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1 Introduction and review

An outstanding problem in theoretical physics is to solve strongly coupled Quantum Field
Theories (QFT). When they are not amenable to analytic calculations one can resort to
numerical approaches. The two most used numerical approaches are lattice simulations
and direct diagonalization of truncated Hamiltonians. In this paper we further develop
the Hamiltonian truncation method recently presented in ref. [1-3], that renormalizes the
truncated Hamiltonian Hp to improve the numerical accuracy.



The Hamiltonian truncation method consists in truncating the Hamiltonian H into a
large finite matrix (Hr);; and then diagonalizing it numerically. There is a systematic error
with this approach that vanishes as the size of the truncated Hamiltonian Hrp is increased.
There are different versions of the Hamiltonian truncation method that mainly differ on
the frame of quantization and the choice of basis in which H is truncated. Two broad
categories within the Hamiltonian truncation methods are the Truncated Conformal Space
Approach [4] and Discrete Light Cone Quantization [5]. A less traveled route consists in
using the Fock-Space basis to truncate the Hamiltonian [1, 2, 6-10]. Lately there have
been many advances in the Hamiltonian Truncation methods, see for instance [3, 11-17].

We review the truncated Hamiltonian approach following the discussion of ref. [1, 3].
The problem we are interested in is finding the spectrum of a strongly coupled QFT.
Therefore we want to solve the eigenvalue equation

H|E)=¢€|&), (1.1)

where H = Hy + V', Hj is a solvable Hamiltonian or the free Hamiltonian and V is the
potential. Hy is diagonalized by the states Hy| E,, ) = E,| E,, ). Suppose we are interested
in studying the lowest energy states of the theory. One way to do it is separating the Hilbert
space H into H = H; ® Hp, where H; is of finite dimension and it is spanned by the states
| By, ) with E,, < Ep. Then, the Hilbert space H;, is an infinite-dimensional Hilbert space
containing the rest of the states E, > Ep. The states are projected as Pj|z) = |z;) € H,
and (I — P))|x) = Py|x) = |z ) € Hp. Then, the eigenvalue problem can be replaced by

Heff(£)’£l> :g’€l>7 (12)

where Heg = Hr + AH(E), the truncated Hamiltonian is Hy = P, H P, and

1
h
E— Honn — Vin

with O;; = P,OP; for i,j € {h,l}. To derive eq. (1.2), project eq. (1.1) into the two
equations

AH(E) =V

Vi s (1.3)

Hyl& )+ Hplén) =€1&), Hyl &)+ Hupl En) =E|En) (1.4)

and then substitute | &, ) = (€ — Hyp,) " Hyy| & ) from the second equation in (1.4) into the
first.

Notice that eq. (1.2) is an exact equation and that a complete knowledge of AH(E)
would render the original eigenvalue problem of eq. (1.1) solvable by an easy numerical
diagonalization. In the limit where E7 — oo the corrections AH to Hp can be neglected,
but it is computationally very costly to increase the size of Hpr and then diagonalize it.
Therefore it is interesting to calculate AH to improve the numerical accuracy for a given
Ep. A first step to compute AH is to perform an expansion of eq. (1.2) in powers of

th(g - HO)_la

> 1 1 \"
AH(E, Br) =Y AH,(E,Er), where AH,(E, Er) =V £ B (thg_Ehh> Vit »

n=0




where the matrix elements of AH,, are given by

1 1 1
AHnE)rs= >, Vg Ving g Vins Vinsinag g Vinas:
Ji,gn—1: B, >Ep J1 J2 Jn—1
(1.5)
in the Hy eigenbasis and the sums run over all labels ji, ..., j,—1 of states belonging

to Hjp, with 7, s denoting the matrix elements (corresponding to eigenstates of Hy with
E;, E, < Ep eigenvalues). Naively the truncation of the series in eq. (1.5) is justified for
Vin/Honn < 1 which for large enough Ep and £ < Erp is fulfilled, and allows to go to strong
coupling. This is discussed in detail in section 5.3. The operator AH depends on the exact
eigenvalue and in practice the way eq. (1.2) is solved is by diagonalizing iteratively Hog(E*)
starting with an initial seed £*. It is convenient to take £* close to the exact eigenvalue &,
a simple and effective choice is to take the eigenvalue obtained from diagonalizing Hr.

In ref. [1] the ¢* theory in two dimensions was studied at strong coupling using the
Hamiltonian truncation method just presented in the Fock basis. There, the leading terms
of AH, doing a local expansion were computed and shown to improve the results with
respect to the ones found by only diagonalizing Hr. The main result of our work is to
explain a way to calculate the exact corrections to AH at any order AH,,. As an example
we calculate the AHy correction and some of the AHs3 terms for the ¢* theory in two
dimensions and present various approximation schemes for a faster numerical implementa-
tion. This can be seen as an extension of the method presented in ref. [1] which we believe
to be very promising.

The paper is organized as follows. In section 2 we introduce a general formula to com-
pute AH, (€, Er) at any order n. Then we apply the method to the ¢ and ¢* scalar field
theories in d = 2 space-time dimensions which we first define in section 3. The method
is tested in section 4 by studying the spectrum of the solvable ¢? perturbation with the
calculation of AHs and AHjs. Other numerical tests are also performed in this section.
Next, in section 5 we give the AHy correction for the ¢* theory, and discuss the AHj cal-
culation with some examples. There we also discuss the convergence of the A H,, expansion
and compute the lowest energy levels of the theory at strong coupling. In section 6, we
conclude and outline future directions of the method that are left open. In appendix A
we introduce a simple diagrammatic representation to compute A H,,. Lengthy derivations
and results are relegated to the appendices B and C. All the numerical calculations for this
work have been done with Mathematica.

