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Abstract

Background: Phytic acid (InsP6) is considered as the major source of phosphorus and inositol phosphates in cereal
grains. Reduction of phytic acid level in cereal grains is desirable in view of its antinutrient properties to maximize
mineral bioavailability and minimize the load of phosphorus waste management. We report here RNAi mediated
seed-specific silencing of myo-inositol-3-phosphate synthase (MIPS) gene catalyzing the first step of phytic acid
biosynthesis in rice. Moreover, we also studied the possible implications of MIPS silencing on myo-inositol and
related metabolism, since, first step of phytic acid biosynthesis is also the rate limiting step of myo-inositol
synthesis, catalyzed by MIPS.

Results: The resulting transgenic rice plants (T3) showed a 4.59 fold down regulation in MIPS gene expression,
which corresponds to a significant decrease in phytate levels and a simultaneous increment in the amount of
inorganic phosphate in the seeds. A diminution in the myo-inositol content of transgenic plants was also observed
due to disruption of the first step of phytic acid biosynthetic pathway, which further reduced the level of ascorbate
and altered abscisic acid (ABA) sensitivity of the transgenic plants. In addition, our results shows that in the
transgenic plants, the lower phytate levels has led to an increment of divalent cations, of which a 1.6 fold increase
in the iron concentration in milled rice seeds was noteworthy. This increase could be attributed to reduced
chelation of divalent metal (iron) cations, which may correlate to higher iron bioavailability in the endosperm of
rice grains.

Conclusion: The present study evidently suggests that seed-specific silencing of MIPS in transgenic rice plants can
yield substantial reduction in levels of phytic acid along with an increase in inorganic phosphate content. However,
it was also demonstrated that the low phytate seeds had an undesirable diminution in levels of myo-inositol and
ascorbate, which probably led to sensitiveness of seeds to abscisic acid during germination. Therefore, it is
suggested that though MIPS is the prime target for generation of low phytate transgenic plants, down-regulation
of MIPS can have detrimental effect on myo-inositol synthesis and related pathways which are involved in key plant
metabolism.
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Background
In cereal grains, phytic acid (InsP6) is considered as the
major source of phosphorus and inositol phosphates.
Phytic acid is an acidic compound which is highly reac-
tive and readily binds to divalent mineral cations forming
mixed salt complexes known as phytate (Lott et al. 1995).
In rice, about 80% of phytate accumulates in the aleurone
layer and embryo of mature seeds (Ogawa et al. 1977),
which is degraded by phytase during germination
(Laboure et al. 1993; Barrientos et al. 1994). Degradation
of phytate mediated by the action of phytase, releases the
bound mineral cations, phosphorus and myo-inositol
which are required for proper growth and development of
seedlings (Raboy 2002). Moreover, the monogastric ani-
mals, due to lack of this phytase enzyme, cannot digest
phytate efficiently, rendering the bound phosphorus and
mineral cations (Fe2+, Zn2+, Ca2+) unavailable for absorp-
tion (Bregitzer and Raboy 2006). Therefore, various at-
tempts have been made to develop low phytate crops
which would facilitate improvement in the bioavailability
of phosphorus and micronutrients.
In plants, phytate biosynthesis is believed to be of an-

cient evolutionary origin and it has been suggested to
proceed via sequential phosphorylation of inositol phos-
phates (Majumder et al. 1997, 2003; Loewus and Murthy
2000). The enzyme 1D-myo-inositol-3-phosphate syn-
thase (MIPS, EC 5.5.1.4) catalyzes the conversion of
glucose-6-phosphate to myo-inositol-3-phosphate, which
is the first step of myo-inositol biosynthesis and also di-
rects phytic acid biosynthesis in seeds (Suzuki et al. 2007).
MIPS being an important enzyme in the biosynthesis of
phytate is often regarded as the prime target for reducing
phytic acid level in cereals (Raboy 2009). The activity and
expression of MIPS gene has been well characterized
in different crops (Johnson 1994; Ishitani et al. 1996;
RayChaudhuri et al. 1997; Hara et al. 2000; Hegeman et al.
2001; Shukla et al. 2004). Moreover, the accumulation pat-
tern of MIPS transcript in developing rice seeds (RINO1)
in relation to phytate globoids have also been well
established, which suggests that myo-inositol-3-phosphate
synthase plays a crucial role in InsP6 biosynthesis during
the developmental stages of rice seeds (Yoshida et al.
1999). Recent reports, demonstrating successful manipula-
tion of MIPS gene expression using transgenic strategy,
suggests that reduction in MIPS transcript levels in devel-
oping rice seeds leads to a substantial decrease in phytic
acid content of seeds (Feng and Yoshida 2004; Kuwano
et al. 2009). However, seed myo-inositol contents of low
phytate rice were not considered in these studies which
might have a negative impact, as the first step of phytic acid
biosynthesis is also the rate limiting step of myo-inositol
synthesis, catalyzed by MIPS (Keller et al. 1998; Donahue
et al. 2010) and its product myo-inositol-3-phosphate, is
the only known precursor for the de novo synthesis of
myo-inositol (Raboy 2002; Panzeri et al. 2011). Hence it is
expected that efficient silencing of MIPS gene expression
might affect the levels of myo-inositol in the low phytate
rice. Myo-inositol being central to inositol metabolism is
an important cellular metabolite required for normal plant
growth and development (Stevenson et al. 2000; Valluru
and Ende 2011). In addition to this, myo-inositol also con-
tributes to plant protection against salinity by restoring
the turgor pressure and protecting cellular structures from
reactive oxygen species stress (Loewus and Murthy 2000;
Majumder and Biswas 2006). Therefore, any changes in
the levels of myo-inositol due to perturbation of MIPS
may lead to alteration of the compounds synthesized later
in the pathway, which can further disturb the signaling
mechanism that regulates plants responses to different
environmental stresses (Stevenson et al. 2000; Downes
et al. 2005).
Another important aspect of phytate reduction is asso-

