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1 Introduction and review

An outstanding problem in theoretical physics is to solve strongly coupled Quantum Field

Theories (QFT). When they are not amenable to analytic calculations one can resort to

numerical approaches. The two most used numerical approaches are lattice simulations

and direct diagonalization of truncated Hamiltonians. In this paper we further develop

the Hamiltonian truncation method recently presented in ref. [1–3], that renormalizes the

truncated Hamiltonian HT to improve the numerical accuracy.
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The Hamiltonian truncation method consists in truncating the Hamiltonian H into a

large finite matrix (HT )ij and then diagonalizing it numerically. There is a systematic error

with this approach that vanishes as the size of the truncated Hamiltonian HT is increased.

There are different versions of the Hamiltonian truncation method that mainly differ on

the frame of quantization and the choice of basis in which H is truncated. Two broad

categories within the Hamiltonian truncation methods are the Truncated Conformal Space

Approach [4] and Discrete Light Cone Quantization [5]. A less traveled route consists in

using the Fock-Space basis to truncate the Hamiltonian [1, 2, 6–10]. Lately there have

been many advances in the Hamiltonian Truncation methods, see for instance [3, 11–17].

We review the truncated Hamiltonian approach following the discussion of ref. [1, 3].

The problem we are interested in is finding the spectrum of a strongly coupled QFT.

Therefore we want to solve the eigenvalue equation

H| E 〉 = E| E 〉 , (1.1)

where H = H0 + V , H0 is a solvable Hamiltonian or the free Hamiltonian and V is the

potential. H0 is diagonalized by the states H0|En 〉 = En|En 〉. Suppose we are interested

in studying the lowest energy states of the theory. One way to do it is separating the Hilbert

space H into H = Hl ⊕Hh, where Hl is of finite dimension and it is spanned by the states

|En 〉 with En ≤ ET . Then, the Hilbert space Hh is an infinite-dimensional Hilbert space

containing the rest of the states En > ET . The states are projected as Pl|x 〉 ≡ |xl 〉 ∈ Hl
and (I− Pl)|x 〉 = Ph|x 〉 ≡ |xh 〉 ∈ Hh. Then, the eigenvalue problem can be replaced by

Heff(E)| El 〉 = E| El 〉 , (1.2)

where Heff ≡ HT + ∆H(E), the truncated Hamiltonian is HT = PlHPl and

∆H(E) = Vlh
1

E −H0hh − Vhh
Vhl , (1.3)

with Oij ≡ PiOPj for i, j ∈ {h, l}. To derive eq. (1.2), project eq. (1.1) into the two

equations

Hll| El 〉+Hlh| Eh 〉 = E| El 〉 , Hhl| El 〉+Hhh| Eh 〉 = E| Eh 〉 , (1.4)

and then substitute | Eh 〉 = (E −Hhh)−1Hhl| El 〉 from the second equation in (1.4) into the

first.

Notice that eq. (1.2) is an exact equation and that a complete knowledge of ∆H(E)

would render the original eigenvalue problem of eq. (1.1) solvable by an easy numerical

diagonalization. In the limit where ET →∞ the corrections ∆H to HT can be neglected,

but it is computationally very costly to increase the size of HT and then diagonalize it.

Therefore it is interesting to calculate ∆H to improve the numerical accuracy for a given

ET . A first step to compute ∆H is to perform an expansion of eq. (1.2) in powers of

Vhh(E −H0)−1,

∆H(E , ET ) =
∞∑
n=0

∆Hn(E , ET ) , where ∆Hn(E , ET ) = Vlh
1

E−Ehh

(
Vhh

1

E−Ehh

)n
Vhl ,
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where the matrix elements of ∆Hn are given by

∆Hn(E)rs =
∑

j1,··· ,jn−1:Eji>ET

Vrj1
1

E − Ej1
Vj1j2

1

E − Ej2
Vj2j3 · · ·Vjn−2jn−1

1

E − Ejn−1

Vjn−1s ,

(1.5)

in the H0 eigenbasis and the sums run over all labels j1, . . . , jn−1 of states belonging

to Hh with r, s denoting the matrix elements (corresponding to eigenstates of H0 with

Es, Er ≤ ET eigenvalues). Naively the truncation of the series in eq. (1.5) is justified for

Vhh/H0hh < 1 which for large enough ET and E � ET is fulfilled, and allows to go to strong

coupling. This is discussed in detail in section 5.3. The operator ∆H depends on the exact

eigenvalue and in practice the way eq. (1.2) is solved is by diagonalizing iteratively Heff(E∗)
starting with an initial seed E∗. It is convenient to take E∗ close to the exact eigenvalue E ,

a simple and effective choice is to take the eigenvalue obtained from diagonalizing HT .

In ref. [1] the φ4 theory in two dimensions was studied at strong coupling using the

Hamiltonian truncation method just presented in the Fock basis. There, the leading terms

of ∆H2 doing a local expansion were computed and shown to improve the results with

respect to the ones found by only diagonalizing HT . The main result of our work is to

explain a way to calculate the exact corrections to ∆H at any order ∆Hn. As an example

we calculate the ∆H2 correction and some of the ∆H3 terms for the φ4 theory in two

dimensions and present various approximation schemes for a faster numerical implementa-

tion. This can be seen as an extension of the method presented in ref. [1] which we believe

to be very promising.

The paper is organized as follows. In section 2 we introduce a general formula to com-

pute ∆Hn(E , ET ) at any order n. Then we apply the method to the φ2 and φ4 scalar field

theories in d = 2 space-time dimensions which we first define in section 3. The method

is tested in section 4 by studying the spectrum of the solvable φ2 perturbation with the

calculation of ∆H2 and ∆H3. Other numerical tests are also performed in this section.

Next, in section 5 we give the ∆H2 correction for the φ4 theory, and discuss the ∆H3 cal-

culation with some examples. There we also discuss the convergence of the ∆Hn expansion

and compute the lowest energy levels of the theory at strong coupling. In section 6, we

conclude and outline future directions of the method that are left open. In appendix A

we introduce a simple diagrammatic representation to compute ∆Hn. Lengthy derivations

and results are relegated to the appendices B and C. All the numerical calculations for this

work have been done with Mathematica.

2 Calculation of ∆H at any order

In this section we present one of the main results of this paper which is the derivation

of the nth-order correction ∆Hn of eq. (1.5) to the Truncated Hamiltonian. We start by

defining the operator

∆Ĥ(E) =
∞∑
n=2

∆Ĥn(E) , where ∆Ĥn(E) =

(
V

1

E −H0

)n−1

V (2.1)

– 3 –
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which in the H0 eigenbasis is given by

∆Ĥn(E)rs =
∞∑

j1, ..., jn−1=1

Vrj1
1

E − Ej1
Vj1j2

1

E − Ej2
Vj2j3 · · ·Vjn−2jn−1

1

E − Ejn−1

Vjn−1s ,

(2.2)

where the indices j1, j2, . . . , jn−1 run over the states of the full Hilbert space H. Notice

that the only difference between ∆Hn and ∆Ĥn is that the later receives contributions

from all the eigenstates of H0 while ∆Hn only from those with Ej energies Ej > ET . This

translates into the fact that each term in ∆Hn(E) has all the poles located at E > ET as

seen in eq. (1.5).

From here the derivation of ∆Hn follows from the observation that eq. (2.2) can be

rewritten as the improper Fourier transform of the product of potentials restricted to

positive times

∆Ĥn(E)rs = lim
ε→0

(−i)n−1

∫ ∞
0

dt1 · · · dtn−1 e
i(E−Er+iε)(t1+···tn−1) T {V (T1) · · ·V (Tn)}rs ,

(2.3)

where Tk =
∑i=n−k

i=1 ti, V (t) = eiH0tV e−iH0t and T denotes the time ordering operation.1

Then, our method consists in applying the Wick theorem to eq. (2.3) to calculate ∆Ĥn and

obtaining ∆Hn by keeping only the terms of ∆Ĥn corresponding to states with Ej > ET ,

i.e. by keeping only the terms of ∆Ĥn which have all poles above ET .2 In the following

sections we show how to carry this procedure for the cases of the φ2 perturbation and φ4

theory.

3 Scalar theories

We study scalar theories in two space-time dimensions defined by the Minkowskian action

S = S0 + SI where

S0 =
1

2

∫ ∞
−∞

dt

∫ L

0
dx : (∂φ)2 −m2φ2 : , (3.1)

SI = −
∫ ∞
−∞

dt V (φ) = −gα
∫ ∞
−∞

dt

∫ L

0
dx :φα : . (3.2)

For simplicity we consider the cases where α = 2, 4 and m2 > 0. The symbol : : stands

for normal ordering which for S0 means that we set the vacuum energy to zero; while the

interaction term is normal ordered with respect to S0, which in perturbation theory is

1This can be seen by introducing the indentity I =
∑
n |En 〉 〈En | between each pair of V ’s in eq. (2.3)

and integrating over all times t1, . . . tn. Also notice that the time ordering operation is trivial because the V

operators are time ordered in all the integration domain. The limε→0 is taken at the end of the calculation.
2This procedure can be formalized as follows. The first correction can be written as

∆H2(E) =
∫
C
dz
2πi

∆Ĥ2(z)
E−z , where C is any path than encircles only all the poles above ET . For

∆H3(E) =
∫
C
dz
2πi

1
E−z

∫
C
dz′

2πi
1
E−z′ ∆Ĥ3(z′, z) where we have generalized the operator ∆Ĥ3(z, z′)rs =

− limε→0

∫∞
0
dt1dt2 e

i(z−Er+iε)t1ei(z
′−Er+iε)t2 T {V (T1)V (T2)V (T3)}rs. The generalization to the nth cor-

rection is straightforward.
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equivalent to renormalize to zero the UV divergences from closed loops with propagators

starting and ending on the same vertex.

To study these theories using the Hamiltonian truncation method we begin by defining

them on the cylinder R× S1 where the circle corresponds to the space direction which we

take to have a length Lm� 1, and R is the time. We impose periodic boundary conditions

φ(t, x) = φ(t, x + nL) for n ∈ Z on S1. The compact space direction makes the spectrum

of the free theory discrete and regularizes the infra-red (IR) divergences.

In canonical quantization the scalar operators can be expanded in terms of creation

and annihilation operators as

φ(x) =
∑
k

1√
2Lωk

(
ake

ikx + a†ke
−ikx) , (3.3)

where ωk =
√
m2 + k2, k = 2πn

L with n ∈ Z and the creation and anihilation operators

satisfy the commutation relations[
ak, a

†
k′
]

= δkk′ , [ak, ak′ ] = 0 . (3.4)

The Hamiltonian then reads H = H0 + V , where

H0 =
∑
k

ωk a
†
kak (3.5)

and the potentials for a φ2 and a φ4 interaction are given by

V = g2

∑
k1k2

Lδk1+k2,0√
2Lωk1

√
2Lωk2

(
ak1ak2 + a†−k1

ak2

)
+ h.c. , (3.6)

and

V = g
∑

k1,k2,k3,k4

Lδ∑4
i=1 ki,0∏4

i=1

√
2Lωki

(
ak1ak2ak3ak4 + 4a†−k1

ak2ak3ak4 + 3a†−k1
a†−k2

ak3ak4

)
+ h.c. ,

(3.7)

respectivley, where g ≡ g4 and δk1+k2,0, δ∑4
i=1 ki,0

stand for Kronecker deltas.

