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A trondhjemitic body occurs in the Aoyougou area, the western part of the North Qilian orogen. It is geochemically characterized 
by high SiO2, Na2O (high Na/K), elevated Sr/Y and (La/Yb)N, positive Sr anomaly, relatively enriched large ion lithophile ele-
ments (LILEs) and light rare earth elements (LREEs), and depleted Nb, Ta, Ti, resembling the high-silica adakite. Zircon U-Pb 
SHRIMP dating yields a weighted mean age of 438±3 Ma. This age is significantly younger than eclogitization ages of 460–490 
Ma in the North Qilian orogen, suggesting that formation of the adakite postdates the subduction of oceanic crust in association 
with closure of the ancient Qilian Ocean. Whole-rock Sr and Nd isotopic analyses give initial ratios of ISr=0.70440.7047 and 
Nd(t)=3.04.1, indicating that they are derived from partial melting of the juvenile oceanic crust. In view of the tectonic evolution 
of the North Qilian orogen, the high-silica adakite was probably derived from decompression melting of the exhumed eclogite at 
the depth of ~60 km. 
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The terminology “adakite” is referred to a series of igneous 
rocks that are characterized by low Y, elevated Sr, Sr/Y and 
(La/Yb)N [1]. The petrogenesis of adakite is of great signif-
icance and has been hotly discussed, not only for the tec-
tonic reconstruction of the ancient ocean and plate [1–6], 
but also for the origin of the continent crust dominated by 
Archaean tonalite-trondhjemite-granodiorite (TTG) [7–12].  

Adakite is originally linked to melting of young and hot 
slab, and mainly distributes in the circum-Pacific margins 
[7,8,13,14]. However, recent studies have revealed that par-
tial melting of thickened lower crust and differentiation of 
parental basaltic magma at high pressure are also possible 
mechanisms [15–25]. This implies that adakite is of diverse 
derivation and the slab melting model, to some extent, has 
defect as extremely limited conditions for melting, thus 
prerequisites such as high geothermal gradient, relatively 

hot and juvenile slab, flat subduction and slab window have 
been proposed [1,6,7,26]. Heat source plays a key role in 
the formation of magma, but absolutely not the unique one 

[27]. Decompression melting has been confirmed to be one 
of the most important mechanisms for magma generation. 
For instance, it is common that when metamorphic rocks 
exhume to the Earth’s surface, break-down of hydrous min-
erals will decrease the solidus line of surrounding rocks, 
inducing melting due to pressure-decreasing [28–32].  

This paper presents geochemical, Sr-Nd isotopic and ge-
ochronological data for an Early Silurian-aged high-silica 
adakite in the west segment of the North Qilian orogen. 
Combining the temporal relation with formation of eclogite 
and tectonics of the North Qilian Orogen, we suggest that 
the adakitic magma is generated by decompression melting 
of eclogite during exhumation. This model provides a new 
explanation for the origin of adakite, as well as tectonic 
evolution of the North Qilian orogen in Early Paleozoic time. 
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1  Geological background 

The North Qilian orogenic belt in the northern Qinghai- 
Tibet Plateau is a well-studied Early Paleozoic suture zone 
in China. It extends in the NW direction between the 
Alashan block to the north and the Qaidam block to the 
south, and is offset by the Altyn Tagh fault, a largest sinis-

tral-slip fault in NW China, to the west [33]. This suture 
zone consists predominantly of subduction accretionary 
complexes, including ophiolite, high-pressure metamorphic 
rocks, arc volcanic rocks, granitic intrusives, Silurian flysch 
formation, Devonian molasses and post-Devonian sedimen-
tary covers [34,35] (Figure 1a). 