2 Calculation of AH at any order

In this section we present one of the main results of this paper which is the derivation
of the nth-order correction AH,, of eq. (1.5) to the Truncated Hamiltonian. We start by
defining the operator

N o0 =N =N 1 n—1
AH(E)=> AH,(E), where AH,(E)= <v - HO> 1% (2.1)
n=2



which in the H eigenbasis is given by

o
~ 1 1 1
AHn(E)rs = j17,.,,]Zn1:1 Ve £—E; V}1j2g —E,, Viajs == Vin—ajn- 157%%71715 )
(2.2)
where the indices j1, jo, ... ,jn—1 run over the states of the full Hilbert space . Notice

that the only difference between AH,, and Af[n is that the later receives contributions
from all the eigenstates of Hy while AH,, only from those with E; energies £/; > Ep. This
translates into the fact that each term in AH, (&) has all the poles located at £ > Er as
seen in eq. (1.5).

From here the derivation of AH,, follows from the observation that eq. (2.2) can be
rewritten as the improper Fourier transform of the product of potentials restricted to
positive times

Aﬁn((‘:)rs _ lim(—i)n_l / dty - dt, 1 ei(S—E7.+ie)(t1+-..tn71) T{V(Tl) . V(Tn)}rs ,
0

e—0

(2.3)
where Tj, = S0 %4, V(t) = eHotVe=iHot and T denotes the time ordering operation.!
Then, our method consists in applying the Wick theorem to eq. (2.3) to calculate AH, and
obtaining AH,, by keeping only the terms of Aﬁln corresponding to states with E; > Er,
i.e. by keeping only the terms of AH, which have all poles above E7.2 In the following
sections we show how to carry this procedure for the cases of the ¢? perturbation and ¢*
theory.

3 Scalar theories

We study scalar theories in two space-time dimensions defined by the Minkowskian action

S =Sy + S where
/ dt/ dzr :(0¢)? —m2¢?: | (3.1)

SI:—/OOdtV / dt/ da 4% (3.2)

For simplicity we consider the cases where o = 2, 4 and m? > 0. The symbol :: stands

So

for normal ordering which for Sy means that we set the vacuum energy to zero; while the
interaction term is normal ordered with respect to Sy, which in perturbation theory is

'This can be seen by introducing the indentity I =3 | E, ) (E, | between each pair of V’s in eq. (2.3)

and integrating over all times t¢1, . ..%,. Also notice that the time ordering operation is trivial because the V'
operators are time ordered in all the integration domain. The lim._,¢ is taken at the end of the calculation.

2This procedure _can be formalized as follows. The first correction can be written as
AHy(E) = [, ;—:Z. AfEE:), where C is any path than encircles only all the poles above Er. For
AH3(E) = c % Siz c ‘2172” = AHg(z z) where we have generalized the operator Aﬁg,(z, 2Vrs =

—lime_o [J° dtydty !GO 1 = Brtiote TV (T )V (T3)V (T5) }rs. The generalization to the nth cor-
rection is straightforward.



equivalent to renormalize to zero the UV divergences from closed loops with propagators
starting and ending on the same vertex.

To study these theories using the Hamiltonian truncation method we begin by defining
them on the cylinder R x S7 where the circle corresponds to the space direction which we
take to have a length Lm > 1, and R is the time. We impose periodic boundary conditions
o(t,z) = ¢(t,x +nL) for n € Z on S1. The compact space direction makes the spectrum
of the free theory discrete and regularizes the infra-red (IR) divergences.

In canonical quantization the scalar operators can be expanded in terms of creation
and annihilation operators as

— 1 ikx T —ikx
o(x) = zk: \/m(ake + aje” "), (3.3)

where wy = vVm? + k2, k = 22 with n € Z and the creation and anihilation operators
satisfy the commutation relations

[ar, al,] = Sk, lax, ar] = 0. (3.4)
The Hamiltonian then reads H = Hy + V, where

Hy = Z wr, afay (3.5)
k

and the potentials for a ¢? and a ¢* interaction are given by

L6
V = g9 Z k1tks,0 (aklakz + aikla;@) +h.c., (3.6)

PayseR /2Lwy, \/2Lwy,

and

L
i—1 ki,0
V=g Z 2ot (aklakzak3ak4 + 4aik1ak2ak3ak4 + 3aT_k1aT_k2ak3ak4) +h.c.,

4
k1,ko,k3,ky Hi:l \/m

(3.7)
respectivley, where g = g4 and 0, 1,0, 52471 ki 0 stand for Kronecker deltas.
We implement the Hamiltonian truncation using the basis of Hy eigenstates
TN fna Tmni
ay s k
E)=-—FAA—... 2 L_|0). 3.8
B = ot it 3:5)

which satisfy T = 32, | E;) (E;|, where E; = SN ng/kZ+m? and Hp|0) = 0. The
Hilbert space is divided into H = H; @ Hj, with H; spanned by the states | E,. ) such that
FE; < Er while Hy, is spanned by the rest of the basis. Then, the truncated Hamiltonian is

(Hr)rs = (Er |H| Es), for E; < Er. (3.9)

In this basis, the operator AH is given by

1
20 =3 (5 ), Y o

3,5’



where the labels 7, s denote entries with E,., E; < Ep and the sum over j, j' runs over all
states with E;, By > Er.

The Hamiltonian H can be diagonalized by sectors with given quantum numbers asso-
ciated with operators that commute with H. These are the total momentum P, the spatial
parity P : x — —x and the field parity Zs : ¢(z) — —¢@(z), which act on the Hy-eigenstates

tn; Tng

as P|E;) = Y nsks| Ei), PILY, i10) =TI, 2510) and Zo| i) = (—1)%:" | Ey).

We work in the orthonormal basis of eigenstates of Hy, P, P and Zs given by
|Ei)=8-(1E:)+P|E)), (3.11)

where 8 = 1/2, 1/V/2 for P|E;) = |E;) and P|E;) # | E;), respectively. As done in
ref. [1], in the whole paper we focus on the sub-sector with total momentum P)| EZ> =0,
spatial parity P)| EZ> = +| EZ> and diagonalize separately the Zs = =+ sectors.® In this
paper we do not investigate the dependence of the spectrum as a function of the length
L of the compact dimension which we leave for future work, and always consider it to be
finite.* All the numerical calculations are done for m =1 and L = 10.