We implement the Hamiltonian truncation using the basis of H0 eigenstates

|Ei 〉 =
a†nNkN√
nN !
· · ·

a†n2

k2√
n2!

a†n1

k1√
n1!
| 0 〉 . (3.8)

which satisfy I =
∑

i |Ei 〉 〈Ei |, where Ei =
∑N

s=1 ns
√
k2
s +m2 and H0| 0 〉 = 0. The

Hilbert space is divided into H = Hl ⊕Hh with Hl spanned by the states |Er 〉 such that

Ei ≤ ET while Hh is spanned by the rest of the basis. Then, the truncated Hamiltonian is

(HT )rs = 〈Er |H|Es 〉 , for Ei ≤ ET . (3.9)

In this basis, the operator ∆H is given by

∆H(E)rs =
∑
j, j′

Vrj

(
1

E −H0 − V

)
jj′
Vj′s (3.10)
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where the labels r, s denote entries with Er, Es ≤ ET and the sum over j, j′ runs over all

states with Ej , Ej′ > ET .

The Hamiltonian H can be diagonalized by sectors with given quantum numbers asso-

ciated with operators that commute with H. These are the total momentum P , the spatial

parity P : x→ −x and the field parity Z2 : φ(x)→ −φ(x), which act on the H0-eigenstates

as P |Ei 〉 =
∑

s nsks|Ei 〉, P
∏N
i=1

a
†ni
ki√
ni!
| 0 〉 =

∏N
i=1

a
†ni
−ki√
ni!
| 0 〉 and Z2|Ei 〉 = (−1)

∑
s ns |Ei 〉.

We work in the orthonormal basis of eigenstates of H0, P , P and Z2 given by

| Ẽi 〉 = β ·
(
|Ei 〉+ P |Ei 〉

)
, (3.11)

where β = 1/2, 1/
√

2 for P |Ei 〉 = |Ei 〉 and P |Ej 〉 6= |Ej 〉, respectively. As done in

ref. [1], in the whole paper we focus on the sub-sector with total momentum P | Ẽi 〉 = 0,

spatial parity P| Ẽi 〉 = +| Ẽi 〉 and diagonalize separately the Z2 = ± sectors.3 In this

paper we do not investigate the dependence of the spectrum as a function of the length

L of the compact dimension which we leave for future work, and always consider it to be

finite.4 All the numerical calculations are done for m = 1 and L = 10.

4 Case study φ2 perturbation

In this section we apply the method introduced in section 2 to the scalar theory H = H0+V

with a potential

V = g2

∫ L

0
dt :φ2 : (4.1)

This is a simple theory that allows to illustrate various aspects of the calculation of ∆Ĥ

in eq. (2.3) and its relation to ∆H. Also since the theory is solvable we can compare

our procedure with the exact results. The theory is solved by using the eigenstates of H,

given by

| Ei 〉 =
b†nNkN√
nN !
· · ·

b†n2

k2√
n2!

b†n1

k1√
n1!
|Ω 〉 , (4.2)

where |Ω 〉 = | E0 〉 is the vacuum of the theory and b†/b are the creation/annihilation

operators so that

H =
∑
k

b†kbkΩk + E0 , (4.3)

with Ωk =
√
ω2
k + 2g2. Then, one can relate the operators b†/b to the a†/a in H0 (given

in eq. (3.5) and eq. (3.6)) by the Bogolyubov transformation bk = sinhαk a
†
−k + coshαk ak

provided that Ωk sinh 2αk = ω−1
k g2, Ωk cosh 2αk = ωk + g2/ωk. Then, since 〈0 |H| 0 〉 = 0

3For the V =
∫
dt :φ2 : theory, the matrix element 〈Ei |V |Ej 〉 = 0 with P|Ei 〉 = |Ei 〉 and P|Ej 〉 6=

|Ej 〉. Therefore, one can diagonalize the P|Ei 〉 = |Ei 〉 and P|Ei 〉 6= |Ei 〉 sectors separately.
4To match the L→∞ spectrum one has to take into account the Casimir energy difference between the

L→∞ and the finite L theory and inspect how various states converge as L is increased. See refs. [18, 19]

and ref. [1] for a thorough study of the L dependence.

– 6 –



J
H
E
P
0
4
(
2
0
1
6
)
1
4
4

we have that [1]:

E0(g2) =
1

2

∑
k

(√
ω2
k + 2g2 − ωk −

g2

ωk

)
=
L(m2 + 2g2)

8π

[
log

(
m2

m2 + 2g2

)
+

2g2

m2 + 2g2

]
,

(4.4)

where the sum can be done by means of the Abel-Plana formula, which is the exact vacuum

energy of the theory.

A brief summary of the rest of this section is the following. In section 4.1 and section 4.2

we calculate the 2 and 3-point corrections to the operator ∆H. In section 4.3 we perform

a numerical test to check that our expressions for ∆H are correct. Then, in section 4.4 we

discuss the numerical results and the convergence of the expansion ∆H(Ei) =
∑

n ∆Hn(Ei)
by comparing with the exact spectrum Ei.

4.1 Two-point correction

Following the steps explained in section 2 we begin the calculation of the two-point correc-

tion by first computing ∆Ĥ2. From eq. (2.3) we have that

∆Ĥ2(E)rs =
∑
j

Vrj
1

E − Ej
Vjs = lim

ε→0
−i
∫ ∞

0
dt ei(E−Er+iε)tT {V (t)V (0)}rs . (4.5)

Then, applying the Wick theorem to eq. (4.5) we find

lim
ε→0
−ig2

2

∫ ∞
0

dt ei(E−Er+iε)t
∫ L/2

−L/2
dxdz

2∑
m=0

s2−mD
2−m
F (z, t) :φm(x+ z, t)φm(x, 0) :rs ,

(4.6)

where sp =
(

2
p

)2
p! are the symmetry factors and DF (z, t) is the Feynman propagator

with discretized momenta. Henceforth we label the terms m = 0, 1, 2 by ∆Ĥφ2m

2 so that

∆Ĥ2 = ∆Ĥ1
2 +∆Ĥφ2

2 +∆Ĥφ4

2 and similarly for ∆H2; the labels only inform about the total

number of fields in each term which do not need to be local. Due to the time integration

domain, it is convenient to use half Feynman propagator

DL(z, t) ≡ DF (z, t)θ(t) =
1

2L

n=∞∑
n=−∞

1

ωk
e−iωktei

2πnz
L θ(t) , (4.7)

the momentum of the propagator is discretised due to the finite extent of the space. Next,

we proceed to calculate the operators in eq. (4.6), starting with the detailed calculation of

the coefficient of the identity operator ∆Ĥ1
2 :

∆Ĥ1
2 (E)rs = lim

ε→0
−is2g

2
2

∫ ∞
0

dt

∫ L/2

−L/2
dz ei(E−Er+iε)t1D2

L(t, z)1rs , (4.8)

where 1rs ≡ δrs
∫ L/2
−L/2 dz has dimensions of [E]−1. Then, upon inserting the propagator of

eq. (4.7) and performing the space-time integrals we find

∆Ĥ1
2 (E)rs =

s2g
2
2

4L

∑
k

1

ω2
k

1

E − Er − 2ωk
1rs . (4.9)

– 7 –
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The operator in eq. (4.9) has poles from all possible intermediate states and, as explained

in section 2, the operator ∆H1
2 (E) is found by keeping only those terms with poles located

at Er + 2ωk > ET , therefore

∆H1
2 (E)rs =

s2g
2
2

L

∑
k:Er+2ωk>ET

1

4ω2
k

1

E − Er − 2ωk
1rs . (4.10)

The calculations of ∆Hφ2

2 is similar to the one for eq. (4.10), we start by computing

∆Ĥφ2

2 (E)rs = lim
ε→0
−is1g

2
2

∫ ∞
0

dt

∫ L/2

−L/2
dxdz ei(E−Er+iε)t1DL(z, t) :φ(x+ z, t)φ(x, 0) :rs ,

(4.11)

where we expand :φ(x+z, t)φ(x, 0) : in modes, as in eq. (3.3), and do the simple space-time

integrals. For the full expressions of ∆Ĥφ2

2 see appendix B. Then, keeping only the terms

with poles at E > ET we get

∆Hφ2

2 (E)rs = s1g
2
2

∑
q: 2ωq+Er>ET

1

4ω2
q

1

E − Er − 2ωq

(
a†qaq

)
rs
. (4.12)

The operator ∆Hφ4

2 is obtained in a similar way,

∆Hφ4

2 (E)rs = s0g
2
2

∑
q1,q2: 2ωq2+Er>ET

1

4ωq2ωq1

1

E − Er − 2ωq2

(
a†q1a

†
−q1aq2a−q2

)
rs
. (4.13)

In appendix A we give a simple way to derive these expressions from diagrams, and for

the full expressions of ∆Ĥφ2

2 and ∆Ĥφ4

2 see appendix B. Notice that the values of q1, q2

and q appearing in the sums of eq. (4.12) and eq. (4.13) can take only the momenta of

the states |Es 〉 ∈ Hl on which a and a† act, and therefore are bounded. On the other

hand, the values of the k’s in eq. (4.10) go all the way to infinity. Also, even though the

operators in eq. (4.12) and eq. (4.13) may seem not hermitian due to the Er appearing in

the expressions, one can see that the operator (∆Hφ2

2 )rs is diagonal and therefore Er = Es,

while ∆Hφ4

2 is not diagonal, but one can check that Er + 2ωq2 = Es + 2ωq1 , making it

hermitian as well.

We end this section by noticing that the operator of eq. (4.10) can be rewritten as

(∆H1
2 )rs =

∫ ∞
ET

dE

E − E
s2g

2
2

L

∞∑
k=−∞

δ(E − Er − 2ωk)

(2ωk)2
1rs = s2g

2
2

∫ ∞
ET

dE

2π

Φ2(E − Er)
E − E

1rs ,

(4.14)

where Φ2 is the two-particle phase space with discretized momenta,

Φ2(E − Er) =
∑
k1,k2

Lδk1+k2, 0

(2Lωk1) (2Lωk2)
2π δ(E − Er − ωk1 − ωk2) , (4.15)

where from eq. (4.14) one has that E−Er > 2m.5 Eq. (4.14) can be evaluated by means of

the Abel-Plana formula, which for LET � 1 is well approximated by its continuum limit.6

5The lower limit in eq. (4.14) should be taken slightly above ET to reproduce the lower limit q: 2ωq+Er >

ET in the sum of eq. (4.9).
6The difference between the continuum limit and discrete result ranges from O(g2L−1E−3

T ) to

O(g2L−1E−1
T m−2) depending on the matrix entry.
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The continuum two-body phase space is given by

Φ2(E) =

∫ ∞
−∞

d2p1

(2π)2 2ωp1

d2p2

(2π)2 2ωp2

(2π)2 δ(2)(Pµ − p1 − p2) =
1

E
√
E2 − 4m2

, (4.16)

where Pµ = (E, 0) and E > 2m. Therefore (for LET � 1) we find

∆H1
2 (E)rs ' s2g

2
2

∫ ∞
ET

dE

2π

1

E−E
1

E−Er
1√

(E−Er)2 − 4m2
θ(E − Er − 2m)1rs . (4.17)

This result is useful for numerical implementation since eq. (4.17) can be integrated in terms

of logarithmic functions. Finally, we notice that upon expanding the function s2/(2π)Φ2(E)

around m/E = 0 we find agreement with ref. [1] that computed it by other means (there

called µ220(E) = 1/(πE2)).