ciated with an increase in the amount of iron in seeds.
As mentioned earlier, phytate due to the presence of
negatively charged phosphate side groups has a strong
potential to chelate divalent cations like Fe2+ (Borg et al.
2009). Iron accumulated in the protein storage vacuoles
along with phytate is not available for absorption, which
corresponds to the lower bioavailability of iron in cereals
(Brinch-Pedersen et al. 2007). Hence, it is understood
that if there is reduction in levels of phytate, then larger
amount of iron that is not chelated will be available in
the endosperm, which translates itself into higher bio-
availability of iron.
In the present study we report RNAi mediated silenc-

ing of myo-inositol −3- phosphate synthase (MIPS) gene,
catalyzing the first step of phytic acid biosynthesis in
indica rice cultivar. We developed low phytate rice by
down regulating MIPS gene expression tissue specific-
ally, through the use of seed specific promoter, Oleosin
18 (Ole18). Analysis at the molecular and biochemical
level suggested reduction in phytate levels, along with an
increase of available phosphorus. Moreover, we also con-
sidered the effect of silencing MIPS on myo-inositol syn-
thesis, which revealed that seed myo-inositol levels of
transgenic plants were lower as compared to wild type,
which correlates with the increased ABA sensitiveness
during germination. In addition, we also estimated the
increase in iron content of milled rice grains, which was
enhanced due to reduction of phytate in seeds. Further
the agronomic traits of the transgenic rice plants have
been compared with non-transgenic controls.

Results
Development of transgenic rice plants
In order to generate transgenic rice plants expressing a
low phytate trait, we developed an RNAi vector con-
struct into which fragment of rice MIPS gene was



Figure 1 Vector construct and molecular analysis of transgenic plants. (a) Partial map of RNAi vector construct (pOle18-MIPS-006) used for
Biolistic transformation of indica rice cultivar, (b) gel picture of PCR analysis showing bands of RGA2 intron as amplified from the transgenic rice
plants. (M = 1 Kb gene ruler, P = Positive control, NT = Non-transgenic plant, lane 1-6 = Progenies of line MO6-196).

Figure 2 Southern hybridization analysis of transgenic rice
plants. Genomic DNA (10 μg) of T3 progenies of line MO6-196
digested with EcoRI showing stable integration of RGA2 intron in
transgenic rice plants. The position and sizes of markers are indicated
(NT = Non-transgenic plant, lane 1-5 = Progenies of line MO6-196).
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introduced following gateway based recombination sys-
tem (Himmelbach et al. 2007). The vector (pOle18-MIPS-
006) (Figure 1a) was used for subsequent transformation
of immature embryos, producing rice transgenic lines.
The generated plants were screened by PCR analysis for
the presence of transgene. PCR amplification of genomic
DNA from 21 day old plants resulted in amplification of
wheat RGA2 intron only in transgenic positive plants
while no amplification was observed in non-transgenic
control plants (Figure 1b). Available Pi content of positive
T1 seeds of individual transgenic lines was analyzed
(Kuwano et al. 2009; Chen et al. 1956) and compared with
the levels of non-transgenic rice seeds. The transgenic line
MO6-196 exhibiting higher seed Pi levels was selected and
subsequent generations (T1, T2, and T3) were grown simi-
larly. Further, Southern hybridization analysis using T3

generation rice plants of line MO6-196 was performed,
which revealed stable integration of the transgene cassette
into the progenies (Figure 2). The Southern hybridization
pattern was same for all the transgenic plants from the
same examined line. The transgenic plants showed normal
phenotype and were fertile.

