )∏n

ṽ=1 θ(ζ̃ṽ +
∫ 4

1 )
, with

n∑
v=1

ζv =
n∑
ṽ=1

ζ̃ṽ (A.3)

for arbitrary constant vectors ζv=1···n, ζ̃ṽ=1···n. Indeed, under such condition f(p4) is inde-

pendent of the path chosen in
∫ 4

1 and therefore is a well defined function on the Riemann

surface. A particular useful example is the generalized cross ratio defined in eq. (A.5) below.

A.2 Trisecant identity

By studying the analytic properties of ratios such as those in eq. (A.2) Fay derived the

following fundamental identity known as trisecant identity [54]:

θ(ζ)θ

(
ζ +

∫ i

j
+

∫ l

k

)
= γijklθ

(
ζ +

∫ i

j

)
θ

(
ζ +

∫ l

k

)
+ γikjlθ

(
ζ +

∫ i

k

)
θ

(
ζ +

∫ l

j

)
(A.4)

valid for an arbitrary vector ζ ∈ C and four arbitrary points pi,j,k,l on the Riemann surface.

The coefficient γijkl is called a generalized crossed ratio and defined as

γijkl =
θ(a+

∫ i
k)θ(a+

∫ j
l )

θ(a+
∫ i
l )θ(a+

∫ j
k )

(A.5)

where, a is a non-singular zero of the theta function i.e. θ(a) = 0 but |∇θ| 6= 0. Under such

conditions it is an important property of the cross ratio that it does not depend on the zero

a chosen to defined it. In this paper we defined θ̂, see eq. (2.14), through the odd period∫ 3
1 . Since θ̂(0) = 0 it implies that θ(

∫ 3
1 ) = 0. Setting a =

∫ 3
1 in the cross ration gives

γijkl =
θ̂(
∫ i
k)θ̂(

∫ j
l )

θ̂(
∫ i
l )θ̂(

∫ j
k )

(A.6)

The trisecant identity plays a central role in using the theta function to solve non-linear

differential equations in integrable systems. For us, it is the starting point for deriving all

the identities below. It is interesting to note that in string theory it has an interpretation

as a bosonization identity [56].
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A.3 Generalized cross ratio

As it was just stated, γijkl in eq. (A.5) is independent of a as long as a is a zero of the theta

function (θ(a) = 0). In the case at hand, the world-sheet boundary curve z(s) defines a

set of zeros of θ̂, namely ζs, for any s is a zero of θ̂ (see eqs. (2.25), (2.26)). However, from

the definition of θ̂ i.e. eq. (2.14) it is clear that θ̂(ζs) = 0 ⇐⇒ θ(ζs +
∫ 3

1 ) = 0, it follows

that we can take

a = ζs +

∫ 3

1
(A.7)

Now choose the points pi = p4, pk = p3, pl = p1, pj = 4̄. Remember that p1 = 0 and

p3 = ∞. Also p4 and p4̄ are the same (arbitrary) point in the complex plane but on

opposite sheets of the Riemann surface, implying
∫ 4

1 = −
∫ 4̄

1 since p1 = 0 is a branch cut.

Up to a constant independent of ζs, the cross ratio can be written as

γ̃ =
θ(ζs +

∫ 4
1 )

θ(ζs +
∫ 4̄

1 )

θ̂(ζs +
∫ 4̄

1 )

θ̂(ζs +
∫ 4

1 )
(A.8)

which is therefore independent of ζs as long as it is a zero of θ̂. However, it is also true

that θ̂(0) = 0. Replacing ζs → 0 and using that θ is symmetric whereas θ̂ is antisymmetric

it immediately follows that γ̃ = −1. Therefore the simple but very useful identity

θ(ζs +
∫ 4

1 )

θ(ζs −
∫ 4

1 )
= −

θ̂(ζs +
∫ 4

1 )

θ̂(ζs −
∫ 4

1 )
if θ̂(ζs) = 0 (A.9)

is derived.