4.2 Three-point correction

The calculation of the three-point correction ∆H3 also starts from the expression in eq. (2.3)

∆Ĥ3(E)rs = − lim
ε→0

∫ ∞
0

dt1dt2 e
i(E−Er+iε)(t1+t2)T {V (T1)V (T2)V (T3)}rs , (4.18)

where Tk =
∑3−k

n=1 tn. Next we apply the Wick theorem and find that the time ordered

product T {V (T1)V (T2)V (T3)} is given by

g3
2

∫ L/2

−L/2
dx1dx2dz

2∑
m,n,v=0

smnv2 Dm
F (x1, t1)Dn

F (x2, t2)Dv
F (x1+x2, t1+t2) :φ2−n−m

X1,T1
φ2−n−v
X2,T2

φ2−v−m
X3,T3

:

(4.19)

where we have introduced the notation Xk = z +
∑3−k

n=1 xn and φx,t = φ(x, t); while the

symmetry factor is given by

smnvp =
p!3

(p−m− n)!(p−m− v)!(p− n− v)!m!n!v!
. (4.20)

We use the same notation as in the previous section ∆Ĥ3 = ∆Ĥ1
3 +∆Ĥφ2

3 +∆Ĥφ4

3 +∆Ĥφ6

3 ,

and similarly for ∆H3. Then, upon performing the space-time integrals in eq. (4.19) and

only keeping the terms with all the poles above ET we find ∆H3. Then, for the term ∆H1
3

we get

∆H1
3 (E)rs = s111

2 g3
2

1

L

∑
k:Ers+2ωk>ET

1

(2ωk)3

1

(E − Er − 2ωk)2
1rs . (4.21)

The expressions for ∆Hφ2

3 , ∆Hφ4

3 and ∆Hφ6

3 are lengthy but straightforward to obtain and

are relegated to appendix B.

As done in the previous section, eq. (4.21) can be written as

∆H1
3 (E)rs = s111

2 g3
2

∫ ∞
ET

dE

(E − E)2

1

L

∑
k

1

(2ωk)3
δ(E − Er − 2ωk)1rs , (4.22)
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Figure 1. Comparison of both sides of eqs. (4.24) and (4.25).

which for L−1ET � 1 is well approximated by its continuum limit

∆H1
3 (E)rs ' s111

2

g3
2

2π

∫ ∞
ET

dE

(E − E)2

1

(E − Er)2

1√
(E − Er)2 − 4m2

1rs , (4.23)

and can be integrated in terms of logarithmic functions. This is useful for a fast numerical

implementation.

4.3 A numerical test

We perform a numerical check to test our prescription to select the poles of ∆Ĥn(E) to get

∆Hn, i.e. that we can select the desired intermediate states of H0 by looking at the poles of

the terms of ∆Ĥn. The check consists in computing ∆Ĥ2 as explained, and then selecting

only the terms with all poles at E ≤ ET . We refer to the expression as ∆H ll
n to differentiate

it with ∆Hn that only receives corrections from terms with poles at E > ET . ∆H ll
2 is then

compared with the matrix elements of V Pl(E − H0)−1PlV , finding an exact agreement.

The same is done for ∆Ĥ3(E) by comparing it against V Pl(E − H0)−1V (E − H0)−1PlV .

This check has been done for all the matrices used in the present work, both for φ2 and

φ4. For brevity we only show the check for two matrix entries of the φ2 theory. These are

〈6k=0 |V Pl
1

E −H0
PlV | 6k=0 〉 =

∑
k: 2ωk+6m<ET

g2
2

2ω2
k

1

E − 6m− 2ωk

+
3 g2

2

2m2

(
5

E − 4m
+

24

E − 6m
+

9

E − 8m

)
, (4.24)

〈0 |V Pl
1

E −H0
V

1

E −H0
PlV | 0 〉 = g3

2

∑
k: 2ωk<ET

1

ω3
k

1

(E − 2ωk)2
. (4.25)

In figure 1 we compare both sides of equations eq. (4.24) and (4.25). The red curves

correspond to the right hand side of eqs. (4.24)–(4.25), which are our analytical results,

and the blue dots are given by the product of the matrices in the left hand side of the

equations. In the left plot, done for 〈6k=0 |∆H ll
2 | 6k=0 〉, the first pole arises at the four-

particle threshold and subsequent poles appear for higher excited states. Instead, the first

– 10 –



J
H
E
P
0
4
(
2
0
1
6
)
1
4
4

Δ0
Trunc(g2)

Δ0
VV(g2)

Δ0
VVV(g2)

0.0 0.2 0.4 0.6 0.8
-0.002

0.000

0.002

0.004

0.006

0.008

0.010

Coupling constant g2

Δ
0n
=
ℰ
0n
-
ℰ
0

ET=12, L=10, m=1

Δ0
Trunc(g2)

Δ0
VV(g2)

Δ0
VVV(g2)

0.0 0.2 0.4 0.6 0.8
-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Coupling constant g2

Δ
0n
=
ℰ
0n
-
ℰ
0

ET=12, L=10, m=1

Figure 2. Left : comparison of the exact vacuum energy with the numerical result as a function

of the coupling constant g2 (for V = g2
∫
dxφ2). Right : left plot with the y-axis zoomed in a

factor ×20.

pole in the right plot, done for 〈0 |∆H ll
3 | 0 〉, occurs at E = 2m. Notice that in both figures

there are no poles for E > ET .

4.4 Spectrum and convergence

We perform a numerical study of the convergence of the energy levels as a function of the

truncation energy ET and their convergence as higher order corrections ∆Hn are calcu-

lated for a fixed ET . We use the formulas in eqs. (4.10)–(4.13), (4.21) and (B.5)–(B.8) to

numerically compute ∆H2 and ∆H3.7

We begin by comparing the vacuum eigenstate E i0 obtained by numerically diagonaliz-

ing HT +
∑N

n=2 ∆Hn (for N = 2 and 3) with the exact vacuum energy E0. In figure 2 we

show a plot of ∆i
0 = E i0−E0 as a function of the coupling constant g2. The plot is done for

a truncation energy of ET = 12 and L = 10 (recall that we work in m = 1 units). For an

easier comparison with previous work, these plots have been done with the same choice of

parameters and normalizations as in figure 2 of ref. [1]. The gray curve in figure 2 is obtained

by numerically diagonalizing HT , whose lowest eigenvalue is ET
0 . The blue curve is obtained

by diagonalizing the renormalized hamiltonian HT + ∆H2(ET
0 ), whose lowest eigenvalue is

EV V0 . Lastly, the green curve is obtained by diagonalizing HT + ∆H2(EV V0 ) + ∆H3(EV V0 )

(we find little difference in evaluating the latter operator in ETrunc
0 instead of EV V0 ). The

right plot of figure 2 is a zoomed in version of the left plot in order to resolve the difference

between the ∆V V
0 and ∆V V V

0 curves.

The right plot shows that overall ∆V V V
0 performs better than ∆V V

0 , this indicates that

the truncation of the series expansion ∆H =
∑∞

n=2 ∆Hn at n = 3 is perturbative in the

studied range. The effect is more pronounced for the highest couplings g2 ' [0.6, 0.8]. As

a benchmark value E0(g2 = 0.8) = −0.351864, see eq. (4.4). Therefore the relative error at

g2 = 0.8 is 2%, 0.01% and 0.002% for the Truncated, the V V and the V V V corrections,

respectively.

7The sums over k in eqs. (4.10)–(4.13), (4.21) and (B.5)–(B.8) have been done with a cutoff k = 250.

We have checked that increasing the cutoff has little impact on the results and find agreement with analytic

formulas like eq. (4.14).
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Figure 3. Left : comparison of the exact vacuum energy with the numerical result as a function of

the truncation energy ET . Right : left plot zoomed in.
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Figure 4. Left : comparison of the exact energy difference E1−E0 with respect the numerical result

as a function of the truncation energy ET . Right : left plot zoomed in. On both plots we have taken

the absolute value of the curve corresponding to the V V corrections, in blue.

Next, we check the convergence of the energy levels as a function of the truncation

energy ET . In figure 3, in the left plot we show ∆i
0 = E i0 − E0 as a function of the

truncation energy ET , for i =Trunc, V V and V V V . Both the ∆V V
0 and ∆V V V

0 curves

give better results than ∆Trunc
0 for the whole range. Also, the curves ∆V V

0 and ∆V V V
0 have

a better convergence behavior and, when converged, they are closer to zero than ∆Trunc
0 .

The right plot is a zoomed in version to resolve the difference between ∆V V
0 and ∆V V V

0 .

The plot shows that for ET . 15 the curve ∆V V
0 gives better results than ∆V V V

0 while for

larger ET the behavior is reversed. This indicates that for ET . 15 (and g2 = 1.8) the

truncation of the series ∆H =
∑∞

n=2 ∆Hn is not a good approximation, and adding more

terms will not improve the accuracy. However, as ET is increased it pays off to introduce

higher order corrections to get a better result. This is because ∆V V V
0 has a faster converge

rate than ∆V V
0 to the real eigenvalue. The value is E0(g2 = 1.8) = −1.360719, see eq. (4.4).

Therefore the relative error at ET = 20 is 1%, 0.04% and 0.009% for the Truncated, the

V V and the V V V corrections, respectively.

In figure 4 we repeat the plots of figure 3 for the first Z2-even excited state but taking

the absolute value of the ∆V V
1 curve for clarity. The plots show a similar convergence rate
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for the three ∆i
1 curves. However, there is a similar pattern compared to figure 3: for

ET . 15 introducing higher order corrections of the series ∆H =
∑∞

n=2 ∆Hn gives worse

results, while for larger values of ET adding higher ∆Hn corrections improves them. The

value is E1(g2 = 1.8) = 0.784042, hence the relative error at ET = 20 is 0.8%, 0.3% and

0.17% for the Truncated, the V V and the V V V corrections, respectively.

5 The φ4 theory

Next we apply the method presented in previous sections to the φ4 theory. We start by

deriving the exact expressions for ∆H2 in detail, then we perform various useful approxi-

mations for a faster numerical implementation and discuss general aspects of the method.

We also discuss the pertubativity of the ∆Hn expansion and compute the spectrum of the

theory at different couplings while studying its behaviour in ET and g using the results

of ∆H2. We end the section with some comments on future work and a discussion of the

calculation of ∆H3.