Morphological traits of transgenic plants
The morphological traits of the transgenic T3 plants were
compared with non-transgenic control plants (Figure 3). In
mature plants, there was no significant difference (P ≥ 0.05)
in plant height and panicle length between T3 progenies of
line 196-11-6 and non-transgenic control plants (Figure 3a).
The number of effective tiller (Figure 3b), grains per pani-
cle (Figure 3c) and 1000 seeds dry weight (Figure 3d) were
also similar to non-transgenic control plants (P ≥ 0.05).

Expression analysis of transgenic rice plants
Rice seeds of both transgenic and non-transgenic control
were analyzed by RT-PCR to detect the endogenous MIPS
transcripts. Results revealed a distinct down-regulation in
the expression of MIPS gene in transgenic plants with re-
spect to non-transgenic control seeds (Figure 4a). How-
ever, all the seeds showed same level of expression for the
house keeping gene, β tubulin. To further determine the
down-regulation in expression of MIPS in transgenic rice
seeds, with respect to non-transgenic control, quantitative
real time RT-PCR (qRT-PCR) analysis was performed
(Figure 4b). The expression profiles obtained, clearly indi-
cates suppression of MIPS gene in transgenic rice. The
normalized fold-reduction levels varied widely in the
transgenic plants, the maximum reduction of 4.59 fold be-
ing observed in MO6-196-11-6.



Figure 3 Different agronomic characters analyzed in transgenic and non-transgenic rice plants. (a) Plant height and panicle length (cm),
(b) number of tillers and effective tillers, (c) number of grains per panicle and (d) 1000 seeds dry weight of non-transgenic and transgenic rice
plants. No significant differences (P≥ 0.05) were observed.
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Seed phosphorus and phytic acid analysis
Total phosphorus levels in T3 seeds of transgenic and
non-transgenic rice plants were determined. The average
total phosphorus content of transgenic seeds was
3.939 mg g-1, which was not significantly different from
Figure 4 Expression analysis of transgenic rice plants. (a) RT-PCR
analysis of T3 transgenic seeds of MO6-196, as compared to the
internal control β tubulin reveals down-regulation in the transcript level
of MIPS (b) Expression levels of MIPS as determined by Quantitative real
time PCR. The normalized fold expression clearly indicates varied level
of silencing, the maximum being 4.59 fold as observed in 196-11-6.
that of non-transgenic seeds (4.162 mg g-1). Since, re-
duction in phytate level directly correlates with an in-
crease of available phosphorus, Pi levels of transgenic
seeds were analyzed, with respect to that of the non-
transgenic seeds. The Pi concentration of transgenic rice
seeds constitutes about 48.70% of the total phosphorus
estimated in seeds, which was significantly higher than
4.33%, as observed in non-transgenic seeds (Figure 5a).
Despite exhibiting higher Pi levels, the transgenic seeds
displayed normal phenotype and did not show any aber-
ration in embryo structure.
To further confirm reduction in phytate levels in trans-

genic seeds, phytic acid was quantified by HPLC (Waters,
USA). The chromatogram obtained from HPLC/UV–
vis method, at 460 nm showed larger peaks of iron
(III)–thiocyanate complex, suggesting a significant de-
crease in the levels of phytic acid in transgenic seeds
as compared to the non-transgenic control which
exhibited smaller peak, signifying higher concentration
of phytic acid in seeds. The amount of phytic acid, as
calculated from the peak area was 10.28 mg g-1 for
non-transgenic seeds and 4.273 mg g-1 for the seeds
obtained from MO6-196-11-6, indicating a decrease
in phytic acid levels by 58.43% in transgenic seeds
(Figure 5b, c and d).

Analysis of myo-inositol and metals in seeds
The suppression of MIPS disrupts the synthesis of myo-
inositol-3-phosphate, which is the precursor for de novo
synthesis of myo-inositol. Hence it is expected that



Figure 5 Phosphorus and phytic acid content in seeds. (a) Total phosphorus and Pi fractions in non-transgenic (NT) and T3 transgenic seeds
and (b) amount of phytic acid in non-transgenic (NT) as compared to T3 low phytic acid transgenic seeds. The symbols * and *** indicates
significant differences at P = 0.05 and 0.001 respectively. (c & d) HPLC traces showing peak of iron III- thiocyanate complex of non-transgenic and
transgenic seed extracts of phytic acid after reaction with iron (III)- thiocyanate.
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efficient silencing of MIPS gene expression would also re-
duce levels of myo-inositol in transgenic seeds. Therefore,
we determined changes in myo-inositol content of trans-
genic seeds with respect to non-transgenic control, by
GC/MS analysis. The data obtained from the analysis,
strongly suggests that the amount of myo-inositol in trans-
genic seeds is reduced by approximately 28% as compared
to the non-transgenic seeds (Figure 6).
Phytic acid chelates divalent metal cations mainly in