The Aoyougou trondhjemitic pluton is located in the  

 

Figure 1  a, Schematic geological map of the North Qilian orogenic belt (after [38]); b, geological map of Aoyougou region (modified after 1: 200000 
Qilianshan map). 
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western segment of the North Qilian orogen. It lies approxi-
mately 8 km to the southeast of Qiqing town, Sunan County, 
Gansu Province. To the north is the famous Aoyougou ophio-
lite that comprises of serpentinized peridotite, gabbro and 
basalt [36]. Zircons from gabbro gave an age of 504±6 Ma 
by SHRIMP U-Pb dating [37]. The trondhjemitic pluton is 
an ovoid body of ~1 km2 in size (Figure 1b) and intrudes in 
mafic volcanic rocks of the Zhulongguan group (Figure 2a) 
with a chilling margin. Country rocks near the boundary are 
remarkably baked (Figure 2b). 

2  Petrography 

The Aoyougou trondhjemite consists of plagioclase (60%– 
70%), quartz (~20%), K-feldspar (<5%), mafic minerals 
(<5%, mostly chloritized) and minor accessory minerals 
such as apatite, zircon, titanite and exhibits typical coarse- 
grained granitic texture. Plagioclase grains are euhedral and 
slightly saussuritized and sericitized. Some grains show 
clear magmatic oscillatory zoning (Figure 2d) with An val-
ues decreasing from core (33.56) to rim (10.75) (Table 1), 
reflecting crystal fractionation of the adakitic magma.  

3  Zircon U-Pb geochronology 

Sample 09AY-14 was chosen for dating and zircon separa-
tion was done in a laboratory of Langfang Institute of Re-
gional Geological Survey. Zircon grains were separated 
with the assistance of standard heavy liquid and magnetic 
techniques and then hand-picked under a binocular micro-
scope. They were mounted in a 25 mm epoxy disc together 
with zircon standard M257 and TEMORA and polished to 
half-sections. The internal structure of zircon grains were 
examined by cathodoluminescent (CL) image using a FEI 
PHILIPS XL30 SFEG Scanning Electron Microscope (SEM) 
with 2-min scanning time in condition 15 kV/120 nA in 
School of Physics, Peking University. The zircon grains 
were analyzed for U-Th-Pb isotopes using the sensitive high- 
resolution ion microprobes (SHRIMP II) at Curtin Univer-
sity of Technology, Western Australia. The instrument was 
controlled and data acquired from a remote control centre in 
the Beijing SHRIMP Centre, Institute of Geology, CAGS, 
Beijing. This was achieved via the SHRIMP Remote Opera-
tion System (SROS) which allows the remote operator to 
control the instrument, choose sites for analysis and data 
print out in real time through internet. Zircon Standard  

 

Figure 2  Field and photomicrographs of the Aoyougou trondhjemite. a, Trondhjemitic body intruding in mafic rocks of the Zhulongguan Group; b, the 
fine-grained chilling margin near the contact boundary; c, medium- to coarse-grained granitic texture (10QL-16); d, plagioclase showing magmatic crystalli-
zation zoning (10QL-18).  
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Table 1  Chemical analyses of a plagioclase grain from the Aoyougou trondhjemite (10QL-18) from core (3.1) to rim (3.13) 

No. 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 

SiO2 59.36 59.39 59.88 59.72 59.99 59.53 60.02 59.64 61.23 61.98 61.97 63.78 65.76 

TiO2 0.00 0.04 0.02 0.01 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.03 0.00 

Al2O3 24.82 25.51 25.69 25.81 25.70 26.21 25.52 25.58 24.81 24.27 23.90 22.67 21.87 

Cr2O3 0.00 0.00 0.00 0.03 0.02 0.00 0.02 0.00 0.00 0.02 0.00 0.08 0.00 

FeO 0.22 0.11 0.15 0.13 0.18 0.19 0.17 0.13 0.04 0.08 0.13 0.10 0.02 

MnO 0.03 0.00 0.00 0.00 0.00 0.06 0.02 0.00 0.03 0.00 0.04 0.02 0.01 

MgO 0.01 0.02 0.00 0.03 0.00 0.05 0.01 0.03 0.02 0.01 0.00 0.00 0.00 

CaO 6.40 7.19 7.06 6.90 6.88 7.10 6.62 6.90 5.89 5.58 4.81 3.88 2.28 

Na2O 8.03 7.76 8.01 7.77 7.94 7.58 8.14 8.26 8.30 8.49 8.96 9.49 10.34 

K2O 0.25 0.14 0.17 0.18 0.18 0.13 0.12 0.16 0.18 0.18 0.25 0.35 0.19 

NiO 0.00 0.09 0.00 0.00 0.00 0.02 0.05 0.01 0.04 0.05 0.00 0.00 0.00 

Total 99.12 100.25 100.98 100.58 100.90 100.91 100.68 100.75 100.55 100.69 100.06 100.39 100.47 