5.1 Two-point correction

Again, we follow section 2 to derive ∆H by first computing ∆Ĥ. From eq. (2.3) we have

∆Ĥ2(E)rs =
∑
j

Vrj
1

E − Ej
Vjs = lim

ε→0
−i
∫ ∞

0
dt ei(E−Er+iε)tT {V (t)V (0)}rs . (5.1)

It is convenient to re-write the two-point correction in the following equivalent form

∆Ĥ2(E)rs =
∑
j

Vrj
1

E − Ej
Vjs = lim

ε→0
−i
∫ ∞

0
dt ei(E−Ers+iε)tT {V (t/2)V (−t/2)}rs , (5.2)

where Ers = (Er + Es)/2. Applying the Wick theorem we find

− ig2

∫ ∞
0

dt ei(E−Ers+iε)t
∫ L/2

−L/2
dxdz

4∑
m=0

s4−mD
4−m
F (z, t) :φm(x+ z, t/2)φm(x,−t/2) :rs ,

(5.3)

where sp =
(

4
p

)2
p! are the symmetry factors. By integrating eq. (5.3) and keeping only the

contributions from high energy intermediate states Ej > ET we obtain the exact expression

for ∆H2. We use the shorthand notation ∆H2 = ∆H1
2 + ∆Hφ2

2 + ∆Hφ4

2 + ∆Hφ6

2 + ∆Hφ8

2

for m = 0, 1, 2, 3, 4, and similarly for ∆Ĥ2. For ∆H1
2 , ∆Hφ2

2 we obtain:

∆H1
2 (E , ET ) =

s4g
2

24L2

∑
k1k2k3k4

1

ωk1ωk2ωk3ωk4

F0(k1, k2, k3, k4, E , ET ) , (5.4)

∆Hφ2

2 (E , ET ) =
s3g

2

24L2

∑
k1,k2,k3

∑
q1,q2

1

ωk1ωk2ωk3

1
√
ωq1ωq2

F2(k1, k2, k3, q1, q2, E , ET ) , (5.5)

where F0(k1, k2, k3, k4, E , ET ) is given by

F0 rs = δΣ4
i=1ki,0

θ(ωk1 + ωk2 + ωk3 + ωk4 + Ers − ET )

E − ωk1 − ωk2 − ωk3 − ωk4 − Ers
1rs , (5.6)
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and the operator F2(k1, k2, k3, q1, q2, E , ET ) is given by

F2 rs = δk1+k2+k3,q1 δq1,−q2
θ(Ers + ωk1 + ωk2 + ωk3 − ET )

E − Ers − ωk1 − ωk2 − ωk3

(aq1aq2)rs

+ δk1+k2+k3,q1 δq1,−q2
θ(Ers + ωk1 + ωk2 + ωk3 − ET )

E − Ers − ωk1 − ωk2 − ωk3

(
a†q1a

†
q2

)
rs

+ δk1+k2+k3,q2 δq1,q2
θ(Ers + ωk1 + ωk2 + ωk3 + ωq − ET )

E − Ers − ωk1 − ωk2 − ωk3 − ωq
(
a†q1aq2

)
rs

+ δk1+k2+k3,q2 δq1,q2
θ(Ers + ωk1 + ωk2 + ωk3 − ωq − ET )

E − Ers − ωk1 − ωk2 − ωk3 + ωq

(
a†q1aq2

)
rs
. (5.7)

In eqs. (5.4)–(5.5), all qi’s are bounded from above (qi ≤ qmax) because they correspond to

the momenta of creation/annihilation operators that act on the light states (i.e. states in

Hl). Instead the ki = 2πni/L run over all possible values ni ∈ Z. Similar expressions for

∆Hφ4

2 , ∆Hφ6

2 , ∆Hφ8

2 are given in appendix C. As mentioned before, a simple way to derive

these expressions from diagrams is given in appendix A. We have performed the same kind

of numerical checks done in section 4.3 for all the operators ∆Ĥ2 in the φ4 theory.

Approximations. The exact expressions for ∆H2 are computationally demanding. Here

we present different approximations that speed up the calculations and simplify their ana-

lytic structure. These basically consist in approximating the contribution from the highest

energy states to ∆H in terms of a local expansion (as normally done in Effective Field

Theory calculations), while keeping the contributions from lower energy states in their

original non-local form. This is achieved by defining an energy EL and then by separating

∆H2 into two parts, ∆H2 + where we only sum over intermediate states with Ej ≥ EL and

∆H2− where we sum over those with ET < Ej < EL.

∆H2 +(E , EL)rs = ∆H2(E , EL)rs , (5.8)

∆H2−(E , ET , EL)rs = ∆H2(E , ET )rs −∆H2(E , EL)rs . (5.9)

We choose EL � ET so that ∆H2 + is well approximated by local operators.8 As an

example we show how to implement this procedure for the contribution of ∆Hφ2

2 given in

eq. (5.5) and eq. (5.7). We start by examining the term ∆Hφ2

2 +(E , EL) = ∆Hφ2

2 (E , EL),

which is obtained by replacing ET by EL in eq. (5.7). In this case
∑

i ωki & EL � ET &
ωq, Ers, and then it can be well approximated by

∆Hφ2

2 + ' c2 V2 (5.10)

with

c2(E , EL) =
s3g

2

(2L)3

∑
k1,k2,k3

Lδk1+k2+k3,0

ωk1ωk2ωk3

θ(ωk1 + ωk2 + ωk3 − EL)

E − ωk1 − ωk2 − ωk3

, (5.11)

and V2 =
∫ L

0 dxφ2(x) which has dimensions of [E]−1. The approximation in eq. (5.10)

receives corrections of at most O(ET /EL). The expansion of ∆Hφ2

2+ in terms of local

8In the cases where we are only interested in having a good approximation for the lower energy entries

r, s of the matrix, then EL can be taken to be similar to ET .
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operators can be obtained by expanding the term ∆Ĥφ2

2 in eq. (5.3) around t, z = 0

∆Ĥφ2

2 (E)rs = −ig2s2

∫ ∞
0
dt ei(E−Ers+iε)t

∫ L/2

−L/2
dzD2

F (z, t)

∫ L/2

−L/2
dx
[

:φ2(x, 0) :rs +O(t2, z2)
]
,

(5.12)

and, after integrating, keeping only the contributions from those states that produce poles

at E > EL, when Ers is neglected. On the other hand ∆Hφ2

2−(E , ET , EL) = ∆Hφ2

2 (E , ET )−
∆Hφ2

2 (E , EL) is given by the same expressions as in eq. (5.5) and eq. (5.7) but now the sums

to perform are much smaller since the momenta of the intermediate states are restricted

between ET and EL.

The same exercise done for ∆Hφ2

2+ can be done for ∆H1
2+ and ∆Hφ4

2+ and one has that

in the limit EL � ET

∆H1
2 + ' c0 1 , ∆Hφ2

2 + ' c2 V2 , ∆Hφ4

2 + ' c4 V4 , (5.13)

where Vα =
∫ L

0 dxφα(x) and has dimensions of [E]−1,

c0(E , EL) =
s4g

2

(2L)4

∑
k1,k2,k3,k4

Lδk1+k2+k3+k4,0

ωk1ωk2ωk3ωk4

θ(ωk1 + ωk2 + ωk3 + ωk4 − EL)

E − ωk1 − ωk2 − ωk3 − ωk4

, (5.14)

c4(E , EL) =
s2g

2

(2L)2

∑
k1,k2

Lδk1+k2,0

ωk1ωk2

θ(ωk1 + ωk2 − EL)

E − ωk1 − ωk2

, (5.15)

and c2 is given in eq. (5.11). On the other hand the operators ∆Hφ6

2 and ∆Hφ8

2 are of the

tree-level and disconnected type because they involve one and zero propagators respectively,

see eq. (5.3). Therefore the operators ∆Hφ6

2+ and ∆Hφ8

2+ are not well approximated by

a local expansion, and we do not approximate them. For EL sufficiently big though,

∆Hφ6

2+ = ∆Hφ8

2+ = 0 and all the contribution to ∆Hφ6

2 , ∆Hφ8

2 comes from ∆Hφ6

2−, ∆Hφ8

2−, as

can be explicitly seen from eqs. (C.4)–(C.5). Notice that these operators only contribute

to the entries of ∆Hrs with high values for Er, Es. Again, the coefficients of the local

operators in eq. (5.13) can be obtained by expanding ∆Ĥ2 in eq. (5.3) around t, z = 0

∆Ĥ2(E)rs = −ig2

∫ ∞
0
dt ei(E−Ers+iε)t

∫ L/2

−L/2
dxdz

4∑
m=0

s4−mD
4−m
F (z, t) :φ2m(x, 0) :rs+O(t, z)2,

(5.16)

and, after integrating, keeping only the contributions from those states that produce poles

at E > EL, when Ers is neglected. The evaluation of the coefficients in eq. (5.13) can still

be hard to evaluate numerically. In the next section we explain an alternative and simpler

derivation of the coefficients c2m and further approximations to evaluate them.

5.2 Local expansion and the phase-space functions

From the first term in the local expansion of eq. (5.16) the coefficients of the local operators

are given by:

ĉ2n(E) = −ig2s4−n

∫ ∞
0

dt ei(E+iε)t

∫ ∞
−∞

dxD4−n
F (x, t) , (5.17)
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where s4−n is the symmetry factor and, as explained above, the common Ers-shift on the

eigenvalue E is neglected.9 Next, applying the Kramers-Kronig dispersion relation to cn(E)

in eq. (5.17)

ĉ2n(E) = −
∫ ∞
−∞

dE

π

1

E − E + iε
Im ĉ2n(E) . (5.18)

Next, we compute Im ĉ2n. First we do the space integral which, up to g2s4−n, yields

Im−i
∑
k′s

Lδ∑
i ki, 0∏

i 2Lωki

∫ ∞
0
dt ei(E−

∑
i ωki+iε)t = −1

2

∑
k′s

Lδ∑
i ki, 0∏

i 2Lωki
2πδ

(
E −

∑
i

ωki

)
,

(5.19)

where we have used DF (t, x)θ(t) = D(t, x)θ(t) with D(t, x) =
∑

k(2Lωk)
−1eikx−iωkt.

Therefore we find,10

ĉ2n(E) =
g2s4−n

2π

∫ ∞
−∞

dE

E − E + iε
Φ4−n(E) (5.20)

where Φm(E) is the m-particle phase space

Φm(E) =
∑

k1,k2,...,km

Lδ∑m
i=1 ki, 0∏m

i=1 2Lωki
2πδ

(
E −

m∑
i=1

ωki

)
. (5.21)

Finally, the coefficients in eq. (5.13) are obtained by including only the contributions from

poles located at E ≥ EL

c0(E) = s4 g
2

∫ ∞
EL

dE

2π

1

E − E
Φ4(E) , (5.22)

c2(E) = s3 g
2

∫ ∞
EL

dE

2π

1

E − E
Φ3(E) , (5.23)

c4(E) = s2 g
2

∫ ∞
EL

dE

2π

1

E − E
Φ2(E) . (5.24)

It would be interesting to see if in general, higher ∆Hn+ corrections can also be written in

terms of phase space functions. In the rest of the section we explain useful approximations

to evaluate eqs. (5.22)–(5.24).