4 Case study ¢? perturbation

In this section we apply the method introduced in section 2 to the scalar theory H = Hq+V
with a potential

L
V:g2/0 dt :¢?: (4.1)

This is a simple theory that allows to illustrate various aspects of the calculation of AH
in eq. (2.3) and its relation to AH. Also since the theory is solvable we can compare
our procedure with the exact results. The theory is solved by using the eigenstates of H,

given by
bT”N an2 bTm
&) = 2 ARl |), (4.2)
vny! Vgl vng!
where |Q) = |&) is the vacuum of the theory and bf/b are the creation/annihilation
operators so that
H =" blbp% + &, (4.3)
k

with Qx = y/w? + 2g>. Then, one can relate the operators b'/b to the a/a in Hy (given

in eq. (3.5) and eq. (3.6)) by the Bogolyubov transformation by = sinh ay, aT_k + cosh ay; ay
provided that y sinh 2ay, = w;l 92, Q cosh 2a, = wy, + g2/wg. Then, since (0|H|0) =0

3For the V = [dt : ¢*: theory, the matrix element (E; |V| E;) = 0 with P|E;) = | E;) and P|E;) #
| E; ). Therefore, one can diagonalize the P| E;) = | E; ) and P| E;) # | E; ) sectors separately.

4To match the L — oo spectrum one has to take into account the Casimir energy difference between the
L — oo and the finite L theory and inspect how various states converge as L is increased. See refs. [18, 19]
and ref. [1] for a thorough study of the L dependence.



we have that [1]:

1 g2 L(m2 + 292) m2 292
£olg2) = 32 (V Wi+ 202 — wi wk> 8 C\ 220 ) Tt 20|

k
(4.4)
where the sum can be done by means of the Abel-Plana formula, which is the exact vacuum

energy of the theory.

A brief summary of the rest of this section is the following. In section 4.1 and section 4.2
we calculate the 2 and 3-point corrections to the operator AH. In section 4.3 we perform
a numerical test to check that our expressions for AH are correct. Then, in section 4.4 we
discuss the numerical results and the convergence of the expansion AH (&;) =Y, AH,(&;)
by comparing with the exact spectrum &;.

4.1 Two-point correction

Following the steps explained in section 2 we begin the calculation of the two-point correc-
tion by first computing AHs. From eq. (2.3) we have that

1 o0 ) .
AHQ rs = Z Vmg E Vs = lim —Z/ dt 61(5—E7-+ze)t7-{v(t)V(O)}m . (4'5)

e—0 0

Then, applying the Wick theorem to eq. (4.5) we find

0o ] ) L/2 2
lim —ig%/ dt ez(‘SETJr“)t/ dxdz Z $9-mDE ™ (2,t) 1™ (x + 2, )" (2,0) 1y

(4.6)
where s, = (12))217! are the symmetry factors and Dp(z,t) is the Feynman propagator
with discretized momenta. Henceforth we label the terms m = 0,1,2 by Af[ 2 so that
AHQ AH2 +AH¢ +AH§) and similarly for A Hs; the labels only inform about the total

number of fields in each term which do not need to be local. Due to the time integration
domain, it is convenient to use half Feynman propagator

_ —zw t 12""2
Dy (z,t) = Dp(z,)0 2L Z e 0w, (4.7)

the momentum of the propagator is discretised due to the finite extent of the space. Next,
we proceed to calculate the operators in eq. (4.6), starting with the detailed calculation of
the coefficient of the identity operator AHj:

AHY (), = hm —zszgz/ dt/ / dz e E—EHOM D2 (4 )1, (4.8)
L/2

where 1,5 = ¢ fLﬁz

q. (4.7) and performing the space-time integrals we find

dz has dimensions of [E]~!. Then, upon inserting the propagator of

2
-~ 5295 1 1
AHY(E)ps =22y S 1. 4.9
2 (E)re =741 ~W2E— By — 2w (4.9)



The operator in eq. (4.9) has poles from all possible intermediate states and, as explained
in section 2, the operator AH%L (&) is found by keeping only those terms with poles located
at E, + 2wy > Ep, therefore

2 1 1
AHN(E),s = % 3 1,s. (4.10)

2
we€ —FB, — 2w
ki Bp+2wp>Ep Ok r k

The calculations of AHS) * is similar to the one for eq. (4.10), we start by computing
L2
AH2 (E)rs = hm —231g2/ dt/ drdz EEHM D (2 8) 1p(a+ 2, 8)d(x,0) 1ps
L2
(4.11)
where we expand : ¢(z+ z,t)$(x,0): in modes, as in eq. (3.3), and do the simple space-time
~ 2
integrals. For the full expressions of AHS5 see appendix B. Then, keeping only the terms
with poles at & > Er we get

¢2 . 2 ]. 1 .I.
AHZ (5)7’8 = 5192 Z 402 E— E, — 2wq (aqaq)rs : (412)
q: 2wq+Er>Er q

4
The operator AH2¢ is obtained in a similar way,

O (). — 5002 1 1 bt
AHy (E)rs = 5093 . QWZLE . Vg £ F, — 2 (al,a’ j agag,) . (413)
1,92: q9 T T

In appendix A we give a simple way to derive these expressions from diagrams, and for
the full expressions of Aﬁf * and Aﬁg " see appendix B. Notice that the values of q1, g2
and ¢ appearing in the sums of eq. (4.12) and eq. (4.13) can take only the momenta of
the states | F5) € H; on which a and af act, and therefore are bounded. On the other
hand, the values of the k’s in eq. (4.10) go all the way to infinity. Also, even though the
operators in eq. (4.12) and eq. (4.13) may seem not hermitian due to the E, appearing in
the expressions, one can see that the operator (AH, §’ 2)rs is diagonal and therefore E, = Ej,
while AH;S " is not diagonal, but one can check that E, + 2wy, = Es + 2w, making it
hermitian as well.
We end this section by noticing that the operator of eq. (4.10) can be rewritten as

© JE $9g2 <=~ 6(E—E, — 2w dE ®5(E — E
apy, = " 5 AB BBy gy [T
Er — E

E-F L (2w )? .2 E-FE
(4.14)
where @5 is the two-particle phase space with discretized momenta,
Lé
y(E—E) =Y Mtk20  or §(E — By — wiy, — wy) (4.15)

= (2ka1) (2Lwy,)

where from eq. (4.14) one has that E— E, > 2m.”> Eq. (4.14) can be evaluated by means of
the Abel-Plana formula, which for LE7 > 1 is well approximated by its continuum limit.°

5The lower limit in eq. (4.14) should be taken slightly above Er to reproduce the lower limit ¢: 2wq+E, >
E7 in the sum of eq. (4.9).