An 30.18 33.56 32.46 32.60 32.06 33.84 30.75 31.30 27.87 26.40 22.61 18.05 10.75 

Ab 68.46 65.66 66.57 66.40 66.96 65.46 68.56 67.84 71.13 72.60 76.01 79.98 88.14 

Or 1.37 0.78 0.97 0.99 0.98 0.70 0.69 0.86 1.00 1.00 1.38 1.97 1.11 

 

M257 (206Pb/238U expected age: 572 Ma, U concentration: 
238 ppm) was measured to calibrate U, Th and Pb concen-
trations, and standard zircon TEM (206Pb/238U expected age: 
417 Ma) was used for element fractionation correction. Data 
reduction was conducted by SQUID1.0 software, and Con-
cordia diagrams of age data were generated using ISOPLOT 
program [39]. Uncertainties in ages are given at the 1 level. 
Final weighted mean ages are quoted with 95% (2) confi-
dence limits. The detailed analytical procedures and prin-
cipium were described in references [40,41]. Results are 
presented in Table 2. 

Zircon grains from 09AY-14 are colorless, euhedral 
crystals in size of 150–120 m long and 20–40 m wide 
and show clear concentric oscillatory zoning in CL images 
(Figure 3). Thirteen representative zircons are chosen for U- 
Th-Pb analysis; U and Th contents in zircons are relatively 
low, ranging from 99 to 162 ppm for U and from 46 to 97 
ppm for Th with Th/U ratios of 0.46–0.65 (Table 2). All 
analyzed spots give a limited range of 206Pb/238U ages from 
431 to 441 Ma with a weighted mean of 438±3 Ma (MSWD= 
0.46) (Figure 4). Thus, the age of 438±3 Ma can represent 
the forming age of the Aoyougou trondhjemite. 

Table 2  SHRIMP U-Th-Pb analyses for zircons from the Aoyougou trondhjemitea) 

No. 
U Th 

Th/U 
206Pb* 

206Pbc/% 207Pb*/235U ±% 206Pb*/238U ±% 
206Pb/238U 

±1 
(ppm) (ppm) (ppm) Age (Ma) 

1 104 51 0.51 6.15 0.00 0.5202 3.4 0.0691 1.4 431.0 6.0 

2 104 53 0.52 6.23 0.00 0.5380 3.4 0.0695 1.4 433.1 6.0 

3 99 46 0.48 5.98 0.19 0.5291 4.1 0.0700 1.5 436.4 6.3 

4 122 60 0.51 7.42 0.00 0.5671 3.3 0.0709 1.4 441.6 6.0 

5 113 57 0.52 6.95 0.37 0.5233 4.5 0.0713 1.5 444.2 6.3 

6 162 76 0.48 9.87 0.68 0.5538 5.3 0.0705 1.3 438.9 5.6 

7 129 57 0.46 7.88 0.00 0.5188 3.2 0.0709 1.4 441.8 5.9 

8 157 86 0.57 9.52 0.16 0.5012 3.1 0.0706 1.3 439.5 5.5 

9 103 50 0.50 6.17 0.00 0.5340 3.4 0.0699 1.4 435.4 6.0 

10 157 97 0.64 9.37 0.11 0.5218 3.4 0.0694 1.9 432.3 7.8 

11 128 70 0.56 7.82 0.18 0.5064 3.3 0.0708 1.3 441.0 5.7 

12 150 94 0.65 9.02 0.00 0.5285 2.8 0.0699 1.3 435.4 5.4 

13 124 66 0.55 7.53 0.23 0.5224 3.5 0.0708 1.4 441.2 5.8 

a) 206Pbc and 206Pb*, Common and radiogenic portions. Common Pb was corrected using measured 204Pb. 
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Figure 3  CL images for zircons and analytic spots with ages. 