Continuum and high energy limit of the phase space. We start by approximating

the phase space by its continuum limit.11 Recall that in the continuum limit the relativistic

phase-space for n-particles is given by

Φn(E) =

∫ n∏
i=1

dk1
i

(2π) 2ωki
(2π)2δ(2)

(
Pµ +

n∑
i=1

kµi

)
, (5.25)

where Pµ = (E, 0) and kµi = (ωki , ki). Then, for the 2-body phase space one has

Φ2(E) =
1

E
√
E2 − 4m2

. (5.26)

9The derivation of the coefficients ĉ2n(E) in eq. (5.17) applies to any φα theory.
10Eq. (5.20) can also be derived from the optical theorem, with careful treatment of the symmetry factors.
11This is a good approximation for Lm� 1 and we have checked it explicitly in our numerical study.
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Next, solving for the Dirac delta’s in eq. (5.25), the 3-body phase-space is given by

Φ3(E) =
1

2π

∫ (E−m)2

4m2

ds23√
s23

(
s23 − [E +m]2

)(
s23 − [E −m]2

)(
s23 − 4m2

) , (5.27)

with E ≥ 3m. This integral can be solved by standard Elliptic integral transformations

and we obtain,

Φ3(E) =
g2

π

1

(E −m)

1√
(E +m)2 − 4m2

K(α) , (5.28)

where α = 1− 16Em3

(E−m)3(E+3m)
and K(α) =

∫ π/2
0

dϕ√
1−α sin2(ϕ)

is an elliptic integral.

In general though, finding the exact phase space functions Φn(E) is difficult but can

be simplified in the limit E � m. In our case, this limit is justified because the phase space

functions are evaluated for E ≥ EL � m. Notice that to take the high energy limit of

Φn(E) one can not expand the integrand of eq. (5.25) because, after solving for the Dirac

delta’s constraints, it is of O(1) at the integral limits, see for instance the elliptic integral

in eq. (5.27). Instead, we use the following relation for the phase space

In(τ) ≡
∫ ∞
−∞

dxDn
E(x, τ) =

1

2π

∫ ∞
0

dE e−EτΦn(E) (5.29)

where DE(x, τ) is the euclidean propagator and Φn(E) is only non vanishing for E ≥ nm.

The Euclidean propagator in d = 2 is given by the special Bessel function of second kind

K0(mρ) with ρ =
√
x2 + τ2 and In(τ) ≡

∫∞
−∞ dxK

n
0 (mρ)(2π)−n. At this point we can use

a clever trick done in ref. [1] to find the leading terms of the inverse Laplace transform of

In(τ) in the limit E → ∞. Since the phase space Φn(E) is the inverse Laplace transform

of In(τ), the leading parts of Φn(E) as E →∞ come from the non-analytic parts of In(τ)

as τ → 0. To find the non-analytics parts of In(τ) first one notices that

K0(mρ) =

− log
( eγmρ

2

)[
1 +O(m2ρ2)

]
, ρ� 1/m√

π
2mρ e

−mρ[1 +O(m−1ρ−1)
]
, ρ� 1/m

(5.30)

where γ is the Euler constant. Then, the contributions to In(τ) =
∫∞
−∞ dxK

n
0 (mρ)(2π)−n

when τ → 0 are dominated by the region where ρ � 1/m and the integrand can be

approximated by K0(mρ) ≈ − log
( eγmρ

2

)
.12 This approximation introduces spurious IR

divergences in the region of integration ρ� 1/m where the approximation of the integrand

is not valid. These divergences can be regulated with a cutoff Λ or, equivalently, one can

take derivatives with respect to the external coordinate τ to regulate the integral In(τ).13

Hence, approximating K0(mρ) ≈ − log
( eγmρ

2

)
and integrating over x one can find the

non-analytic terms of ∂τIn(τ) as τ → 0. For instance, for n = 4

∂τI4(τ) =
1

4π3
log(mτeγ)

[
log(mτ) log(mτe2γ) + γ2 +

π2

4

]
+ const. +O(τ) , (5.31)

12This method is like the method of regions which is used to get the leading terms of multi-loop Feynman

diagrams in certain kinematical limits or mass hierarchies.
13This is similar to the fact that the UV divergences of multi-loop Feynman diagrams are polynomial in

the external momenta because taking enough derivatives with respect to the external momenta the integrals

are UV finite.
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where the constant does not depend on τ . Lastly from eq. (5.29), ∂τIn(τ) is related to the

phase space Φn(E) by the Laplace transform,∫ ∞
0

dE[−EΦn(E)] e−τE = 2π ∂τIn(τ) (5.32)

so that for n = 4 one has

Φ4(E) =
3

2π2

1

E2

[
log2(E/m)− π2/12

]
+O(m2/E4) . (5.33)

Therefore using eq. (5.33) and expanding eqs. (5.26), (5.28) at large E,

c0(E) ' s4 g
2

∫ ∞
EL

dE

2π

1

E − E
3

2π2

1

E2

[
log2(E/m)− π2/12

]
, (5.34)

c2(E) ' s3 g
2

∫ ∞
EL

dE

2π

1

E − E
3

2π

1

E2
log(E/m) , (5.35)

c4(E) ' s2 g
2

∫ ∞
EL

dE

2π

1

E − E
1

E2
, (5.36)

where the error made in the approximations is of the order O(m2/E2
L). We end this section

by noticing that the leading terms of the phase space functions Φ2(E) and Φ3(E) in the

large E expansion agree with the corresponding result of ref. [1] (there called µ444(E) =

s2Φ2(E)/(2π), µ442(E) = s3Φ3(E)/(2π)). The local approximation in eqs. (5.34)–(5.36)

can be refined by taking into account the Ers shift, see ref. [1].

5.3 Spectrum and convergence

Before starting with the numerical results we first discuss the series ∆H =
∑

n=2 ∆Hn in

more detail. The truncation of the ∆H series in powers of (Vhh/H0hh)n is only justified

for Vhh/H0hh < 1. Notice that even for weak coupling g � 1 the series does not seem to

converge. Let us consider a particular matrix entry

〈Er |∆Hn|Es 〉 =
∑

j1,...,jn−1

Vrj1 · · ·Vji−1ji

1

E − Eji
· · · 1

E − Ejn−1

Vjn−1s , (5.37)

where all the terms in the sums have a definite sign depending on whether n is even or odd.

For instance, consider a contribution to eq. (5.37) from states of high occupation number

but low momentum like

Vji−1ji

1

E − Eji
→ 〈NkN−k |V |NkN−k 〉

E − 2Nωk
=

6g

4Lω2
k

(2N(N − 1) + 4N2)

E − 2Nωk
, (5.38)

where |NkN−k 〉 is a Fock state with N particles of momentum k and −k that satisfy

2Nωk > ET . The term of eq. (5.38) gives a non-perturbative contribution even for small g

for high enough N and becomes worse for smaller momentum |k|. Thus the series (∆H)rs =∑
(∆Hn)rs seems to be non-convergent but we will assume that (when the expansion

parameter is small) the first terms of the series are a good approximation to (∆H)rs.

Notice that the appearance of the non-perturbative contributions (like in eq. (5.38)) can
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be worse for those matrix entries (∆H)rs with energies Er,s closer to ET because the

intermediate states in Vjj′ can have lower momentum and high occupation number for a

given ∆Hn.

For the first terms of the expansion (Vhh/Eh)n, a naive estimate of the dimensionless

expansion parameter is αrs ∼ g/ET × 1/(Lµ2
rs) where the g and L can be read off from the

potential; the E−1
T arises because the sums in eq. (5.37) are dominated by the first terms,

starting at 1/ET (for E � ET ); and by direct inspection of the potential m/N . µrs . ET
where N is a possibly large occupation number, depending on the matrix entry.

It can happen that entries with energies Er, Es close to ET do not have a perturbative

(∆H)rs =
∑

(∆Hn)rs expansion and even including the first terms of the series is a worse

approximation than setting (∆H)rs → 0; these entries can induce big errors on the com-

puted eigenvalues. Since the eigenvalues we are interested in computing are mostly affected

by the lower Er,s-energy matrix entries we will neglect the renormalization of the higher

Er,s energy entries where the series (∆H)rs =
∑

(∆Hn)rs is not perturbative. One way to

select those entries would be to keep only those that satisfy αrs ∼ (∆H3)rs/(∆H2)rs < 1.

However, this can be computationally expensive and instead we take a more pragmatic

approach and only renormalize those matrix entries (HT )rs with either Er or Es below

some conservative cutoff EW , below which the series is perturbative.

Up until this point the discussion has been done for g � 1. However, for those

matrix entries where αrs is a perturbative expansion parameter one can increase g to strong

coupling14 by increasing ET at the same time. Increasing ET means enlarging the size of

HT and ∆H, and it can happen that the new matrix entries do not have a perturbative

(∆H)rs =
∑

(∆Hn)rs expansion. As explained above, in those cases we set (∆H)rs to

zero.15

Numerical results. In the rest of the section we perform a numerical study of the

spectrum of the φ4 theory. First we summarize the concrete implementation of the method.

We find the spectrum of H by diagonalizing Heff = HT + ∆H2(ET ) where ET is the

eigenvalue of HT .16 As explained in section 5.1, to calculate ∆H2 we separate it in ∆H2+

and ∆H2− defined in eqs. (5.8)–(5.9) and take EL = 3ET .17 We found little differences

when iterating the diagonalization with E . We also find that increasing EL does not have a

significant effect on the result. For ∆H2−(E , ET , EL) we use the expressions in eqs. (C.1)–

(C.5) and for ∆H2+(E , EL) we use the ones in eqs. (5.34)–(5.36). We do a conservative

estimate of the expansion parameter αrs and set to zero (∆H2)rs for all those entries that

are not perturbative.

First we study the lowest eigenvalues of H at weak coupling, where we can compare

with standard perturbation theory. The perturbative corrections to the vacuum and the

14In the φ4 theory the strong coupling can be estimated to be g & 1, see eqs. (5.39) and (5.40).
15For the φ2 perturbation studied in section 4 we find that the error in the computed eigenvalues can be

decreased by increasing ET even without introducing EW . For the φ4 we find that EW must be introduced.
16The dimension of the Hilbert space Hll for ET = 10, 12, 14, 16 and 18 is 117(108), 309(305), 827(816),

2160(2084) and 5376(5238) for the Z2-even(odd) sectors, respectively.
17The choice EL = 3ET is done so that the local expansion is a good approximation for intermediate

states with Ej ≥ EL. Also, for this EL one has that ∆Hφ6

2+ = ∆Hφ8

2+ = 0.
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Figure 5. Left : the vacuum energy E i0 as a function of the truncation energy ET for a coupling

of g = 0.1. Right : energy difference between the first Z2-odd excited state and the vacuum

energy E i0 as a function of the truncation energy for g = 0.1. In both plots, the dotted curves are

computed with the truncated Hamiltonian while the solid and dashed curves are computed with

the renormalized hamiltonian at order V V . Dashed and dotted lines correspond to the cutoffs

EW = ET /2 and EW = ET /5. We have overlaid two dashed black lines corresponding to the

calculation in perturbation theory, see eqs. (5.39) and (5.40).

mass are given by [1]:

Λ/m2 = −21ξ(3)

16π3
ḡ2 + 0.04164(85) ḡ3 + . . . , (5.39)

m2
ph = m2

[
1− 3

2
ḡ2 + 2.86460(20) ḡ3 + · · ·

]
, (5.40)

where ḡ ≡ g/m and mph is the physical mass. In figure 5 we show the result for the vacuum

energy and mph. As explained before, only those entries with Er,s energies below a cutoff

EW are renormalized. We do the plot for different values of EW = ET /2, ET /5 and we find

that the vacuum energy and the physical mass do not depend much on this cutoff. For the

left plot the difference between EW = ET /2 and EW = ET /5 is inappreciable.18 We find

that the spectrum is much flatter as a function of ET for renormalized eigenvalues than

the ones computed with HT . Since the exact spectrum is independent of the truncation

energy ET , a flatter curve in ET indicates a closer value to exact energy levels. However,

it could still happen that adding ∆H3 corrections shifted the spectrum by a small amount,

as it happens for the φ2 perturbation seen in figures 3 and 4 for the range 16 . ET ≤ 20.