the aleurone layer due to the presence of six highly
negatively charged ions. So, in order to verify whether
reduction in phytic acid levels have led to an increase in
the amount of metal contents in the rice seeds, the con-
tent of different metal cations was measured in T3 trans-
genic and non-transgenic seeds (milled) by Atomic
absorption spectroscopy (AAS, Perkin Elmer). The result
clearly suggests an increase in the content of the divalent
cations (Ca, Fe, Zn and Mg) measured (Table 1). Among
the different metal cations analyzed, the amount of iron
present in the milled rice grains of transgenic plants
(11.62 μg g-1) was significantly higher than that of the
non-transgenic milled seeds (7.027 μg g-1). The observa-
tions showed an increase of 1.3, 1.6 and 1.27 fold in the
concentration of calcium, iron and magnesium respect-
ively, due to the reduction of phytic acid in transgenic
rice seeds (Table 1).
Increased sensitivity to ABA during germination
To verify the effect of reduced phytate levels on seed
germination, which could have led to deleterious effects
on plants, germination tests were conducted. No signifi-
cant differences were observed in the rate of seed ger-
mination between the transgenic and non-transgenic
control when grown in optimum conditions. Moreover,
the α-amylase activities of transgenic seeds were also
very similar to the non-transgenic ones (Figure 7a). As
stated earlier, transgenic seeds exhibiting lower levels of
myo-inositol might be correlated to their increased sen-
sitivity to ABA during germination (Torabinejad et al.
2009; Donahue et al. 2010). Therefore, the transgenic as
well as the non-transgenic seeds were germinated in
presence of ABA. It was observed that in presence of
ABA (3 μM), only 31.66% germination was recorded in
transgenic seeds as compared to 63.34% of germination
in non-transgenic control (Figure 7b and c). From the
results it is clearly evident that though transgenic seeds
display a normal germination pattern in favorable condi-
tions, it is somewhat altered in response to ABA, which
may correlate with the fact that decrease in myo-inositol
content further reduces the ability of low phytate seeds
to cope up with the reactive oxygen species (ROS) gen-
erated. The decrease in myo-inositol content also af-
fected the ascorbate level in transgenic rice which was



Figure 6 Chromatogram showing peaks of myo-inositol (RT- 16.56) and respective mass fragments as observed by GC/MS analysis.
(a) Non-transgenic and (b) T3 transgenic seeds of 196-11-6. The peak corresponding to myo-inositol has been marked by an arrow. Myo-inositol
was quantified as a hexa-trimethylsilyl ether derivative and was identified by comparing the mass fragmentation pattern with the database
library NIST07.
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Table 1 Metal content as analyzed by Atomic Absorption
Spectroscopy from T3 milled seeds

Metals Non-transgenic Transgenic

Calcium (μg g-1) 5.321 ± 0.067 7.196 ± 0.083

Iron (μg g-1) 7.027 ± 0.077 11.62 ± 0.064

Zinc (μg g-1) 22.30 ± 0.374 24.13 ± 0.135

Magnesium (mg g-1) 0.574 ± 0.010 0.732 ± 0.002

Values are mean ± SE, n = 3.
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reduced by approximately 17% as compared to the non-
transgenic control (Figure 7d).

Discussion
In this study we demonstrated successful disruption of
the first step of phytic acid biosynthetic pathway in
transgenic rice plants, by silencing the gene expression
of the enzyme myo-inositol-3-phosphate synthase. Earl-
ier report suggests, higher suppression of MIPS gene ex-
pression could be achieved by using Ole18 promoter,
which directs expression specifically in the aleurone
layer and embryo of rice seeds (Qu and Takaiwa 2004,
Kuwano et al. 2009). Hence, we generated transgenic
rice plants, where MIPS gene expression was manipu-
lated tissue specifically through the use of rice Ole18
promoter, by an RNAi mediated approach. The trans-
genic plants produced, showed stable integration of the
transgene cassette and displayed normal phenotype. In
transgenic seeds the normalized fold expression of MIPS,
at the transcriptional level suggests that silencing has been
Figure 7 Analysis during seed germination and estimation of ascorba
intervals after germination, (b) altered response of transgenic seeds during
showing increased sensitivity of transgenic seeds in presence of ABA (3 μM
non-transgenic (NT) and T3 transgenic rice seeds. The symbols * indicates s
effective resulting in about 4.59 fold suppression of MIPS
with respect to control. In view of previous studies, an ob-
vious implication of silencing MIPS is the decrease in
phytate levels (Raboy 2009), which was confirmed when
the T3 generation seeds of line MO6-196-11-6 showed a
58% decline in the amount of phytic acid as compared to
the non-transgenic control. In contrast to phytate, the Pi
levels of transgenic seeds were enhanced by 44.37%, with-
out disturbing the balance of total phosphorus in rice
grains.
Myo-inositol-3-phosphate is an immediate precursor