 

Figure 4  Concordia and average diagrams for zircons from the Aoyougou trondhjemite.  

4  Geochemistry 

4.1  Analytical methods 

The whole-rock major and trace elements were determined 
by Leeman Prodigy inductively coupled plasma-optical emis-
sion spectroscopy (ICP-OES) and Agilent-7500a inductive-
ly coupled plasma mass spectrometry (ICP-MS) at China 
University of Geosciences, Beijing, respectively. Precisions 
(1) for almost all elements are less than 1%, except for 
TiO2 (~1.5%) and P2O5 (~2.0%). Loss on igition (LOI) was 
performed by placing 1g of samples in the furnace keeping 
1000°C for several hours and being reweighed after cooled. 
More details should be related to [42]. Results are listed in 
Table 3. 

100–150 mg powders of three fresh samples (09AY-14, 
17 and 10QL-15) and BCR-2 standard were dissolved using 
HClO4 and HF in Teflon vessels and Sr and Nd elements 

were achieved by further separation work in Peking Univer-
sity, Beijing. The analyses were performed on a Triton T1 
Mass Spectrometry in the Institute of Geology and Mineral 
resources, Tianjin. Detail procedure follows that of Jahn et 
al [43]. During the course of this study, the mean 87Sr/86Sr 
ratios for NBS-987 and BCR-2 are 0.710238±5 (n=3) and 
0.705016±3 (n=2), respectively, while the mean 143Nd/144Nd 
ratio was 0.512118±6 (n=5) for JNDI and 0.512637±6 (n=2) 
for BCR-2. Results are shown in Table 4. 

4.2  Results 

All the nine samples in Table 3 are characterized by high 
contents of SiO2 (67.3 wt.%–74.1 wt.%), Na2O (4.76 wt.%– 
9.05 wt.%), and extremely low K2O/Na2O ratios (0.12–0.34). 
In the K-Na-Ca triangle (Figure 5), all samples plot in the 
Archean TTG field and display along the evolutionary trend of 
trondhjemitic magma. In the K2O-SiO2 diagram (Figure 6a),  
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Table 3  Whole-rock major (wt.%) and trace element (ppm) compositions of Aoyougou trondhjemites 