®The difference between the continuum limit and discrete result ranges from O(¢g’L™'EL?) to
O(¢° L' Ez'm™2) depending on the matrix entry.



The continuum two-body phase space is given by

/ > d*p d?pa
o (2m)2 2wp, (2)2 2wp,

1
EVEZ —4m2?’

where P* = (FE,0) and E > 2m. Therefore (for LE7 > 1) we find

Py(E) = (2m)2 6P (PH — py — po) =

(4.16)

O(E — B, —2m) L. (4.17)

CdE 1 1 1
AHNE), s ~ s 2/ —
2() 292 £ o E—EE—E, \/(E—ET)2—4m2

This result is useful for numerical implementation since eq. (4.17) can be integrated in terms
of logarithmic functions. Finally, we notice that upon expanding the function s /(27)®2(E)
around m/E = 0 we find agreement with ref. [1] that computed it by other means (there
called uggo(E) = 1/(7TE2)).

4.2 Three-point correction

The calculation of the three-point correction A Hg also starts from the expression in eq. (2.3)

o0

AHs(E)ps = — lim [ dtdty e E— Bt MAt) Ty (T )V (To)V (T3) s (4.18)
¢ 0

where T}, = Ei;]i t,. Next we apply the Wick theorem and find that the time ordered
product T{V(T1)V (T2)V (13)} is given by

L/2 2
g%/ L/2d$1d{l:2dz Z ngfUD?(l‘l, tl)D% (.%‘2, tQ)D}):‘ (1‘1 +x9, t1+t2) : ¢§{1Em¢§g7£ﬂ¢§{;ﬁim :
- m,n,v=0

(4.19)
where we have introduced the notation X = z + Zf’;’i xn and ¢, = ¢(x,t); while the
symmetry factor is given by

13
s — & (4.20)

p (p—m—n)l(p—m—0v)l(p—n—ov)mnl!"

We use the same notation as in the previous section AHy = Aﬁ% +A.FAI§52 +Af[§54 +Af[§’6,
and similarly for AH3. Then, upon performing the space-time integrals in eq. (4.19) and
only keeping the terms with all the poles above Er we find AH3. Then, for the term AH;}
we get

1 1 1
1 _ 111 3
AHg (5)rs = 89 QQZ g (2wk)3 (8 E = 2wk)2 1,s. (421)
k: Ers+2wi>ET

The expressions for AH. 3‘? 2, AH ?‘f) and AH g * are lengthy but straightforward to obtain and
are relegated to appendix B.
As done in the previous section, eq. (4.21) can be written as

> 4dF 1 1
AHL(E), :31113/ — = 8(E — By — 2wy,) 1, 4.22
3( )S 2 92 Er (5—E)2L;(2Wk)3 ( k) TS ( )
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Figure 1. Comparison of both sides of egs. (4.24) and (4.25).

which for L='E7 > 1 is well approximated by its continuum limit

ol ﬁ *©  dE 1 1
T 2w g, (E- B2 (E—E)? \J(E - E,)? — 4m?

and can be integrated in terms of logarithmic functions. This is useful for a fast numerical

AHL(E) T,  (423)

implementation.

4.3 A numerical test

We perform a numerical check to test our prescription to select the poles of Af[n(é‘ ) to get
AH,, i.e. that we can select the desired intermediate states of Hy by looking at the poles of
the terms of AH,. The check consists in computing AH, as explained, and then selecting
only the terms with all poles at & < Er. We refer to the expression as AHY to differentiate
it with A H,, that only receives corrections from terms with poles at £ > Ep. AH%Z is then
compared with the matrix elements of VP/(E — Ho)_lpr, finding an exact agreement.
The same is done for AH3(E) by comparing it against VP(E — Ho) 'V (€ — Ho) 'RV,
This check has been done for all the matrices used in the present work, both for ¢? and
¢*. For brevity we only show the check for two matrix entries of the ¢? theory. These are

1 g3 1
(6r=0 |V Py PV |6y=0) = > 5
€~ Hy k: 2wj,+6m< Er 2w € — Om — 2wy,
393 5 24 9
4.24
+2m2<8—4m+5—6m+5—8m>’ (424)
1 1 1 1

0|VP 1% PV |0)=gs . 4.25
O1VPg—5 Vg BV 10) gzk;%mww—mv (4.25)

In figure 1 we compare both sides of equations eq. (4.24) and (4.25). The red curves
correspond to the right hand side of eqs. (4.24)—(4.25), which are our analytical results,
and the blue dots are given by the product of the matrices in the left hand side of the
equations. In the left plot, done for (6x—q |AHL|65—¢), the first pole arises at the four-
particle threshold and subsequent poles appear for higher excited states. Instead, the first

~10 -



Er=12,L=10, m=1 Er=12,L=10, m=1
0.010 : 0.0005
- AgrunC(gZ) - Agrum(gz)
0.008 w 0.0004 w ]
- 007(92) - 057(92)
0.0061 - AFY(gy) _ 0.0003 - AW(g) T
$ 9
W 0.004 @ 0.0002
e <o
0.002 0.0001 ]
0.000}—0—8—8—6e—90—0—9o—o—0—0o 009 0.0000 vv:{:’é.::—::
-0.002 ‘ ‘ ‘ -0.0001 ]
0.0 0.2 0.4 06 0.8 0.0 0.2 0.4 0.6 08

Coupling constant g» Coupling constant g,

Figure 2. Left: comparison of the exact vacuum energy with the numerical result as a function
of the coupling constant go (for V' = g f dr¢?). Right: left plot with the y-axis zoomed in a
factor x20.

pole in the right plot, done for (0|AHL|0), occurs at & = 2m. Notice that in both figures
there are no poles for £ > Ep.