of myo-inositol, which is an essential metabolite known
to play significant roles in signaling pathways, growth
and plant development (Keller et al. 1998; Hegeman
et al. 2001; Abid et al. 2009). Therefore, manipulating
the gene expression of MIPS may result in subsidence in
the level of myo-inositols. This was further confirmed by
our results, which suggests a 28% decrease in myo-inosi-
tol of transgenic plants seeds. Recent reports revealed
that myo-inositol biosynthesis is a highly regulated
process which is involved in different biochemical path-
ways that are further associated with important metabo-
lisms in plants (Seelan et al. 2009; Torabinejad et al.
2009). Myo-inositol has also been suggested to be the
first metabolite of the alternative pathway synthesizing
ascorbic acid, which is a powerful antioxidant and plays
major role during rice seeds germination (Alimohammadi
et al. 2012; Ye et al. 2012). Therefore, we analyzed the
levels of ascorbate in transgenic plants which might
have been affected due to lower levels of myo-inositol.
te content. (a) Alpha amylase activity analyzed at different time
germination in presence of different concentrations of ABA, (c) picture
) at 7th day of germination and (d) Ascorbic acid content in
ignificant differences at P = 0.05.
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It was observed that in transgenic plants, the ascorbic
acid was decreased by 17% as compared to the non-
transgenic control.
Low phytic acid phenotypes are often associated with

downstream impacts on seed morphology and germin-
ation. From previous studies it is evident that reduction
of phytate mediated by down regulation of MIPS might
result in abortion of seeds (Nunes et al. 2006) or aber-
rant embryo structure (Kuwano et al. 2009) which may
lead to impaired germination of the transgenic seeds.
However, no such aberrations were observed in the
transgenic seeds of subline MO6-196-11-6, inspite of
having higher Pi levels. Earlier reports suggested that
critical interference in the phytic acid biosynthesis might
be lethal to seed germination due to reduction in phytate
levels and simultaneous increase in the amount of Pi
(Liu et al. 2007). But, the seed germination assay evi-
dently suggests normal physiology of the transgenic
seeds (MO6-196-11-6), which germinated in a similar
pattern as that of non-transgenic control seeds, inspite
of having elevated levels of available phosphorus. To fur-
ther verify that the germination process was not im-
paired, we measured the activity of α-amylase (Bernfeld
1955), which is an important hydrolytic enzyme that cat-
alyzes the breakdown of starch during germination and
is also an indicator for assessing germination potential
in cereals (Galani et al. 2011). The germination analysis
of transgenic seeds displayed normal behavior of α-
amylase suggesting that the seeds were viable, with nor-
mal phenotype. As revealed by prior reports, levels of
myo-inositol in seeds due to its involvement in signal
transduction correlates with their response to ABA dur-
ing germination (Torabinejad et al. 2009; Donahue et al.
2010). Therefore, we observed the response of transgenic
rice seeds to different concentrations of ABA during ger-
mination. The observations clearly indicates that reduced
levels of myo-inositol, increases the sensitivity of trans-
genic seeds to ABA, as inhibition of germination was
higher in low phytate seeds as compared to respective
non-transgenic control seeds in presence of ABA. This in-
creased sensitivity of transgenic seeds to ABA, might be
attributed to decrease in the levels of ascorbate which is
correlated to the probable decline of myo-inositol due to
silencing of MIPS gene expression. Therefore, targeting
other enzymes (IPKs) involved in phytic acid biosynthesis
(Suzuki et al. 2007) may prove to be a promising alterna-
tive for producing lpa phenotype in rice seeds.
In rice plants, the metals such as iron, zinc, magne-

sium etc. are translocated to the reproductive organs via
xylem and phloem through different types of trans-
porters viz. ZIP, IRT, YSL etc. During seed development
and maturation an elevated amount of Fe, Zn etc. are
transported in the form of Nicotianamine acid or
Mugineic Acid chelated complex (Paul et al. 2013; Lee
et al. 2009). However, the accumulation of calcium in the
developing seeds is nearly constant, as it is considered to
move preferentially in xylem and is generally immobile in
phloem which may be related to its symplastic nature
(Iwai et al. 2012). Although sufficient amount of metals
(Fe, Zn, Ca, Mg etc.) are translocated into the rice seeds,
still in its milled form (that is consumed) rice contain very
low amount of iron (Lucca et al. 2001). This is attributed
to the fact that most of these divalent cations are chelated
by phytic acid and accumulates in the aleurone layer and
embryo (which is removed during commercial milling) as
inclusions in protein storage vacuoles (globoids), which
cannot move into the inner endosperm (Brinch-Pedersen
et al. 2007; Raboy 2009; Iwai et al. 2012; Paul et al. 2013).
Moreover, the iron molecules chelated by phytic acid is
not bioavailable (Jin et al. 2009), probably due to lack of
phytase enzyme in the non-ruminants (Hegeman et al.
2001). Therefore, it is assumed that lower level of phytic
acid in the aleurone layer will allow more iron to be
present in the endosperm which will thereby supply more
available iron for absorption by humans.
In view of these assumptions we analyzed the amount