Sample 09AY14 09AY15 09AY16 09AY17 10QL15 10QL16 10QL20 10QL21 10QL23 

SiO2 72.41 70.96 70.52 69.53 74.07 73.63 72.83 67.26 71.64 

TiO2 0.15 0.16 0.17 0.17 0.16 0.15 0.16 0.18 0.16 

Al2O3 14.98 14.87 15.39 16.51 14.52 14.58 15.17 18.37 15.25 

Fe2O3 0.69 0.77 0.92 0.74 1.15 1.05 1.13 1.34 1.06 

MnO 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.02 

MgO 0.66 0.74 0.82 0.69 0.70 0.66 0.77 0.83 0.55 

CaO 2.23 2.07 1.36 0.83 1.33 1.70 1.41 2.90 2.43 

Na2O 6.04 6.76 7.89 9.05 5.02 4.76 5.32 5.75 4.77 

K2O 1.59 1.43 1.12 1.04 1.47 1.38 1.27 1.70 1.62 

P2O5 0.05 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.05 

LOI 1.06 2.03 1.62 1.29 0.86 1.40 1.18 0.75 1.75 

Total 99.87 99.86 99.89 99.94 99.35 99.35 99.32 99.17 99.31 

K2O/Na2O 0.26 0.21 0.14 0.12 0.29 0.29 0.24 0.30 0.34 

Li 2.27 2.13 3.95 2.22 0.39 0.55 0.74 8.30 0.42 

Sc 2.25 2.21 2.09 2.32 2.03 1.89 2.15 2.24 2.01 

V 15.40 16.33 16.22 15.77 16.81 16.03 16.80 17.62 15.59 

Cr 8.55 9.52 9.97 10.40 22.43 11.17 13.00 11.13 9.19 

Co 3.01 2.68 3.30 2.26 3.26 2.56 3.17 3.41 2.08 

Ni 6.17 6.20 6.88 6.38 12.89 6.90 8.02 7.36 7.41 

Cu 2.21 2.62 2.65 3.55 4.35 1.62 1.23 1.31 0.97 

Zn 94.65 32.68 40.42 31.02 28.42 22.38 26.84 36.88 23.26 

Ga 15.39 15.36 14.81 13.91 16.30 16.06 16.84 18.07 16.40 

Rb 28.18 33.32 25.02 25.60 33.66 36.94 35.65 40.70 42.06 

Sr 661 739 539 212 782 551 521 764 552 

Y 2.96 2.64 2.58 2.96 3.00 2.62 2.80 3.41 2.96 

Zr 80.5 75.6 91.1 78.8 108.7 88.9 97.3 122.5 89.7 

Nb 1.18 1.26 1.22 1.46 1.77 1.67 1.98 1.94 1.97 

Cs 0.18 0.33 0.33 0.21 0.22 0.46 0.58 0.69 0.47 

Ba 433 408 334 183 986 464 363 580 475 

La 4.83 4.19 4.90 4.68 8.08 5.66 5.80 6.48 4.84 

Ce 10.36 9.34 10.55 10.33 15.97 11.62 12.04 13.42 10.15 

Pr 1.25 1.14 1.27 1.23 1.91 1.42 1.48 1.65 1.27 

Nd 4.85 4.54 4.95 4.78 7.56 5.68 5.98 6.70 5.21 

Sm 0.99 1.00 1.00 1.00 1.33 1.01 1.09 1.22 0.99 

Eu 0.30 0.30 0.31 0.20 0.35 0.22 0.25 0.31 0.25 

Gd 0.87 0.83 0.81 0.84 1.03 0.79 0.85 0.99 0.85 

Tb 0.11 0.10 0.10 0.11 0.12 0.10 0.11 0.12 0.11 

Dy 0.52 0.49 0.47 0.57 0.60 0.51 0.54 0.64 0.57 

Ho 0.09 0.08 0.09 0.10 0.10 0.09 0.10 0.11 0.10 

Er 0.24 0.21 0.21 0.25 0.24 0.22 0.23 0.28 0.24 

Tm 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 

Yb 0.21 0.18 0.19 0.22 0.21 0.20 0.22 0.26 0.21 

Lu 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 

Hf 1.90 1.71 2.09 1.87 2.61 2.14 2.38 2.85 2.23 

Ta 0.08 0.07 0.08 0.09 0.13 0.12 0.13 0.13 0.17 

Pb 6.27 5.23 6.48 6.89 8.47 6.99 6.01 10.43 8.54 

Th 0.96 0.92 0.98 0.99 2.16 0.88 0.92 1.06 0.91 

U 0.43 0.36 0.42 0.51 0.61 0.45 0.49 0.55 0.48 

Sr/Y 223 280 209 72 261 210 186 224 187 

(La/Yb)N 16.60 16.30 18.88 14.99 27.79 20.35 19.19 17.94 16.29 
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Table 4  Sr and Nd isotopic data of Aoyougou trondhjemitesa) 

Sample 87Rb/86Sr 87Sr/86Sr 2 ISr(t) 
147Sm/144Nd 143Nd/144Nd 2 t(Ma) Nd(0) Nd(t) fSm/Nd TDM2 

09AY-14 0.124 0.7054 3 0.7047 0.124 0.5126 12 438 0.05 4.1 0.37 836 

10QL-15 0.125 0.7052 4 0.7044 0.106 0.5126 5 438 1.25 3.8 0.46 869 

09AY-17 0.350 0.7069 7 0.7047 0.127 0.5126 7 438 0.96 3.0 0.36 932 

a) 143Nd/144NdCHUR=0.512638, 147Sm/144NdCHUR=0.1967, 143Nd/144NdDM=0.51315, 147Sm/144NdDM=0.2135; Rb=1.42×1011/a, Sm=6.54×1012/a. The two- 
stage model ages were calculated according to [46].  