4.4 Spectrum and convergence

We perform a numerical study of the convergence of the energy levels as a function of the
truncation energy E7 and their convergence as higher order corrections AH, are calcu-
lated for a fixed Ep. We use the formulas in egs. (4.10)—(4.13), (4.21) and (B.5)-(B.8) to
numerically compute AHy and AH3.”

We begin by comparing the vacuum eigenstate 58 obtained by numerically diagonaliz-
ing Hr + 22722 AH,, (for N = 2 and 3) with the exact vacuum energy &. In figure 2 we
show a plot of A} = &} — & as a function of the coupling constant go. The plot is done for
a truncation energy of Ep = 12 and L = 10 (recall that we work in m = 1 units). For an
easier comparison with previous work, these plots have been done with the same choice of
parameters and normalizations as in figure 2 of ref. [1]. The gray curve in figure 2 is obtained
by numerically diagonalizing Hr, whose lowest eigenvalue is &1 . The blue curve is obtained
by diagonalizing the renormalized hamiltonian Hy + AH>(&f ), whose lowest eigenvalue is
EYV. Lastly, the green curve is obtained by diagonalizing Hy + AH(EYY) + AH5(EYY)
(we find little difference in evaluating the latter operator in €17 instead of £)Y). The
right plot of figure 2 is a zoomed in version of the left plot in order to resolve the difference
between the A}V and AYVV curves.

The right plot shows that overall Ag V'V performs better than A(‘)/ V' this indicates that
the truncation of the series expansion AH = Y >°, AH, at n = 3 is perturbative in the
studied range. The effect is more pronounced for the highest couplings g2 ~ [0.6,0.8]. As
a benchmark value & (g2 = 0.8) = —0.351864, see eq. (4.4). Therefore the relative error at
g2 = 0.8 is 2%, 0.01% and 0.002% for the Truncated, the V'V and the VVV corrections,
respectively.

"The sums over k in egs. (4.10)—(4.13), (4.21) and (B.5)—(B.8) have been done with a cutoff k = 250.
We have checked that increasing the cutoff has little impact on the results and find agreement with analytic
formulas like eq. (4.14).
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Figure 3. Left: comparison of the exact vacuum energy with the numerical result as a function of
the truncation energy Ep. Right: left plot zoomed in.

i 92=1.8, L=10, m=1 005 9>=138, L=10, m=1
- ATYeED) - ATSED

- 0.25 - |AYY(ET)| - 0.04 - |AY%(Er)l
2020 ~ AYY(Er) L -~ AYY(Er)
Q @ 0.03
c\:§ 0.15 u:i
% % 0.02
< 0.05 < 0.01

0.00 0.00

10 12 14 16 18 20 14 15 16 17 18 19 20
Truncation Energy Et Truncation Energy Et

Figure 4. Left: comparison of the exact energy difference £ — &y with respect the numerical result
as a function of the truncation energy Ep. Right: left plot zoomed in. On both plots we have taken
the absolute value of the curve corresponding to the V'V corrections, in blue.

Next, we check the convergence of the energy levels as a function of the truncation
energy Ep. In figure 3, in the left plot we show A} = & — & as a function of the
truncation energy Er, for i =Trunc, VV and VVV. Both the AYV and A}YVY curves
give better results than A" for the whole range. Also, the curves AYY and A}V have
a better convergence behavior and, when converged, they are closer to zero than A?unc.
The right plot is a zoomed in version to resolve the difference between AYY and A}VV.
The plot shows that for Er < 15 the curve AYY gives better results than A}YVY while for
larger E7 the behavior is reversed. This indicates that for £ < 15 (and go = 1.8) the
truncation of the series AH =% >° , AH,, is not a good approximation, and adding more
terms will not improve the accuracy. However, as Ep is increased it pays off to introduce
higher order corrections to get a better result. This is because A} V" has a faster converge
rate than AYV to the real eigenvalue. The value is & (go = 1.8) = —1.360719, see eq. (4.4).
Therefore the relative error at Ep = 20 is 1%, 0.04% and 0.009% for the Truncated, the
V'V and the VV'V corrections, respectively.

In figure 4 we repeat the plots of figure 3 for the first Zs-even excited state but taking
the absolute value of the AYV curve for clarity. The plots show a similar convergence rate
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for the three A! curves. However, there is a similar pattern compared to figure 3: for
Er < 15 introducing higher order corrections of the series AH = Y 2 , AH,, gives worse
results, while for larger values of E7 adding higher AH,, corrections improves them. The
value is &£1(g2 = 1.8) = 0.784042, hence the relative error at Ep = 20 is 0.8%, 0.3% and
0.17% for the Truncated, the V'V and the VV'V corrections, respectively.

5 The ¢* theory

Next we apply the method presented in previous sections to the ¢* theory. We start by
deriving the exact expressions for AHs in detail, then we perform various useful approxi-
mations for a faster numerical implementation and discuss general aspects of the method.
We also discuss the pertubativity of the AH,, expansion and compute the spectrum of the
theory at different couplings while studying its behaviour in Fp and ¢ using the results
of AHy. We end the section with some comments on future work and a discussion of the
calculation of AHs.