A.4 First derivatives

Identities for the derivatives of the theta functions can be obtained from the trisecant

identity by deriving with respect to the position of the points pi pj , pk, pl. Consider

deriving the trisecant identity with respect of the position of pi and afterwards taking the

limit pj → pi. The result reads

Di ln
θ(ζ)

θ(ζ +
∫ l
k)

= Di ln
θ̂(
∫ i
l )

θ̂(
∫ i
k)
−
θ̂(
∫ k
l )Diθ̂(0)

θ̂(
∫ k
i )θ̂(

∫ i
l )

θ(ζ +
∫ l
i )θ(ζ +

∫ i
k)

θ(ζ +
∫ l
k)θ(ζ)

(A.10)

valid for any vector ζ ∈ Cg and any three pints pi, pk, pl in M. In our case, such points

are usually chosen among p1 = 0, p3 = ∞, and p4, p4̄ arbitrary and in opposite sheets of

M. As particular cases it is useful to derive

D3 ln
θ(ζ)

θ(ζ +
∫ 4

1 )
= −D3 ln θ

(∫ 4

1

)
−
θ̂(
∫ 4

1 )D3θ̂(0)

θ(
∫ 4

1 )θ(0)

θ̂(ζ)θ̂(ζ +
∫ 4

1 )

θ(ζ)θ(ζ +
∫ 4

1 )

D3 ln
θ̂(ζ)

θ̂(ζ +
∫ 4

1 )
= −D3 ln θ

(∫ 4

1

)
+
θ̂(
∫ 4

1 )D3θ̂(0)

θ(
∫ 4

1 )θ(0)

θ(ζ)θ(ζ +
∫ 4

1 )

θ̂(ζ)θ̂(ζ +
∫ 4

1 )
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D1 ln
θ(ζ)

θ̂(ζ +
∫ 4

1 )
= −D1 ln θ̂

(∫ 4

1

)
+
θ(
∫ 4

1 )D1θ̂(0)

θ̂(
∫ 4

1 )θ(0)

θ̂(ζ)θ(ζ +
∫ 4

1 )

θ(ζ)θ̂(ζ +
∫ 4

1 )

D1 ln
θ̂(ζ)

θ(ζ +
∫ 4

1 )
= −D1 ln θ̂

(∫ 4

1

)
+
θ(
∫ 4

1 )D1θ̂(0)

θ̂(
∫ 4

1 )θ(0)

θ(ζ)θ̂(ζ +
∫ 4

1 )

θ̂(ζ)θ(ζ +
∫ 4

1 )
(A.11)

valid for any vector ζ. The function θ̂ is defined in eq. (2.14) and is odd, a fact used in

writing eq. (A.11). In the solutions eq. (2.22), the vector ζ is a function of the world-sheet

coordinates (z, z̄):

ζ(z, z̄) = 2ω1z̄ + 2ω3z (A.12)

and therefore

∂zF (ζ(z, z̄)) = 2D1F (ζ), ∂z̄F (ζ(z, z̄)) = 2D3F (ζ) (A.13)

In that way, the identities (A.11) can be used as a table of derivatives of the theta

functions and allow the verification of the equations of motion.

A.5 Second derivatives

Second derivatives can be computed in the same way as first ones. In this subsection we

just derive a special case that is useful for our purposes. Consider eq. (A.10) and take

the points pi = p3, pl = p4 and use the definition of θ̂, i.e. eq. (2.14). After reordering the

terms, the result is

D3 ln
θ(ζ)

θ̂(ζ +
∫ 4

1 −
∫ k

3 )
= D3 ln

θ̂(
∫ k

3 )

θ(
∫ 4

1 )
−
D3θ̂(0)θ̂(ζ +

∫ 4
1 )

θ(
∫ 4

1 )θ(ζ)

θ(ζ −
∫ k

3 )θ(
∫ 4

1 −
∫ k

3 )