 
Figure 5  K-Na-Ca triangle [44]. CA, Classical calc-alkaline trend; Td, 
trondhjemitic differentiation trend; grey field: Archean TTG [45]. 

all samples project between the low-K tholeiitic and calc- 
alkaline series within the high-silica adakite (HSA) field of 
modern subduction zones, much different from adakitic rocks 
in the North China Craton. 

Compared with the low-silica adakite (LSA) and high- 
silica adakite (HSA) subdivided by Martin et al. [8], eight of 
the nine samples share distinct similarity with HSA (Figure 
6a–h). They are characterized by enriched LREE and de-
pleted HREE with Yb (0.18–0.26 ppm) and (La/Yb)N (16.3– 
27.8), elevated Sr (521–782 ppm), depressed Y (2.58–3.41 
ppm), and high Sr/Y ratios (186–280), analogous to those 
features of adakite. The primitive mantle-normalized spider 
diagram displays positive Pb, Sr, Zr and Hf anomaly and 
negative Nb, Ta and Ti anomaly (Figure 7a). The chondrite- 
normalized REE pattern exhibits a steep right-slant pattern 
(Figure 7b). In the Sr/Y-Y and (La/Yb)N-YbN discrimination 
diagrams, all samples from the Aoyougou trondhjemite re-
semble the typical adakite, but distinct from classical is-
land-arc calc-alkaline magma (Figure 8). Sample 09AY-17 
exhibits lower CaO, Sr (212 ppm), Sr/Y ratio (72) than oth-
er samples and shows weakly negative Eu anomaly, which 
can be interpreted as fractional crystallization of plagioclase 
when melt rises. 

The present-day 87Sr/86Sr and 143Nd/144Nd ratios from 
three samples (09AY-14, 17 and 10QL-15) in this study are 
0.7054–0.7069 and 0.5126–0.5126, respectively. Consider-
ing the emplacement age of this trondhjemitic melt and the 

measured Rb/Sr and Sm/Nd ratios, the initial Sr ratios (ISr), 
Nd (t) values and the two-stage Nd model ages (TDM2) vary 
in the range of 0.7044–0.7047, 3.0–4.1 and 836–932 Ma, 
respectively. 

5  Discussion 

Zircon ages of eclogites in the North Qilian suture zone 
range from 460 to 490 Ma [33,48,49], and Ar-Ar dating ages 
of glaucophane and phengite in blueschists are from 440 to 
460 Ma [50–52]. The closure of the ancient Qilian Ocean is 
believed to be in Late Ordovician (approximately 445 Ma) 
through integration of abundant information such as arc- 
related magma, Silurian flysch formation and Devonian mo-
lasses [33,35,53,54]. Zircons from the Aoyougou trondhjemite 
yield an age of 438±3 Ma; this age is later than either eclo-
gites or blueschists, but approaches to the closure time of 
Qilian Ocean. Based on these observations, origin of the 
Aoyougou trondhjemite is mostly associated with closure of 
the Qilian Ocean and subsequent continent collision.  

Experiments demonstrate that the adakitic melt can be 
generated by partial melting of meta-basalts under the pres-
sure (>1.0 GPa) where garnet remains stable [55–57]. On 
the basis of rock types and forming mechanisms, it is gen-
erally thought that adakite can be achieved by three ways: 
(1) partial melting of subducted slab [1–6,14], (2) partial 
melting of thickened lower crust [15–21,25], and (3) high- 
pressure fractional crystallization of basaltic magma [22,24]. 
The Aoyougou trondhjemitic rocks have ISr of 0.7044–0.7047 
and Nd (t) of 3.0–4.1, suggesting that they are originated 
from a juvenile oceanic crust rather than the old continental 
lower crust.  