5.1 Two-point correction

Again, we follow section 2 to derive AH by first computing AH. From eq. (2.3) we have

o0
L v, —tim—i / dt E BT (O (0) e . (5.1)
0

M@ = 3 Vesg— g Vi = i
J

It is convenient to re-write the two-point correction in the following equivalent form

~ 1 00 ) )
AH(E)rs =D Vi Vjs = lim —i /0 dt " EEHNTLY (4 /2)V (=1/2) s, (5.2)
J

E— Ej e—0

where E,s = (E, + E;)/2. Applying the Wick theorem we find

00 ) ) L/2 4
- z'gQ/ dt e’(gE”“E)t/ dxdz Z $4-mDE " (2,t) 1™ (2 + 2,t/2)¢™ (2, —/2) s
0 - m=0

L/2

(5.3)

where s, = (2) 2p! are the symmetry factors. By integrating eq. (5.3) and keeping only the
contributions from high energy intermediate states E; > Er we obtain the exact expression
for AH,. We use the shorthand notation AHy = AHY + AHS)2 + AHS’4 + AH§)6 + AHS’S

for m =0,1,2,3,4, and similarly for Aﬁg. For AHY, AHS52 we obtain:

2
1
AHMNE, Br) = 229 —  Fy(ky, ko ks, ke, £, Er), (5.4)
2 2412 k1l§k3k4 Why Wy W W,
AHY (£ E _ s3g” 1 L Bk k. k & E 5.5
2 ( ) T) 24_[/2 Z Z 2( 1,K2,K3,41,42,C, T)? ( . )

Why WhoWhs +/Wg, @
k1,k2,k3 41,92 ot WhoWha /Wa1 Wao
where Fy(k1, ke, k3, kq, E, E7) is given by

Q(Wkl + Wiy + WEy + WEy, + E,.s — ET)
S — Wk T WEy — WEy — WEy — ETS

FOrs = 52§1=1k;i’0 ]lrs s (5.6)
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and the operator Fy(ki, ko, k3, q1,q2, &, E) is given by

O(Ers + wp, + W, +wiy — E7)
g - ETS — Wk — Wky — Wiy

O(Ers + wi, + wk, + wi, — E7)
S R — (af,al) .

Fors = 5k1+k2+k3,q1 5Q17—Q2 (ath GQQ)TS

+ Oky+hoths Q 5‘11,—112
8 - E’I‘S — Wk T Why — Wis

ke O(Ers + Wiy + Why + Wiy +wq — E7)
1tk2+k3,q92 ¥q1,92 E— E,, W,

— Wiy — Why — Wa (ajll a‘D)rs

Q(Ers + Wgy + Wy + Wy — Wg — ET)
E—Ey — Wy — Why — Wiy T Wy

+ 5k1+k2+k3,f12 5(117!12 (ajn a%)rs : (5-7)

In egs. (5.4)—(5.5), all ¢;’s are bounded from above (¢; < gmax) because they correspond to
the momenta of creation/annihilation operators that act on the light states (i.e. states in
H;). Instead the k; = 27n;/L run over all possible values n; € Z. Similar expressions for
AH. g’ 4, AH. g’ 6, AH;’ ® are given in appendix C. As mentioned before, a simple way to derive
these expressions from diagrams is given in appendix A. We have performed the same kind
of numerical checks done in section 4.3 for all the operators AH, in the ¢* theory.

Approximations. The exact expressions for AHs are computationally demanding. Here
we present different approximations that speed up the calculations and simplify their ana-
lytic structure. These basically consist in approximating the contribution from the highest
energy states to AH in terms of a local expansion (as normally done in Effective Field
Theory calculations), while keeping the contributions from lower energy states in their
original non-local form. This is achieved by defining an energy F and then by separating
AHj into two parts, AH where we only sum over intermediate states with E; > Er, and
AH;_ where we sum over those with B < E; < Ef.

AH2+(87 EL)T‘S - AH2(87 EL)T‘S 5 (58)
AHy_(E, Ep,EL)rs = AHo (€, Er)ps — AH2(E, EL)rs - (5.9)

We choose Ej, > Er so that AH,, is well approximated by local operators.® As an
example we show how to implement this procedure for the contribution of AHgﬁ ’ given in
eq. (5.5) and eq. (5.7). We start by examining the term AHfi(S,EL) = AH§>2 (€,EL),
which is obtained by replacing Er by Er in eq. (5.7). In this case >, wy, 2 Er > Er 2
wq, Ers, and then it can be well approximated by

AHY, ~ ¢y Vs (5.10)
with
(6. ) 539° 3 L Okyhaiks0 O(Why + Wy + Wiy — EL) (5.11)
’ (2L)3 Ky g ks Wiy Wy Wi E— WEy — Wgy — Wiy ’ ’

and Vo = fOL dx $?(x) which has dimensions of [E]~!. The approximation in eq. (5.10)

2
receives corrections of at most O(Ep/Er). The expansion of AHS) ", in terms of local

8In the cases where we are only interested in having a good approximation for the lower energy entries
r, s of the matrix, then E can be taken to be similar to Er.
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operators can be obtained by expanding the term Aﬁf * in eq. (5.3) around t,z =0

o oo ) ) L/2
AHg’ (E)rs = —Z'gQSQ/ dt e’(g—Ererzs)t/
0 —L/2

L/2
dzD%(z,t)/ dx[ :¢2(x,0) rs —i—(’)(tQ,zz)} ,
—L/2
! (5.12)
and, after integrating, keeping only the contributions from those states that produce poles
at £ > FEp, when E,4 is neglected. On the other hand AHg’Q_(S, Ep,Ep) = AHS52 (&, Er)—
AHS’2 (€, Er) is given by the same expressions as in eq. (5.5) and eq. (5.7) but now the sums
to perform are much smaller since the momenta of the intermediate states are restricted
between Er and Efj,.
The same exercise done for AHgi can be done for AHJ, and AHSf_ and one has that
in the limit E;, > Ep

AHY, ~col, AHY ~c Vo,  AHY, ~cyVi, (5.13)

where V,, = fOL dz ¢*(z) and has dimensions of [E]~?,

2
g 549 Z L Ok 4 byt ks k4,0 O(Why + Why + Wiy +wi, — E1)
(£, FL) (2L)% w lw 2w 3w4 Sl—w 2—w 3—w 4—w (514
ket ha ka1 Wk Whs Wk ky — Why — Why — Wy
Z Lé o( + E
(5 EL 829 2 kl+k270 wkl wk? L) , (515)