of iron present in milled grains of low phytate T3 trans-
genic seeds, which showed a 1.6 fold increase in iron
levels as compared to the non-transgenic rice. Apart from
iron other divalent cations (viz. Ca, Mg) also showed
higher accumulation in transgenic milled seeds, due to re-
duction of phytate. Although, the increase in levels of iron
does not directly correspond to higher bioavailability of
iron in humans, but in accordance with earlier studies
(Lucca et al. 2001), it is assumed that elevated levels of
iron in milled rice grains might translate itself to higher
iron bioavailability. It is thus suggested that the reduction
of phytic acid levels in transgenic rice grains may facilitate
higher mobilization of iron towards inner endosperm in
a chelated form with different types of Mugineic acid
family derivatives such as NA (Nicotianaminic acid),
DMA (Deoxy mugineic acid), etc. (Paul et al. 2013).

Conclusion
Phytic acid constitutes 75-80% of the total phosphorus
in cereal seeds but most of it is not accessible because
the monogastric animals lack phytase, which is import-
ant for degradation of phytate molecule. This eventually
leads to accelerate eutrophication due to the influx of
phosphorus from animal waste which is the major
source of agricultural phosphorus runoff (Reynolds and
Davies 2001). Moreover, phytic acid readily binds to
mineral cations and renders them unavailable for absorp-
tion by animals. Therefore, generation of low phytate rice
is desirable for improving human nutrition and to reduce
the load of phosphorus on environmental pollution. From
the present investigation, it is evident that silencing of
MIPS can yield major perturbation in the phytic acid
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biosynthetic pathway leading to substantial decrease in
levels of phytate along with an increase in the amount of
Pi content. However, the study also revealed that low
phytate seeds had an unintended change in the levels of
myo-inositol and ascorbate synthesis which is not desir-
able in view of its role in plants growth and development.
Hence, it is clear that though MIPS presents itself as a
candidate gene for manipulating phytate biosynthesis effi-
ciently, silencing myo-inositol-3-phosphate synthase can
yield major alterations in important metabolic pathways
utilizing myo-inositol, which play key roles in different
plant metabolisms. Therefore, a much detailed study of al-
terations caused in myo-inositol metabolism in view of
disrupting MIPS expression, is required.

Methods
Plant materials and growth conditions
Oryza sativa L. subspecies indica cv. Swarna/IR-36 pro-
cured from Chinsurah Rice Research Station, Hooghly,
West-Bengal, were used for cloning purposes. Rice seeds
were surface sterilized and then washed 2–3 times with
distilled water. The seeds were germinated on distilled
water soaked filter paper within the plant growth cham-
ber (FLI-2000, Eyela, Japan) maintained at 30°C and 75%
relative humidity. For genetic transformation purpose
Oryza sativa L. subspecies indica cv. Pusa Sugandhi II
was available from IARI, ICAR, India.

Cloning of rice MIPS gene and RNAi vector construction
Total RNA was extracted from indica rice cultivar using
RNeasy Plant mini kit following manufacturer’s protocol
(Qiagen). cDNA was synthesized from purified RNA
using the Superscript III reverse transcriptase, two step
RT-PCR kit (Invitrogen, USA) and gene specific primer
pairs [see Additional file 1]. The RT-PCR product of MIPS
gene [GenBank: AB012107] was purified and cloned into
pENTR-D TOPO entry vector (Invitrogen) and se-
quenced. The 1.5 Kb fragment (111…1633 nt.) of MIPS
gene from the entry clone (pENTR-MIPS) was then intro-
duced into the binary destination vector, pIPKb006
(Himmelbach et al. 2007) using LR clonase (Invitrogen,
USA) based recombination reaction. Finally, Ole18 pro-
moter [GenBank: AF019212] cloned from indica rice cul-
tivar was subcloned into SpeI/HindIII site of pIPKb006 to
generate the plasmid pOle18-MIPS-006. The complete
RNAi vector containingMIPS (in both sense and antisense
orientation, separated by wheat RGA2 intron) under the
control of Ole18 promoter (pOle18-MIPS-006) was used
for rice transformation experiments.