All samples in this study are sodic with K2O/Na2O rang-
ing from 0.12 to 0.34, much lower than those from lower 
continental crust (nearly 0.5). Moreover, the Sr and Nd iso-
topic data of our samples are in contrast with those of lower 
crust origin (e.g. Adakites in Tibet, North Qilian and Cor-
dillera Blanca Batholith) (Figure 9). Although these samples 
exhibit somewhat higher ISr and lower Nd(t) values than 
some modern adakites considered as slab melting, it should 
be noted that, thanks to source contamination in subduction 
zones, adakites (e.g. adakites in Austral Volcanic Zone and 
Tonga [14,58]) and eclogites (e.g. eclogites from the North 
Qaidam (Figure 9) and Alpine (2.3–7.8) [59,60]) have similar  



2296 Chen Y X, et al.   Chin Sci Bull   June (2012) Vol.57 No.18 

 
Figure 6  Diagrams of K2O vs. SiO2 (a), MgO vs. SiO2 (b), (Cr/Ni) vs. TiO2 (c), (K/Rb) vs. (SiO2/MgO) (d), Sr vs. (Na2O+CaO) (e), (Sr/Y) vs. Y(f), Cr vs. MgO 
(g), and Ni vs. MgO (h). Light grey field: low sillica adakite (LSA); dark grey field: high sillica adakite (HSA) [8]; solid line: adakite from North China [21].  
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Figure 7  Primitive mantle normalized multi-element (a) and chondrite normalized REE pattern (b) diagrams (standard data from [47]). 

 

Figure 8  (Sr/Y) vs. Y (a) and (La/Yb)N vs YbN (b) diagrams discriminating between adakite and typical arc calc-alkaline rocks.  

Nd isotopic features as those recorded in our samples. Gen-
erally, island-arc basalts (IAB) have enriched LILE and 
LREE which are opposite to mid-ocean ridge basalts (MORB). 

On the other hand, back-arc basin basalts (BABB) have 
geochemical characteristics of both IAB and MORB [61–63], 
with variations depending on extents and positions of partial  
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Figure 9  ISr vs. Nd (t=438 Ma) diagram of Aoyougou adakitic rocks comparing with those derived from subducted oceanic slab [4,14,58,64], continental 
lower crust [25,65,66] and eclogites from the North Qaidam [59].  

melting. Since enrichment of LILE and LREE is relatively 
weak in our samples [(La)N=18–34] (Figure 7b), similar to 
E-MORB, we prefer that the Aoyougou adakite would be 
derived from partial melting of the low-K BABB on the 
oceanic crust. The melting from such oceanic crust would 
produce granite with felsic, relatively depleted Sr-Nd iso-
topes and E-MORB-like trace element compositions. Con-
sequently, it is reasonable to conclude that partial melting of 
the subducted slab can account for the generation of Aoy-
ougou trondhjemites. 

5.1  Heat source  

In general, slab melting under high pressure lies on a suffi-
cient heat source at special subduction environments, such 
as high geothermal gradient, hot and young oceanic crust, 
fast/flat subduction and slab window, where dehydration 
melting of hydrated minerals would occur [1,6,26]. It should 
be noted that island-arc volcanic complex and high-pressure 
metamorphic rocks including lawsonite-bearing blueschist 
and eclogite are well-developed in the middle part of North 
Qilian Orogen [33,48,49,51,67], but absent in the studied 
area. Low subdution angle would be responsible for this 
absence, similar to the case in the southern island arc of Ja-
pan [68,69].  

The classic model for slab melting suggests that the sub-
ducted oceanic crust would suffer a series of dehydrated 
reactions during subduction, evolving from greenschist, 
through amphibolite to eclogite. If the slab becomes hot 

enough, partial melting in the stability field of garnet gener-
ates adakitic melts rather than other felsic melts. In this re-
gard, heating is one of the most important conditions for 
slab melting. On the other hand, decompression dehydration 
would also bring about partial melting of HP to UHP met-
amorphic rocks during their exhumation [70]. Hydrous 
minerals can break down during decompression exhumation, 
leading to local sinking of aqueous fluids for partial melting. 
This has been manifested by studies of field-based petrology 
and P-T modeling for metamorphic rocks [28–31]. Na-
hodilova et al. [32] demonstrated that up to 26% of melt lost 
during transition from early eclogite to granulite-facies con-
ditions thanks to decompression, which is recorded in leu-
cocratic banding in felsic granulites from the Kutna Hora 
complex in the Moldanubian zone of central Europe. Zhao 
et al. [71] demonstrated that Late Triassic granites in the 
Sulu orogen result from decompression melting of the sub-
ducted continental crust during exhumation. With respect to 
the Aoyougou adakite in the North Qilian orogen, its for-
mation age is 20–50 Ma younger than that of eclogite. Thus, 
it is possible that the adakite would most probably form by 
decompression melting of the eclogite during exhumation 
rather than during subduction.  