In the plots we have superimposed constant dashed black lines that are obtained from

the perturbative calculations in eq. (5.39) and eq. (5.40). We find that the eigenvalues

computed with ∆H2 are much closer to the perturbative calculation than the ones done

with HT . The difference between the perturbative result and the one from EV V is of

O(10−4) and can be attributed to higher order corrections in the perturbative expansion.

Another source of uncertainty comes from higher order ∆Hn corrections not included.

18In fact, for this case we have checked that setting EW = ET gives a result on top of the lines of

EW = ET /2. This is because at weak coupling there is not much overlap between the lowest lying eigenstates

of H and the high H0 eigenstates.
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Figure 6. Left : the vacuum energy E i0 as a function of ET for g = 1, 2 and 3 in descending order.

Right : energy difference between the first excited states and the vacuum energy as a function of

the coupling ET for g = 1, 2 and 3. In all the plots of the figure the blue curves correspond to

the Z2-even sector while the red ones to the Z2-odd. The dotted curves are computed with the

truncated Hamiltonian, while the solid and dashed lines are computed adding ∆H2 with cutoffs

EW = ET /2 and EW = ET /3.

In figure 6 we show plots with different energy levels as a function of the truncation

energy ET for g = 1, 2, 3. To compare with previous work, these plots have been done with

the same choice of parameters and normalizations as in figures 9–10 of ref. [1]. In all the

plots the dotted lines are computed using the truncated Hamiltonian while the solid and

dashed lines are computed using ∆H2 with EW = ET /2 and EW = ET /3, respectively.

The diamonds and the circles correspond to states in the Z2-even and Z2-odd sectors of

the theory. We find that in all the plots, for high enough values of ET , the solid lines
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Figure 7. Left : the vacuum energy E0 as a function of the coupling g. Right : energy difference

between the first excited states and the vacuum energy as a function of the coupling constant g. In

all the plots of the figure the blue curves correspond to the Z2-even sector while the red ones to the

Z2-odd. The dotted curves are computed with the truncated Hamiltonian for a truncation energy

ET = 18, while the solid and dashed lines are computed adding ∆H2 with cutoffs EW = ET /2 and

EW = ET /3.

for the ∆H2 are flatter than the truncated ones. The difference between the dotted and

dashed lines is bigger for the plot for g = 3 than the one for g = 1. This can be understood

because one expects more overlap from higher H0 excited states with the vacuum for

higher coupling. The difference between the solid and dashed lines becomes smaller as ET
is increased. This can be understood because as ET is increased bigger parts of (HT )rs are

being renormalized, and eventually the difference between using EW = ET /2 and ET /3

becomes negligible. An intrinsic error of our calculation of the eigenvalues is the difference

between the values obtained for different choices of EW . This error could be reduced with a

more careful estimate of the expansion parameter αr,s, which would be very interesting for

the future development of the method. In fact, it seems that for ET . 12(14) for g = 2(3)

the cutoff EW is too high (and might include non-perturbative corrections like the one in

eq. (5.38)) as the eigenvalues deviate a lot from the computation done with HT . Another

small source of uncertainty in our calculation comes from not having included higher order

∆Hn corrections; in the next section we explain the calculation of ∆H3.

In figure 7 we show two plots of the vacuum and first excited states as a function of the

coupling constant g for ET = 18 (cf. figure 4 of ref. [1]). There is an intrinsic uncertainty

in our procedure in the choice of EW , and as we discussed above it could be lowered by

increasing the size of the truncation ET or ideally by refining the determination of EW .

Notice that the renormalization of the truncated Hamiltonian matters as the solid lines

have a significant difference with respect to the truncated (as seen in figure 6 the solid

lines show a better convergence as a function of ET ). For g & 3.5 the first Z2-odd excited

state seems to become degenerate with the vacuum which is a signal of the spontaneous

breaking of the Z2 symmetry. This plot can be used to determine the critical coupling, see

ref. [1].
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5.4 Three point correction and further comments

As explained in the previous section we have performed the numerical study of the φ4 theory

without taking into account the three point correction ∆H3. This would be an interesting

point for the future and therefore we give a small preview of the type of expressions one

obtains when computing the three point correction. As done throughout the paper, to get

the expression for ∆H3 we start by first computing

∆Ĥ3(E)rs = − lim
ε→0

∫ ∞
0

dt1dt2 e
i(E−Er+iε)(t1+t2)T {V (T1)V (T2)V (T3)}rs , (5.41)

where Tk =
∑3−k

n=1 tn. Then we find ∆H3 by keeping only those terms that have all poles

at E > ET . Then, we see that the three point correction can be split into

∆H3 = ∆H1
3 + ∆Hφ2

3 + ∆Hφ4

3 + ∆Hφ6

3 + ∆Hφ8

3 + ∆Hφ10

3 + ∆Hφ12

3 , (5.42)

where the subindices denote the number of fields in each term. The correction ∆H1
3 is

given by

∆H1
3 (E) =

s222 g
3

(2L)6

∑
ki,pi,li

L2δl1+l2+k1+k2,0
p1+p2+k1+k2,0

ωk1ωk2ωp1ωp2ωl1ωl2

θ(Σ2
i=1[ωpi+ωki ]−ET )

E−Σ2
i=1[ωpi + ωki ]

θ(Σ2
i=1[ωli+ωki ]−ET )

E−Σ2
i=1[ωli + ωki ]

.

(5.43)

where the symmetry factor is defined in eq. (4.20). The rest of the terms ∆Hφ2

3 , · · · , ∆Hφ12

3

can be computed in a similar fashion as explained in previous sections, but we do not present

them here since we did not include them in the numerical analysis.

Another interesting thing to study in the future is the local expansion of ∆H3 and

higher orders in ∆Hn. Here we present some of the terms for the ∆H3 case. As done

for ∆H2, when the local expansion applies the calculation is simplified. We use the dia-

grammatic representation explained in appendix A for the expressions at O(t0, z0) of the

local renormalization. As an example the leading local coefficients that renormalize the

operators V2, V4 and V6 are

∆Hφ2

3+ '
(

+ + + + · · ·
)
V2 (5.44)

where for example,

=
s131 g

3

(2L)5

∑
k,l,pi

L2δl+k,0p1+p2+p3+k,0

ωkωp1ωp2ωp3

θ(ωl + ωk − EL)

E − ωl − ωk
θ(ωk + Σ3

i=1ωpi − EL)

E − ωk − Σ3
i=1pi

.

(5.45)

For the renormalization of the quartic we get

∆Hφ4

3+ '
(

+ + + · · ·
)
V4 (5.46)

where for example,

=
s220 g

3

(2L)4

∑
l1l2p1p2

L2δp1+p2,0
l1+l2,0

ωl1ωl2ωp1ωp2

θ(ωl1 + ωl2 − EL)

E − ωl1 − ωl2
θ(ωp1 + ωp2 − EL)

E − ωp1 − ωp2

. (5.47)
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For V6

∆Hφ6

3+ '
(

+ · · ·
)
V6 (5.48)

where

=
s111 g

3

(2L)3

∑
k

L2

mω2
k

(
1

E − 2ωk

)2

θ(2ωk − EL) . (5.49)

As final remark, notice that the expression in eq. (5.47) is the square of the coefficient

of V4 (in ∆Hφ4

2+) up to a numerical factor (see eq. (5.15))( )2
= 6g . (5.50)

It would be very interesting to investigate whether certain classes of diagrams in the

∆H+ =
∑

n ∆Hn+ expansion can be resumed. This would reduce the error in the computed

spectrum and its dependence on the arbitrary truncation energy ET . For instance, it could

be that the resummation comes only from the leading pieces of the different diagrams.19

5.5 Summary of the method and comparison with ref. [1]

In this section we summarize our approach to the renormalized Hamiltonian truncation

method and briefly comment on the main differences with ref. [1].

The aim of the renormalized Hamiltonian truncation method is to find the lowest

eigenvalues E of H. This is done by diagonalizing Heff ≡ HT + ∆H, where HT is the

truncated Hamiltonian and ∆H encodes the contributions from the H0 eigenstates with

E > ET . Computing ∆H is difficult but the problem is simplified if one expands ∆H

in powers of Vhh/Hhh. One expects that the first terms of the series ∆H =
∑

n ∆Hn

are a good approximation to ∆H if the expansion parameter is small. These terms can be

computed as explained in section 2, by first finding ∆Ĥn and keeping only the contributions

from the states with E > ET . Then, we notice that for some entries with Er, Es close

to ET , the series (∆H)rs =
∑

n(∆Hn)rs is not perturbative (for the chosen parameters g,

ET ). We deal with this problem by setting to zero all those entries with Er or Es > EW
where EW is chosen appropriately, see section 5.3.

In order to speed up the numerics and gain analytic insight, we perform several ap-

proximations to the exact expression of ∆H2. First we introduce a scale EL so that

∆H2 = ∆H2−+ ∆H2+ where ∆H2+ only receives contributions of the states with E ≥ EL
while ∆H2− only receives contributions of states with ET < E < EL. The scale EL is cho-

sen such that ∆H2+ can be well approximated by the first terms of a local expansion. In

our case, we only keep the leading terms ∆H2+ =
∑n=2

n=0 c2n

∫
dxφ2n(x, t) and we find that

the coefficients ci can be written in terms of phase space functions. Lastly, the coefficients

ci are approximated by taking the continuum limit and then expanding them in powers of

m/EL. On the other hand ∆H2− is kept exact because its numerical implementation is

less costly and it does not admit an approximation by truncating a local expansion. The

whole procedure has been described in section 5 and used to do the plots of section 5.3.

19This is the case in standard perturbation theory. For example the Renormalization Group Equations

in d = 4 resum the leading logs coming from different diagrams.
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Comparison with ref. [1]. Refs. [1, 3] introduced a renormalized Hamiltonian trun-

cation method by diagonalizing Heff = HT + ∆H and expanding ∆H in a series. As

explained, we have used this as our starting point. In ref. [1] though an approximation to

∆H2 is calculated using a different approach than in this paper. To get ∆H2, ref. [1] starts

by defining the following operator M(E)

M(E)rs dE ≡
∑

Ej≤E≤Ej+dE
VrjVjs such that ∆H2 =

∫ ∞
ET

dE
M(E)

E − E
, (5.51)

and then noticing that M(E) is related to the matrix element

C(τ)rs ≡ 〈r |V (τ/2)V (−τ/2)| s 〉 =

∫ ∞
0

dE e−[E−(Er+Es)/2]τ M(E)rs (5.52)

by a Laplace transform. In ref. [1], the E → ∞ behavior of M(E) is found by doing the

inverse Laplace transform of the non-analytic parts of C(τ) in the limit τ → 0. This is done

in the continuum limit, which is a good approximation. The obtained result for M(E) in

this limit is taken to compute ∆H2. Ref. [1] differentiates two renormalization procedures,

one where the term (Er + Es)/2 in eq. (5.52) is approximated to zero (called local), and

one where it is taken into account (called sub-leading). In the later case M(E) is given by

M(E −Ers), and therefore for entries with Ers ∼ ET taking the limit E −Ers � m is not

justified when E ∼ ET . The way in which this problem is dealt with is by neglecting all

the contributions of M(E − Ers) for E ≤ Ers + 5m; in other words, a θ(E − Ers − 5m) is

multiplied to the integrand in eq. (5.51).20

With this, we can already find the main differences between the two approaches. In

our case we calculate the exact expression of ∆H2 which, if needed, can be approximated.