Transformation and selection of transgenic plants
Biolistic transformation was carried out following the
protocol described earlier by Datta et al. (1998). Imma-
ture embryos of indica rice cultivar Pusa Sugandhi II
were bombarded with plant transformation vector con-
structs using Particle Delivery System (PDS-1000/He
system, BIORAD, Hercules, CA, USA) following manu-
facturer’s instruction. Following bombardment, the im-
mature embryos were transferred to the callus induction
medium, supplemented with 50 mg l-1 hygromycin B
(Sigma) and maintained in the dark at 27°C for 45 days.
It was passed through three successive selection cycles
of two weeks each. Transformed embryogenic calli resist-
ant to hygromycin were selected and transferred to regen-
eration medium and maintained in 16/8 hour photoperiod
at 28°C for 20 days. After development of proper root sys-
tem, individual plants were transferred to the green house
and grown to maturity.

Southern hybridization analysis
Genomic DNA was isolated from positive T3 transgenic
plants and non-transgenic control using DNeasy Plant
mini kit following manufacturer’s protocol (Qiagen).
Southern hybridization was performed, following the proto-
col as described by Sambrook and Russell (2001). Genomic
DNA (10 μg) was digested with EcoRI (Fermentas), sep-
arated on a 1% agarose gel and transferred to a nylon
membrane (Hybond N+, Amersham, GE Healthcare). Hy-
bridization was carried out using the RGA2 intron present
in the vector pOle18-MIPS-006, which was labeled with
α-32P dCTP radioisotope (BARC, India), using Decalabel
DNA labeling kit (Fermentas) according to the manufac-
turer’s instructions.

Quantitative RT-PCR expression analysis
The qRT-PCR reaction was performed with gene specific
primers (InMIPSF: 5′-CTTTCCGCACCTCAAACATT-
3′; InMIPSR: 5′-TGCTGTCTCCAACATACGG-3′) using
SYBR Green (Fermentas) and the cycle was as follows:
95°C for 30s, 59.6°C for 30s and 72°C for 30s. The proced-
ure was according to the manufacturer’s instructions (CFX
96 Real time system, Bio Rad). The quantitative variation
between different samples was evaluated by the ΔΔCt
method, and the amplification of β tubulin gene was used
as internal control to normalize all data. To validate the
results, each experiment was performed in replicates on
three separate RNA from independent tissue samples.

Analysis of seed phosphorus levels
Total phosphorus in seeds was extracted by the alkaline
peroxodisulphate digestion method (Woo and Maher
1995). The seed samples were crushed and to it 2 mL of
digestion reagent (0.27 M potassium peroxodisulphate/
0.24 M sodium hydroxide) and ten millilitres of deionized
water were added. The sample mixture was autoclaved at
120°C for 60 min. One millilitre of the extract was then
centrifuged at 20,000 g for 10 min, followed by spectro-
photometric assay (Chen et al. 1956).
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To analyze inorganic phosphate (Pi) levels, T3 trans-
genic seeds were ground to powder. The crushed pow-
der was extracted in 12.5% (w/v) trichloroacetic acid
containing 25 mM MgCl2, and centrifuged at 20,000 g
for 10 min. Inorganic phosphate (Pi) in the supernatant
was determined using 4 ml of freshly prepared Chen’s
reagent (6 N H2SO4, 2.5% ammonium molybdate, 10%
ascorbic acid). The resulting colored phosphomolybdate
complex was read at 800 nm (Chen et al. 1956).

Determination of phytic acid by HPLC
Chromatographic determination of phytic acid was based
on metal replacement reaction of phytic acid from colored
complex of iron (III)–thiocyanate and monitoring de-
crease in concentration of colored complex, if any (Dost
and Tokul 2006). In a 3 ml glass tube, 0.1 ml of sample ex-
tract was mixed with 0.9 ml ultra-pure water and 2 ml of
iron (III)–thiocyanate complex solution (100 ml iron(III)–
thiocyanate solution was prepared by mixing 2.5 mg iron
(III), 12.5 mg ammonium thiocyanate and 0.2 ml HNO3).
The mixture was stirred in 40°C water bath for 2.5 h then
cooled at room temperature. After centrifuging the mix-
ture for 5 min, 20 μl of the supernatant was injected onto
the column of the reverse phase HPLC system (Waters,
USA). The mobile phase was a mixture of 30% acetonitrile
in water including 0.1 M HNO3 and flow was adjusted to
1 ml min−1. The peak of the iron (III)–thiocyanate was
detected at wavelength of 460 nm. Phytic acid concentra-
tion of the seed sample was calculated by using a linear
calibration curve of y = −7.9667× + 1826.9 with correlation
coefficient of 0.998 obtained against the concentration
range of 10 μg ml-1 to 125 μg ml-1 of phytic acid standard
(Sigma Aldrich; P0109) [see Additional file 2].