θ̂(
∫ k

3 )θ̂(ζ +
∫ 4

1 −
∫ k

3 )
(A.14)

The pint pk is now taken to be very close to p3 so that the expansion in eq. (2.16) can be

used, namely ∫ k

3
= ω3ỹ +

1

3
ỹ3ω32 + . . . (A.15)

with ỹ = 2√
λ

. Multiplying eq. (A.14) by θ̂(
∫ k

3 ) and expanding in powers of ỹ gives, at

order ỹ2,

D2
3 ln

[
θ(ζ)θ

(∫ 4

1

)
θ̂

(
ζ +

∫ 4

1

)]
+

[
D3 ln

θ(ζ)θ(
∫ 4

1 )

θ̂(ζ +
∫ 4

1 )

]2

=
D3

3 θ̂(0)

D3θ̂(0)
(A.16)

Similarly, taking pi = p1 and expanding fro pk → p1 it follows that

D2
1 ln

[
θ(ζ)θ̂

(∫ 4

1

)
θ

(
ζ +

∫ 4

1

)]
+

[
D1 ln

θ(ζ)θ̂(
∫ 4

1 )

θ(ζ +
∫ 4

1 )

]2

=
D3

1 θ̂(0)

D1θ̂(0)
(A.17)

A.6 First derivatives at ζ = ζs

A special role in the construction is played by the world-sheet boundary curve z(s) defined

such that

θ̂(ζs) = 0 (A.18)
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where

ζs = ζ(z(s), z̄(s)) = 2ω1z̄(s) + 2ω3z(s) (A.19)

It therefore becomes necessary to evaluate various derivatives at such values of ζ = ζs.

Consider the first and third equations in (A.11) and evaluate them at ζ = ζs. The

result is

D3 ln
θ(ζs)

θ(ζs +
∫ 4

1 )
= −D3 ln θ

(∫ 4

1

)
(A.20)

D1 ln
θ(ζs)

θ̂(ζs +
∫ 4

1 )
= −D1 ln θ̂

(∫ 4

1

)
(A.21)

Furthermore, using that θ̂ is antisymmetric and θ symmetric it follows that

D3 ln
θ(ζs +

∫ 4
1 )

θ(ζs −
∫ 4

1 )
= 2D3 ln θ

(∫ 4

1

)
(A.22)

D1 ln
θ̂(ζs +

∫ 4
1 )

θ̂(ζs −
∫ 4

1 )
= 2D1 ln θ̂

(∫ 4

1

)
(A.23)

Consider now the second equation in (A.11). Both sides have poles when θ̂(ζ) = 0 but

after multiplying it by θ̂(ζ), it reads

D3θ̂(ζ) + θ̂(ζ)D3 ln
θ(
∫ 4

1 )

θ̂(ζ +
∫ 4

1 )
=
θ̂(
∫ 4

1 )D3θ̂(0)

θ(
∫ 4

1 )θ(0)

θ(ζ)θ(ζ +
∫ 4

1 )

θ̂(ζ +
∫ 4

1 )
(A.24)

Evaluating at ζ = ζs gives

D3θ̂(ζs) =
θ̂(
∫ 4

1 )D3θ̂(0)

θ(
∫ 4

1 )θ(0)

θ(ζs)θ(ζs +
∫ 4

1 )

θ̂(ζs +
∫ 4

1 )
(A.25)

Similarly, from the last equation in (A.11) it follows that

D1θ̂(ζs) =
θ(
∫ 4

1 )D1θ̂(0)

θ̂(
∫ 4

1 )θ(0)

θ(ζs)θ̂(ζs +
∫ 4

1 )

θ(ζs +
∫ 4

1 )
(A.26)

Another possibility to cancel the pole at θ̂(ζ) = 0 is by subtracting the second equation

in (A.11) from itself evaluated at p4̄:

D3 ln
θ̂(ζ +

∫ 4
1 )

θ̂(ζ −
∫ 4

1 )
= 2D3 ln θ

(∫ 4

1

)
−
θ̂(
∫ 4

1 )D3θ̂(0)