Wiy Wy E — wg, — W,

and ¢ is given in eq. (5.11). On the other hand the operators AHS’6 and AHS’8 are of the
tree-level and disconnected type because they involve one and zero propagators respectively,
see eq. (5.3). Therefore the operators AHg’i and AHf_T_ are not well approximated by
a local expansion, and we do not approximate them. For Ej sufficiently big though,
AH;’JGr = AHg’i = 0 and all the contribution to AH?G, AH;’S comes from AH;’E, AHfi, as
can be explicitly seen from egs. (C.4)—(C.5). Notice that these operators only contribute
to the entries of AH,; with high values for F,., E;. Again, the coefficients of the local
operators in eq. (5.13) can be obtained by expanding AH, in eq. (5.3) around ¢,z =0

2

00 L
AHy(E),s = —ig? / dt HEErsticlt / / dzdz Z s1-m Dy " (2,1) 167 (2,0) s +O(t, 2)?,
0 L/2 0
(5.16)
and, after integrating, keeping only the contributions from those states that produce poles
at £ > Er, when FE, is neglected. The evaluation of the coefficients in eq. (5.13) can still
be hard to evaluate numerically. In the next section we explain an alternative and simpler

derivation of the coefficients co,, and further approximations to evaluate them.

5.2 Local expansion and the phase-space functions

From the first term in the local expansion of eq. (5.16) the coefficients of the local operators
are given by:

[ee] . . o
ton(&) = —ig?s4n / dt e'EFie)t / dz D5 (x,t), (5.17)
0 —00
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where s4_, is the symmetry factor and, as explained above, the common FE,¢-shift on the
eigenvalue &€ is neglected.” Next, applying the Kramers-Kronig dispersion relation to ¢, (&)
in eq. (5.17)

o [®dE 1 )

Next, we compute Im ég,. First we do the space integral which, up to g?ss_,, yields

L oS k0 oy Hi) 0%, k0
Im_ZZH2ka / dt =2 we; Hie)t — ZHQLWk 2 5< zi:wki),
(5.19)
where we have used Dp(t,z)0(t) = D(t,z)0(t) with D(t,x) = >, (2Lwy) tetho—iwst,
Therefore we find,'°

2 [e'e)
. g°S4—n dE
= b4 (F .
¢on(€) 27 /OOS—E-l-ie 1-n(E) (5.20)

where ®,,(F) is the m-particle phase space
On(E)= LOTR k0 o E—Zm:w (5.21)
e ey k H 1 2Lk, i=1 A '
1,/R2;.. 7 =

Finally, the coefficients in eq. (5.13) are obtained by including only the contributions from
poles located at £ > Ej,

*dE 1
2
ey 77¢ .
o®) = sig” [ g BalE). (5.22)
*dE 1
_ 2
E) = [ G a g OulE), (5.23)
*dE 1
= 2 — ——P5(F). .24
ca(€) = s29 /EL 5 2 22(B) (5.24)

It would be interesting to see if in general, higher AH,,; corrections can also be written in
terms of phase space functions. In the rest of the section we explain useful approximations
to evaluate egs. (5.22)—(5.24).

Continuum and high energy limit of the phase space. We start by approximating
the phase space by its continuum limit.'! Recall that in the continuum limit the relativistic
phase-space for n-particles is given by
3, (E) = i (om)26@) (e k), 5.25
= [ g5, +3oH (525)
where P* = (E,0) and k! = (wy,, k;). Then, for the 2-body phase space one has

1
EVEZ —4m?’

9The derivation of the coefficients ¢é2, (&) in eq. (5.17) applies to any ¢ theory.
10Eq. (5.20) can also be derived from the optical theorem, with careful treatment of the symmetry factors.
1This is a good approximation for Lm > 1 and we have checked it explicitly in our numerical study.

Oy(E) = (5.26)
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Next, solving for the Dirac delta’s in eq. (5.25), the 3-body phase-space is given by

1 (E—m)? dsas
B3(E) = — . (527)
’ 27 /4m2 \/523(823 — [E+m]?) (s23 — [E — m]?) (523 — 4m?)

with ££ > 3m. This integral can be solved by standard Elliptic integral transformations

and we obtain,

2
g 1 1
O3(F) = — K(a), 5.28
3(F) T (E—m) \/(E +m)% — 4m? () (5:28)
1 16Em® _ (/2 de : e
where o =1 E=m)3 (F3m) and K(a) = [, T is an elliptic integral.

In general though, finding the exact phase space functions ®,,(F) is difficult but can
be simplified in the limit £ > m. In our case, this limit is justified because the phase space
functions are evaluated for £ > E; > m. Notice that to take the high energy limit of
®,,(E) one can not expand the integrand of eq. (5.25) because, after solving for the Dirac
delta’s constraints, it is of O(1) at the integral limits, see for instance the elliptic integral
in eq. (5.27). Instead, we use the following relation for the phase space

I(7) = /OO dx D%(z,7) = 21/00 dE e E7®,, (F) (5.29)

oo T Jo
where Dg(x, ) is the euclidean propagator and ®,,(E) is only non vanishing for £ > nm.
The Euclidean propagator in d = 2 is given by the special Bessel function of second kind
Ko(mp) with p = Va2 + 72 and I,(7) = [*_dx K{(mp)(27)~". At this point we can use
a clever trick done in ref. [1] to find the leading terms of the inverse Laplace transform of
I,(7) in the limit E — oco. Since the phase space ®,(E) is the inverse Laplace transform
of I,,(7), the leading parts of ®,,(F) as E — oo come from the non-analytic parts of I,(7)
as 7 — 0. To find the non-analytics parts of I,,(7) first one notices that

—log (FF) 1+ O0m?*p?)],  p<1/m
Vams € ML+ Om ], p>1/m

where v is the Euler constant. Then, the contributions to I,(7) = [*_ da K{(mp)(2m)™"

when 7 — 0 are dominated by the region where p < 1/m and the integrand can be

approximated by Ky(mp) ~ —log (ew—;"p).12 This approximation introduces spurious IR

Ko(mp) = (5.30)

divergences in the region of integration p > 1/m where the approximation of the integrand
is not valid. These divergences can be regulated with a cutoff A or, equivalently, one can

take derivatives with respect to the external coordinate 7 to regulate the integral I,,(7).'3
21
e ;np
non-analytic terms of 0,1,,(7) as 7 — 0. For instance, for n = 4

1 2
O I4(1) = 3 log(mte?) | log(mr)log(mTe®?) +~* + % + const. + O(7),  (5.31)
7T

Hence, approximating Ko(mp) =~ —log( ) and integrating over x one can find the

12This method is like the method of regions which is used to get the leading terms of multi-loop Feynman
diagrams in certain kinematical limits or mass hierarchies.