5.2  Pressure 

All adakites are characterized by enriched LILE, Pb, LREE, 
depleted Nb, Ta, Ti, HREE and high Sr/Y ratio (>40). The 
elevated Sr/Y ratio and depleted HREE in our samples are 



 Chen Y X, et al.   Chin Sci Bull   June (2012) Vol.57 No.18 2299 

commonly interpreted as generating in the depth where 
garnet is stable. With the development of experimental pe-
trology, rutile is regarded as another necessary residual 
phase for adakitic magma. However, Foley et al. [72] de-
nied it by consideration that the residue of rutile will affect 
melt with an elevated Nb/Ta proportion because of DTa>DNb 
between rutile and melt. However, subsequent experiments 
terrified that hardly can rutile raise the Nb/Tb value of melt, 
and the residual rutile can account for Nb and Ta negative 
anomalies in adakite perfectly [21,73–75], which is also 
observed in our samples. Taking all these features into ac-
count, the minimum pressure of 1.5 GPa is required for our 
samples because breakdown of rutile will happen under the 
pressure less than 1.5 GPa [21,75]. Geochemical modeling 
by Moyen [76] revealed that only when garnet emerges (P > 

1.5 GPa) can the Sr/Y ratio of the derivative melt be 10 
times bigger than that of the parental magma. As the Sr/Y 
value of oceanic crust generally scatters from 2 to 10, we 
simply constrain that the minimum pressure of 1.8 GPa  
(60 km) is demanded for such high Sr/Y ratios of our sam-
ples (average 222.5 except for sample 09AY-17) [76].  

5.3  Interaction with the mantle wedge 

It is commonly though that melts derived from the sub-
ducted slab cannot avoid interacting with the mantle wedge 
through which as it ascends, thus causing higher MgO, Ni 
and Cr concentrations in adakite when comparing with the 
experimental melt [57,77]. However, our samples exhibit 
extremely low MgO, Ni and Cr contents, similar to Ar-
chaean TTG (Figure 4g–h), predicting no or limited interac-
tion between adakitic melts and the mantle wedge. Some 
researchers attributed these features to shallow subduction 
[7,11,14]. Other two interpretations are also possible. Firstly, 
following the concept (a=effective melt/mantle peridotite) 
established by Rapp et al. [77], if the volume of slab melt-
ing is large enough, melt created in the early stage will con-
tain less SiO2, more MgO, Ni and Cr (LSA) than the later 
HSA because the later melt may go up along the early open 
path which hinders reactions between the HSA melt and the 
mantle peridotite. Secondly, if decompression melting of 
eclogite moves up during exhumation along the subduction 
channel, it will not pass through mantle wedge and the pos-
sibility of melt assimilation by mantle wedge will be zero. 

6  Conclusion 

Geochemistry demonstrates that the Aoyougou trondhjemite 
is a high-silica adakite with enriched Na2O, Sr, Sr/Y, (La/ 
Yb)N, and low K2O, MgO, Ni and Cr contents, resembling 
Archean trondhjemite. The initial Sr ratio of 0.7044–0.7047 
and Nd(t) of 3.0–4.1 reveal that these rocks are derived 
from the juvenile ocean crust. 

SHRIMP U-Pb dating of zircons gives a concordant age 

of 438±3 Ma, later than the formation of island-arc volcanic 
rocks and high-pressure metamorphic rocks in the North 
Qilian suture zone, suggesting that Aoyougou granite may 
link to the exhumation of high-pressure metamorphic rocks. 

The plausible model for the Aoyougou adakite is that the 
subducted slab transformed into eclogite in 460–490 Ma, 
and started to melt by decompressin at the depth of ~60 km 
at ~438 Ma during exhumation.  
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