θ(
∫ 4

1 )θ(0)

θ(ζ)

θ̂(ζ)

[
θ(ζ +

∫ 4
1 )

θ̂(ζ +
∫ 4

1 )
+
θ(ζ −

∫ 4
1 )

θ̂(ζ −
∫ 4

1 )

]
(A.27)

where again we used that θ̂ is odd: θ̂(−
∫ 4

1 ) = −θ̂(
∫ 4

1 ). From the trisecant identity, taking

the points pi = p4, pj = p1, pk = p3, pl = p4̄ and using that
∫ 4̄

1 = −
∫ 4

1 one obtains[
θ(ζ +

∫ 4
1 )

θ̂(ζ +
∫ 4

1 )
+
θ(ζ −

∫ 4
1 )

θ̂(ζ −
∫ 4

1 )

]
=
θ̂(2
∫ 4

1 )θ(0)

θ̂(
∫ 4

1 )θ(
∫ 4

1 )

θ(ζ)θ̂(ζ)

θ̂(ζ +
∫ 4

1 )θ̂(ζ −
∫ 4

1 )
(A.28)
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Replacing in eq. (A.27), θ̂(ζ) indeed cancels resulting in

D3 ln
θ̂(ζ +

∫ 4
1 )

θ̂(ζ −
∫ 4

1 )
= 2D3 ln θ

(∫ 4

1

)
−
θ̂(2
∫ 4

1 )D3θ̂(0)

θ2(
∫ 4

1 )

θ2(ζ)

θ̂(ζ +
∫ 4

1 )θ̂(ζ −
∫ 4

1 )
(A.29)

which is now safe to evaluate at ζ = ζs. Similarly, from the last equation in eq. (A.11) it

follows that

D1 ln
θ(ζ +

∫ 4
1 )

θ(ζ −
∫ 4

1 )
= 2D1 ln θ̂

(∫ 4

1

)
−
θ(
∫ 4

1 )D1θ̂(0)

θ̂(
∫ 4

1 )θ(0)

θ(ζ)

θ̂(ζ)

[
θ̂(ζ +

∫ 4
1 )

θ(ζ +
∫ 4

1 )
+
θ̂(ζ −

∫ 4
1 )

θ(ζ −
∫ 4

1 )

]
(A.30)

leading to

D1 ln
θ(ζ +

∫ 4
1 )

θ(ζ −
∫ 4

1 )
= 2D1 ln θ̂

(∫ 4

1

)
−
θ̂(2
∫ 4

1 )D1θ̂(0)

θ2(
∫ 4

1 )

θ2(ζ)

θ(ζ +
∫ 4

1 )θ(ζ −
∫ 4

1 )
(A.31)

A.7 Higher derivatives at ζ = ζs

Consider eq. (A.20).and take p4 → p3. Both sides develop a pole so we should carefully

expand using eq. (2.16)

ω(p4) = ω3 + ỹ2ω32 + . . . (A.32)∫ 4

1
ω =

∫ 3

1
ω + ω3ỹ +

1

3
ỹ3ω32 + . . . (A.33)

where ỹ = 2√
λ

. It follows that

D3θ̂(ω3ỹ + 1
3 ỹ

3ω32 + . . .)

θ̂(ω3ỹ + 1
3 ỹ

3ω32 + . . .)
=
D3θ̂(ζs + ω3ỹ + 1

3 ỹ
3ω32 + . . .)