Instead, ref. [1] finds the contributions of ∆H2 that are leading in the limit where E →∞
(which neglects the tree and disconnected contributions). From our approach we can

recover the local result of ref. [1] if we set EL = EW = ET , neglect the tree and disconnected

contributions, take the continuum limit, perform a local expansion to ∆H2+, and make

an expansion in m/E � 1. The choice EL = ET implies ∆H2 = ∆H2+ and ∆H2− = 0,

while EW = ET means that no entries (∆H2)rs are set to zero. In a similar way we can

recover the sub-leading result taking into account the Ers terms, while introducing by hand

a θ(E − Ers − 5m) in the integrals of the coefficients.

Even though the two approaches are quite different, our method and their sub-leading

renormalization can still give similar results due to the following. For large enough ET , the

low entries of (∆H2)rs only receive contributions from loop-generated operators,21 and can

be well approximated by a local (up to the Ers dependence) expansion even if EL = ET . On

the other hand, for high energy entries of (∆H2)rs the tree and disconnected operators are

non-zero, and none of the operators can be approximated by a truncated local expansion

if EL = ET . However, in many cases these high energy entries become non perturbative

and we set them to zero when Er or Es > EW . Therefore we find that if EW is used, it

20They find that M(E) starts to be well approximated by the first terms in the m/E expansion when

E ≥ 5m.
21This can be easily seen from the exact calculations or using the diagrams in appendix A.
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can be a good approximation for large enough ET to neglect the tree and disconnected

terms all together and set EL = ET while performing a local expansion. With this we

connect with ref. [1] where the scale EW is not used to get rid of the non-perturbative

contributions. Instead the tree and disconnected terms are neglected, all the entries of

(∆H2)rs are approximated by the loop-generated local (up to Ers) operators only and

the θ(E − Ers − 5m) is introduced in eq. (5.51). As explained, neglecting the tree and

disconnected terms is justified, while the introduction of θ(E − Ers − 5m) and truncating

the local expansion in practice largely reduce the values of the high energy entries with

respect to the exact result. All of these effectively act as our scale EW . Therefore we see

that in many cases our approach and the one in ref. [1] can give similar results.

Even though the numerical results are similar, our approach introduces new tools and

insights that we think improve the renormalized Hamiltonian truncation method and can

help to develop it further.

6 Conclusion and outlook

In this paper we have developed further the Hamiltonian truncation method. In particular

we have explained a way to compute the corrections to the truncated Hamiltonian at any

order in the large ET expansion of ∆H =
∑

n ∆Hn. We have applied these ideas to scalar

field theory in two dimensions and studied the spectrum of the theory as a function of the

truncation energy and the coupling constant.

There are various open directions that are very interesting and deserve further inves-

tigation. Firstly, it would be a great improvement to the method to find a more precise

estimate of the expansion parameter of the series. This estimate should be easy to imple-

ment numerically and lead to a precise definition of the cutoff EW . In this work we have

been pragmatic in this respect, and investigated the behaviour of the spectrum as this cut-

off is modified. It might be that only removing the contribution of certain type of matrix

elements (like the ones corresponding to high occupation number and zero momentum) the

series is greatly improved.

We have not pushed the numerical aspects of the method very far and all the com-

putations have been done with Mathematica. With more efficient programming languages

it would be interesting to further study and check that as the truncation energy ET is

increased the uncertainty in the precise choice of EW is reduced.

Another point that should be addressed is the dependence of the spectrum on L as

higher ∆Hn corrections are added; also it could be relevant to inspect if there are diagrams

that dominate for large Lm� 1.

Another very interesting path to develop further is to apply renormalization group

techniques to resum the fixed order calculations of ∆H. Since the exact eigenvalues do not

depend on the truncation energy ET , it may be possible resum the calculation of ∆Hn.

Our analytic expressions for the ∆Hn corrections permit a precise study of the possible

resummation of the leading corrections at each order in the perturbation theory of the

large ET expansion. One could start by studying the resummation of the leading local
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corrections, and for that the phase space formulation that we have introduced is useful as

there are simple recursion relations for the differential phase space.

Another fascinating avenue to pursue is the applicability of the method to other theories

with higher spin fields and to increase the number of dimensions. In this regard, we

notice that the derivation of eqs. (5.22)–(5.24) seems to be formally valid in any space-time

dimension d. Recall that the ci’s are the coefficients of the local operators added to HT to

take into account the effect of the highest energetic H0 eigenstates not included in the light

Hilbert space Hl. As d is increased beyond d = 2 the UV divergencies appear due to the

increasingly rapid growth of the phase space functions Φi(E). One can then regulate the

ci coefficients with a cutoff Λ. For instance, consider the coefficient c4 of the φ4 operator

cΛ
4 (E) = s2 g

2
0

∫ Λ

EL

dE

2π

1

E − E
Φ2(E) , (6.1)

in d = 4. Then, requiring that the energy levels are independent of the regulator one finds

the following β-function

β(g) = −Λ
∂cΛ

4

∂Λ
+O(g3) =

s2g
2

2π
Φ2(Λ) +O(g3, E) , (6.2)

where the E corrections can be neglected in the limit of large Λ� E . Redefining g ≡ λ/4!

one recovers the known result for the λφ4 theory β(λ) = 3
16π2λ

2 + O(λ3), where we have

neglected the mass corrections that for Λ � m decouple as Φ2(Λ) = 1/(8π) +O(m2/Λ2).

A possible way to make contact between the calculation in the renormalized Hamiltonian

method and the standard calculation of the beta function is by noticing that the coefficient

of the divergent part of the amplitude is proportional to the coefficient of its finite imaginary

part which in turn (by the optical theorem) is proportional to the two-particle phase

space. It would be very interesting to further study RG flows from the perspective of the

renormalized Hamiltonian truncation method approach.

We think that the Hamiltonian truncation method is a very promising approach to

study strong dynamics, and that there are still open important questions to be addressed.
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A Diagramatic representation

There is a simple and powerful diagrammatic representation that permits to easily find

the expression for ∆Hn. This can be used to either compute the full operator ∆Hn or
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the leading O(t0, z0) coefficients in the local expansion of ∆Hn+ defined in section 4. This

representation is valid for any φα theory, but here we give examples only for the φ4 case

for concreteness.

Local coefficients. Imagine that we want to find the local coefficients O(t0, z0) for

∆Hφ2

3+. To find them one puts 3 vertices ordered horizontally22 and draws all possible

diagrams that have only 2 external lines, four lines meeting at each vertex and don’t have

any lines starting and ending at the same vertex. Next, we assign a momentum for each

internal line and draw a vertical line between every pair of vertices. One such diagrams is

k5

k1

k2

k3

k4 . (A.1)

The expression corresponding to a given diagram with n vertices and N propagators is

given by

sgn
∑
k′s

1∏N
i=1(2Lωki)

n−1∏
p=1

Lδp
θ
(∑

kj∈{sp} ωkj − EL
)

E −
∑

kj∈{sp} ωkj
, (A.2)

where kj = 2πnj/L with nj ∈ Z. Each of the n − 1 sets of momenta {sp} consist in the

momenta of the internal lines that are cut by each vertical line. In (A.1) these would be

s1 = {k1, k2, k5} and s2 = {k3, k4, k5}. The symbol δp stands for a Kronecker delta that

imposes that the total momentum crossing a cut is zero; s is a symmetry factor that counts

all the ways that the lines of the vertices can be connected to form the diagram. Applying

this recipe to the diagram in (A.1) one has

k5

k1

k2

k3

k4 = s221
4 g3

∑
k′s

L2δk3+k4+k5,0
k1+k2+k5,0∏5
i=1(2Lωki)

θ(ωk1 +ωk2 +ωk5−EL)

E−ωk1−ωk2−ωk5

θ(ωk3 +ωk4 +ωk5−EL)

E−ωk3−ωk4−ωk5

.

(A.3)

where the symmetry factor smnvp is given in eq. (4.20). Another example of a contribution

to ∆Hφ2

3+ would be

= s212
4 g3

∑
k′s

L2δk1+k2+k3+k4,0
k3+k4+k5,0∏5
i=1(2Lωki)

θ(Σ5
s=1ωks−EL)

E−ωk1−ωk2−ωk3−ωk4

θ(Σ4
s=1ωks−EL)

E−ωk3−ωk4−ωk5

.

(A.4)

Notice that the ordering of the vertices matters since the diagrams of (A.3) and (A.4) have

the same topology but give different results.

With this prescription one easily recovers eqs. (5.11), (5.13), and (5.15) corresponding

to the ∆H2+ coefficients in the φ4 theory

c0 = , c2 = , c4 = . (A.5)

22The vertices are ordered in a line because the V (Ts)’s in eq. (2.3) are time-ordered in the whole

integration domain. This is in contrast with the standard Feynman diagrams in the calculation of an

n-point function, where each space-time integral is over the whole real domain.
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Notice that to include the contributions Ers mentioned at the end of section 5.2 the

same diagrammatic representation applies but one must then substitute E → E − Ers in

eq. (A.2) making the coefficients depend on the matrix entry.