Analysis of seed myo-inositol
T3 transgenic seeds were ground to powder, and extracted
with 10 vol of 50% aqueous ethanol. The myo-inositol de-
rivative was produced by dissolving the residues in 50 μl
of pyridine and 50 μl of trimethylsilylimidazole: tri-
methylchlorosilane (100: 1). After 15 min at 60°C, 1 ml of
2,2,4-trimethylpentane and 0.5 ml of distilled water were
added, the sample was vortexed and centrifuged for
5 min, and the upper organic layer was transferred into
2 ml glass vial (Panzeri et al. 2011). Myo-inositol [see
Additional file 3] was quantified as a hexa-trimethylsilyl
ether derivative by GC-MS (Trace GC Ultra, Thermo
Scientific). Samples were injected in split mode (split ratio
10) with the injector temperature at 250°C and the oven at
70°C. After 2 min, the oven temperature was ramped at
25°C min-1 to 170°C, then continued to 215°C at 5°C min-1

and finally increased to 250°C at 25°C min-1 and returned
to the initial temperature. Electron impact mass spectra
from m⁄ z 50–500 were acquired at −70 eV after a 5 min
solvent delay. Myo-inositol hexa-trimethylsilyl ether was
identified by comparing the mass fragmentation pattern
with the database library NIST07 (MS Library Software,
Thermo Scientific). Authentic myo-inositol standards in
aqueous solutions were dried, derivatized and analyzed at
the same time. All analyses were performed in replicates.

Metal concentration analysis
Mature T3 transgenic and non-transgenic seeds (grown
in similar greenhouse conditions) were milled in rice
miller (Satake, Japan) for 30 seconds. In this milling pro-
cedure, the outer portions of the rice grain including
both germ and aleurone tissues were removed (degree of
milling; DOM was 6%). 300 mg of milled seeds were then
digested using a modified protocol of dry ashing diges-
tion (Jiang et al. 2007). The metal content (viz. Ca, Fe,
Zn, Mg) of the sample extract was analyzed through
Atomic Absorption Spectrometer (AAS, Aanalyst 200,
Perkin Elmer, USA) using respective hollow cathode
lamps (HCL, Perkin Elmer).

Quantification of ascorbic acid
Ascorbic acid contents were measured in fresh imbibed
rice seeds of both transgenic and non-transgenic lines, fol-
lowing the method described by Kampfenkel et al. (1995).
The assay is based on the reduction of Fe3+ to Fe2+ with
ascorbic acid in phosphoric acid solution followed by for-
mation of red chelate between Fe2+ and 2, 2′-dipyridyl.

Alpha amylase assay
Germinating seeds were collected at 0, 12, 24, 36, 48, 60,
72, 84 and 96 hours intervals and stored frozen at −80°C.
In a pre-chilled mortar and pestle, the seed samples of
both transgenic plants and non-transgenic control were
crushed in 50 mM phosphate buffer (pH 7.0) and
centrifuged at 4°C for 15 min. The enzyme assay was
carried out with the supernatant, by incubating 100 μl of
the enzyme extract with 1 ml of soluble starch (1%) at
50°C for 15 min. The reducing sugar released was esti-
mated by addition of dinitrosalicylic acid (DNS) reagent
(Miller 1959).

Seed germination assay
The germination capability of T3 transgenic seeds as com-
pared to non-transgenic control was assessed by con-
trolled germination test (CGT) (Campion et al. 2009). In
the CGT, seeds were soaked in water for 8 h at 30°C and
then transferred to fresh water (CGT) at 30°C for
additional 12 h. At the end of the treatment, seeds were
rinsed two to three times in distilled water, and germi-
nated on filter papers soaked with distilled water at 30°C
in the dark. In addition to this, seed germination analysis
was also performed in presence of different concentrations
(0 - 5 μM) of ABA. The experiment was repeated thrice to
confirm observations.
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Agronomic performance of transgenic plants
The different agronomic parameters like plant height
(cm), panicle length (cm), number of effective tillers,
number of panicles per plant and dry weight of 1000
grains were evaluated with both non-transgenic and
transgenic plants. Five randomly chosen plants from
each transgenic line growing under greenhouse condi-
tions were evaluated for each parameter studied.

Statistical analysis
All statistical analysis was performed using the Graph
Pad Prism 5 software. The experimental data values were
mean value from three independent series, each done
with three replicates, and the results presented as means ±
standard error (SE), based on three replications. Further-
more, the differences among means have been analyzed by
Bonferroni Post-tests.

Additional files

Additional file 1: List of primers used for cloning of promoters and
gene.

Additional file 2: Standard curve obtained from reference material
(Phytic acid standard) for calculation of phytic acid concentration of
seeds.

Additional file 3: Myo-inositol standard analysis by GC/MS for
standardizing retention time.
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