θ̂(ζs + ω3ỹ + 1
3 ỹ

3ω32 + . . .)
−D3 ln θ(ζs) (A.34)

Expanding both sides in ỹ two useful identities are derived:

D2
3 θ̂(ζs)

D3θ̂(ζs)
= 2D3 ln θ(ζs) (A.35)

D3
3 θ̂(ζs)

D3θ̂(ζs)
=
D3

3 θ̂(0)

D3θ̂(0)
− D′′3 θ̂(0)

D3θ̂(0)
+
D′′3 θ̂(ζs)

D3θ̂(ζs)
+ 3 (D3 ln θ(ζs))

2 (A.36)

where D′′3 denotes the derivative along the direction ω32 and we also took into account

that θ̂ is an odd function and therefore its even derivatives vanish at 0. Similarly, starting

from eq. (A.21) one finds

D2
1 θ̂(ζs)

D1θ̂(ζs)
= 2D1 ln θ(ζs) (A.37)

D3
1 θ̂(ζs)

D1θ̂(ζs)
=
D3

1 θ̂(0)

D1θ̂(0)
− D′′1 θ̂(0)

D1θ̂(0)
+
D′′1 θ̂(ζs)

D1θ̂(ζs)
+ 3 (D1 ln θ(ζs))

2 (A.38)

– 29 –



J
H
E
P
0
5
(
2
0
1
4
)
0
3
7

Finally, taking two derivatives in direction ω3 i.e. applying D2
3 to eq. (A.24) and evaluating

at ζ = ζs follows that

D2
3 ln

[
θ(ζs)θ

(
ζs +

∫ 4

1

)
θ̂

(
ζs +

∫ 4

1

)]
+

(
D3 ln

θ(ζs +
∫ 4

1 )

θ̂(ζs +
∫ 4

1 )

)2

=
D3

3 θ̂(ζs)

D3θ̂(ζs)
− 3 (D3 ln θ(ζs))

2

(A.39)

where eqs. (A.20), (A.25) and eq. (A.29) were used to simplify the result. Similarly

D2
1 ln

[
θ(ζs)θ

(
ζs +

∫ 4

1

)
θ̂

(
ζs +

∫ 4

1

)]
+

(
D1 ln

θ(ζs +
∫ 4

1 )

θ̂(ζs +
∫ 4

1 )

)2

=
D3

1 θ̂(ζs)

D1θ̂(ζs)
− 3 (D1 ln θ(ζs))

2

(A.40)

is obtained. Instead for this derivation one can simply replace ζ = ζs in eqs. (A.16), (A.17).

The result is not exactly the same, they only agree if

D3
3 θ̂(ζs)

D3(ζs)
− D2

3θ(ζs)

θ(ζs)
− 2 (D3 ln θ(ζs))

2 =
D3

3 θ̂(0)

D3θ̂(0)
− D2

3θ(0)

θ(0)
(A.41)

which is another useful identity.

A.8 Other identities

In [14] the following result was obtained(
θ(0)θ̂(

∫ 4
1 )

D1θ̂(0)θ(
∫ 4

1 )

)2

= −4λp4 (A.42)(
D3θ̂(0)θ̂(

∫ 4
1 )

θ(0)θ(
∫ 4

1 )

)2

= −1

4
λp4 (A.43)

Consider now the first equation in eq. (A.11), apply D3 and evaluate at ζ = ζs:

D2
3 ln

θ(ζs)

θ(ζs +
∫ 4

1 )
= −

(
θ̂(
∫ 4

1 )D3θ̂(0)

θ(
∫ 4

1 )θ(0)

)2

=
1

4
λp4 (A.44)

where eq. (A.25) and eq. (A.43) were used to simplify the result. Similarly, from the third

equation in (A.11) and using eqs. (A.26), (A.42) it follows that

D2
1 ln

θ(ζs)

θ̂(ζs +
∫ 4

1 )
=

(
θ(
∫ 4

1 )D1θ̂(0)

θ̂(
∫ 4

1 )θ(0)

)2

= − 1

4λp4

(A.45)

These identities are valid whenever ζs is a zero of θ̂. In particular we can set ζs = 0 obtaining

D2
1 ln θ̂

(∫ 4

1

)
=

1

4λ
+
D2

1θ(0)

θ(0)
(A.46)

D2
3 ln θ

(∫ 4

1

)
= −λ

4
+
D2

3θ(0)

θ(0)
(A.47)
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