Exact ∆Hn opertors. A similar diagrammatic representation can be used to calculate

the exact ∆Ĥn operator from which one can easily get ∆Hn. The prescription to follow is

very similar to the one for the local case, where one starts drawing the same diagrams and

putting vertical lines between every pair of vertices. The only difference is that now one

extends the external lines to left and right in all possible combinations for each diagram

drawn and also assigns a momentum to the external lines. For the diagram in (A.1)

this means

k5

k1

k2

k3

k4
q1q2

k5

k1

k2

k3

k4

q1

q2

k5

k1

k2

k3

k4

q1

q2

k5

k1

k2

k3

k4

q1

q2

. (A.6)

Now, the operator corresponding to a given diagram with n vertices, N propagators, A

external lines starting left and B external lines starting right is

κsgn
∑
k′s,q′s

1∏N
i=1(2Lωki)

n−1∏
p=1

θ
(
ωrs+

∑
Qj∈{sp} ωQj−EL

)
E−ωrs−

∑
Qj∈{sp} ωQj

n∏
α=1

Lδα

A+B∏
r=A+1

a†qr√
2Lωqr

A∏
l=1

aql√
2Lωql

,

(A.7)

where the sums over k′s, q′s sum over all possible momenta for a given ki, qi. Then, each

of the n−1 sets of momenta {sp} consists in the momenta of the lines that are cut by each

vertical line. For the first diagram from the left in (A.7) these would be s1 = {k1, k2, k5}
and s2 = {k3, k4, k5}, and for the second one s1 = {q1, k1, k2, k5} and s2 = {q1, k3, k4, k5}.
The symbol δα stands for a Kronecker delta that imposes momentum conservation at each

vertex α. The symbol ωrs depends on the energy of the states 〈Er |, |Es 〉 on which a and

a† act i.e. it is different for each entry
(
a†−qraql

)
rs

, and is given by wrs ≡ Ers− 1
2

∑A+B
i=1 ωqi

where Ers = (Er + Es)/2. As before s is a symmetry factor that counts all the ways that

the lines of the vertices can be connected to form the diagram. Lastly κ counts all the

equivalent ways that the external lines coming out from the same vertex can be ordered

left and right, for the diagrams in (A.7) is is always one, since there is only one external

line per vertex. Applying this recipe to the first and second diagrams in (A.7) one has

k5

k1

k2

k3

k4
q1q2 = s221

4 g3
∑

k1,··· ,k5

∑
q1,q2

L2δk3+k4+k5,q2
k1+k2+k5,q1∏5
i=1(2Lωki)

θ(ωrs + ωk1 + ωk2 + ωk5 − EL)

E − ωrs − ωk1 − ωk2 − ωk5

× θ(ωrs + ωk3 + ωk4 + ωk5 − EL)

E − ωrs − ωk3 − ωk4 − ωk5

Lδk3+k4,k1+k2

a†q1aq2
2L
√
ωq1ωq2

,

(A.8)
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k5

k1

k2

k3

k4

q1

q2

= s221
4 g3

∑
k1,··· ,k5

∑
q1,q2

L2δk3+k4+k5+q1,0
k1+k2+k5+q1,0∏5
i=1(2Lωki)

θ(ωrs + ωk1 + ωk2 + ωk5 + ωq1 − EL)

E − ωrs − ωk1 − ωk2 − ωk5 − ωq1

× θ(ωrs + ωk3 + ωk4 + ωk5 + ωq1 − EL)

E − ωrs − ωk3 − ωk4 − ωk5 − ωq1
Lδq1+q2,0

a†−q1aq2
2L
√
ωq1ωq2

,

(A.9)

where ωrs = Ers − (ωq1 + ωq2)/2 and the symmetry factor smnvp is given in eq. (4.20).

With this set of rules one can easily get the expression for ∆Ĥ2 and ∆Ĥ3 for the φ2

and φ4 theories. Then one finds ∆H2 and ∆H3 by keeping only the contributions with all

poles E > ET .

B ∆H for the φ2 perturbation

B.1 Two-point correction

In this section we give the full expressions of the ∆Ĥ2 corrections for the scalar theory

with potential V = g2

∫
dxφ2. Recall that the symmetry factor is given by sp =

(
2
p

)2
p!. We

will use the prescription Ers = (Er + Es)/2 where Er and Es are H0 eigenvalues.

∆Ĥ1
2 (E)rs = g2

2s2
1

22

∑
k

1

ω2
k

1

E − Ers − 2ωk
δrs (B.1)

∆Ĥφ2

2 (E)rs = g2
2s1

1

22

∑
q

1

ω2
q

[(
aqa−q

1

E − Ers − ωq
+ h.c.

)
+ a†qaq

(
1

E − Ers − 2ωq
+

1

E − Ers

)]
(B.2)

∆Ĥφ4

2 (E)rs = g2
2s0

1

22

∑
q1,q2

1

ωq1ωq2

[
aq1aq2a−q1a−q2

1

E−Ers−ωq1 +ωq2
+ h.c.

+ 2 a†q1aq1aq2a−q2

(
1

E−Ers+ωq2
+

1

E−Ers−ωq2

)
+ h.c.

+ a†q1a
†
−q1aq2a−q2

(
1

E−Ers+ωq1+ωq2
+

1

E−Ers−ωq1−ωq2

)
+ 4 a†q1a

†
q2aq1aq2

1

E−Ers

]
. (B.3)

B.2 Three-point correction

In this section we give the full expressions of the ∆H3 corrections for the scalar theory

with potential V = g2

∫
dxφ2. Recall that the symmetry factor is given by

smnvp =
p!3

(p−m− n)!(p−m− v)!(p− n− v)!m!n!v!
. (B.4)
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We use the notation ∆H3 = ∆H1
3 + ∆Hφ2

3 + ∆Hφ4

3 + ∆Hφ6

3 , where

∆H1
3 (E)rs =

g3
2s

111
2

23

∑
k

1

ωk1ωk2ωk3

G0(k1, k2, k3, ET ) , (B.5)

∆Hφ2

3 (E)rs =
g3

2

23

∑
k,q

1

ωk1ωk2

1
√
ωq1ωq2

[
s200

2 G2,1(k1, k2, q1, q2, ET )

+ s110
2 G2,2(k1, k2, q1, q2, ET )

]
, (B.6)

∆Hφ4

3 (E)rs =
g3

2s
100
2

23

∑
k,q

1

ωk

1
√
ωq1 · · ·ωq4

G4(k, q1, . . . , q4) , (B.7)

∆Hφ6

3 (E)rs =
g3

2s
000
2

23

∑
q

1
√
ωq1 · · ·ωq6

G6(q1, . . . , q6) , (B.8)

where

G0 = δk1+k2,0δk1+k3,0 [f0]12[f0]13 , (B.9)

G2,1 = aq1aq2 δ0δk1+k2,0 [f2]12
12[f2]12 + h.c. + 2a†q1aq2 δ1δk1+k2,0 [f2]12

1 [f2]12
2 , (B.10)

G2,2 = a†q1aq2 δ1δk1+q1,0δk1+k2,0

(
[f2]112[f2]12

1 + [f2]112[f2]12
2 + [f2]112[f2]212

)
, (B.11)

G4 = a†q1aq2aq3aq4 δ1δk+q1,0δq3+q4,0[f4]11234[f4]112 + h.c.

+ 2a†q1a
†
q2aq3aq4 δ2δq1−q3,0δk+q2,0[f4]1124[f4]1234

+ a†q1a
†
q2aq3aq4 δ2

(
δq1+q2,0δk+q4,0[f4]1234[f4]1124 + δq3+q4,0δk+q1,0[f4]1234[f4]1124

)
,

(B.12)

G6 = a†q1a
†
q2aq3aq4aq5aq6 δ2δq1+q2,0δq3+q4,0[f6]123456[f6]1234 + h.c.

+ 2a†q1a
†
q2a
†
q3aq4aq5aq6 δ3δq1+q2,0δq5+q6,0[f6]12356[f6]12456 . (B.13)

We have defined wprs ≡ Ers − 1
2

∑p
i=1 ωqi , δd ≡ δΣdi=1qi,Σ

p
j=d+1qj

(the Kronecker delta that

imposes momentum conservation to the creation/annihilation operators) and

[fp]
K
Q =

θ(ωprs + Σi∈{Q}ωqi + Σi∈{K}ωki − ET )

E − ωprs −
∑

i∈{Q} ωqi −
∑

i∈{K} ωki
. (B.14)

C ∆H for the φ4 theory

In this appendix we give the exact two-point correction and the first terms in the local

expansion of the three-point correction. Getting the exact three-point correction would be

straightforward.
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C.1 Two-point correction

In this appendix we give the full expressions of the ∆H2 for the φ4 theory. Using the

notation ∆H2 =
∑8

n=0 ∆Hφn

2 we have

∆H1
2 (E , ET ) =

s4g
2

24L2

∑
k1k2k3k4

1

ωk1ωk2ωk3ωk4

F0(k1, k2, k3, k4, ET ) , (C.1)

∆Hφ2

2 (E , ET ) =
s3g

2

24L2

∑
k1,k2,k3

∑
q1,q2

1

ωk1ωk2ωk3

1
√
ωq1ωq2

F2(k1, k2, k3, q1, q2, ET ) , (C.2)

∆Hφ4

2 (E , ET ) =
s2g

2

24L2

∑
k1,k2

∑
q1,q2,q3,q4

1

ωk1ωk2

1
√
ωq1 · · ·ωq4

F4(k1, k2, q1, . . . , q4, ET ) , (C.3)

∆Hφ6

2 (E , ET ) =
s1g

2

24L2

∑
k

∑
q1,...,q6

1

ωk

1
√
ωq1 . . . ωq6

F6(k, q1, q2, . . . , q6, ET ) , (C.4)

∆Hφ8

2 (E , ET ) =
s0g

2

24L2

∑
q1,...,q8

1
√
ωq1 · · ·ωq8

F8(q1, q2, . . . , q8, ET ) (C.5)

The Fi functions are given by

F0 = δk1+k2+k3+k4,0 [f0]1234 (C.6)

F2 = a†q1aq2 δ1 δk1+k2+k3,q1

(
[f2]123 + [f2]12312

)
+ aq1aq2 δ0 δk1+k2+k3,q1 [f2]1232 + h.c. (C.7)

F4 = aq1aq2aq3aq4 δ0 δk1+k2,q1+q2 [f4]1234 + h.c.

+ 2a†q1aq2aq3aq4 δ1
(
δk1+k2,q1−q2 [f4]122 + δk1+k2,−q1+q2 [f4]12134

)
+ h.c.

+ a†q1a
†
q2aq3aq4 δ2

(
δk1+k2,q1+q2 [f4]12 + δk1+k2,−q1−q2 [f4]121234 + 4 δk1+k2,q1−q3 [f4]1214

)
(C.8)

F6 = a†q1aq2aq3aq4aq5aq6 δ1 δk,q2+q3−q1 3 [f6]11456 + h.c.

+ a†q1a
†
q2aq3aq4aq5aq6 δ2

(
9 δk,q3+q4−q1 [f6]1156 + 3 δk,q3−q1−q2 [f6]112456

)
+ h.c.

+ a†q1a
†
q2a
†
q3aq4aq5aq6 δ3

(
9 δk,q4+q5−q1 [f6]116 + 9δk,−q4−q5+q1 [f6]12345 + δk+q1+q2+q3,0[f6]1123456

)
(C.9)

F8 = a†q1a
†
q2aq3aq4aq5aq6aq7aq8 δ2 6δq1+q2−q3−q4,0[f8]125678 + h.c.

+ a†q1a
†
q2a
†
q3aq4aq5aq6aq7aq8 δ3

(
24δq1+q2−q4−q5 [f8]12678 + 4δq1+q2+q3−q4 [f8]1235678

)
+ h.c.

+ a†q1a
†
q2a
†
q3a
†
q4aq5aq6aq7aq8 δ4

(
16δq1−q5−q6−q7,0

(
[f8]18 + [f8]234567

)
+ 36δq1+q2−q5−q6,0[f8]1278 + δq1+q2+q3+q4,0[f8]12345678

)
.

(C.10)

We have defined wprs ≡ Ers − 1
2

∑p
i=1 ωqi , δd ≡ δΣdi=1qi,Σ

p
j=d+1qj

(the Kronecker delta that

imposes momentum conservation to the creation/annihilation operators) and

[fp]
K
Q =

θ(ωprs + Σi∈{Q}ωqi + Σi∈{K}ωki − ET )

E − ωprs −
∑

i∈{Q} ωqi −
∑

i∈{K} ωki
. (C.11)
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