13This is similar to the fact that the UV divergences of multi-loop Feynman diagrams are polynomial in
the external momenta because taking enough derivatives with respect to the external momenta the integrals
are UV finite.
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where the constant does not depend on 7. Lastly from eq. (5.29), 0.1,,(7) is related to the
phase space ®,(E) by the Laplace transform,

/ dE[-E®,(E) e ™ =21 0,I,,(7) (5.32)
0
so that for n = 4 one has
3 1
®4(B) = 5 553 [log*(E/m) — 7% /12] + O(m?*/E*). (5.33)

Therefore using eq. (5.33) and expanding eqgs. (5.26), (5.28) at large F,

“dE 1 3 1
~ 2 — = —_Tlog?(E —72/12 .34
o®) =i [ G e 5 pallog(E/m) — w2 12], (534)
*dE 1 3 1
~sgg? [ - 2 og(E .
E) = ssg” [ g e e OBE/m). (5.35)
“dE 1 1
&) ~ s56° — = 5.36
@) =me [ (5.36)

where the error made in the approximations is of the order O(m?/E?%). We end this section
by noticing that the leading terms of the phase space functions ®2(E) and ®3(F) in the
large E expansion agree with the corresponding result of ref. [1] (there called pg44(E) =
so®o(E)/(2m), pas2(E) = s3P3(FE)/(27)). The local approximation in eqgs. (5.34)—(5.36)
can be refined by taking into account the E,¢ shift, see ref. [1].

5.3 Spectrum and convergence

Before starting with the numerical results we first discuss the series AH =) _, AH, in
more detail. The truncation of the AH series in powers of (Vy,/Hopn)™ is only justified
for Vi /Hopn < 1. Notice that even for weak coupling g < 1 the series does not seem to
converge. Let us consider a particular matrix entry

1 1
<E ‘AH | E ‘/7' o i—1J% o V'n— S (537)
Z J1 J 1Ji £ — E E— Ej In—1

J1yerdn—1

where all the terms in the sums have a definite sign depending on whether n is even or odd.
For instance, consider a contribution to eq. (5.37) from states of high occupation number
but low momentum like

v 1 (NpN_j V| NyN_) _ 6g (2N(N —1)+4N?)
e — E, £ — 2Nwy, - ALw? £ — 2Nwy, ’

(5.38)

where | Ny N_j ) is a Fock state with N particles of momentum k& and —k that satisfy
2Nwy, > E7p. The term of eq. (5.38) gives a non-perturbative contribution even for small g
for high enough N and becomes worse for smaller momentum |k|. Thus the series (AH),s =
> (AH,),s seems to be non-convergent but we will assume that (when the expansion
parameter is small) the first terms of the series are a good approximation to (AH),s.
Notice that the appearance of the non-perturbative contributions (like in eq. (5.38)) can
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be worse for those matrix entries (AH),s with energies E,, closer to Er because the
intermediate states in Vj; can have lower momentum and high occupation number for a
given AH,.

For the first terms of the expansion (V45 /ER)", a naive estimate of the dimensionless
expansion parameter is a;.s ~ g/E7 x 1/(Lu2,) where the g and L can be read off from the
potential; the E ! arises because the sums in eq. (5.37) are dominated by the first terms,
starting at 1/Ep (for £ < Er); and by direct inspection of the potential m/N < p,s < Ep
where N is a possibly large occupation number, depending on the matrix entry.

It can happen that entries with energies F,, Es close to Fr do not have a perturbative
(AH),s = > (AH,),s expansion and even including the first terms of the series is a worse
approximation than setting (AH),s — 0; these entries can induce big errors on the com-
puted eigenvalues. Since the eigenvalues we are interested in computing are mostly affected
by the lower E, s-energy matrix entries we will neglect the renormalization of the higher
E, s energy entries where the series (AH),s = Y (AHy)rs is not perturbative. One way to
select those entries would be to keep only those that satisfy a,s ~ (AH3)qs/(AHg),s < 1.
However, this can be computationally expensive and instead we take a more pragmatic
approach and only renormalize those matrix entries (Hp),s with either F, or Es below
some conservative cutoff Eyy, below which the series is perturbative.

Up until this point the discussion has been done for ¢ <« 1. However, for those
matrix entries where a5 is a perturbative expansion parameter one can increase g to strong
coupling!® by increasing E7 at the same time. Increasing E7 means enlarging the size of
Hr and AH, and it can happen that the new matrix entries do not have a perturbative
(AH);s = > (AH,),s expansion. As explained above, in those cases we set (AH),s to
zero.'®
Numerical results. In the rest of the section we perform a numerical study of the
spectrum of the ¢* theory. First we summarize the concrete implementation of the method.
We find the spectrum of H by diagonalizing Heg = Hr + AH3(ET) where E7 is the
eigenvalue of H7.'9 As explained in section 5.1, to calculate AH, we separate it in AHo,
and AHy_ defined in eqgs. (5.8)-(5.9) and take Ej, = 3E7.!" We found little differences
when iterating the diagonalization with £. We also find that increasing £y, does not have a
significant effect on the result. For AHs_ (€, Er, E1) we use the expressions in egs. (C.1)—
(C.5) and for AHo (€, EL) we use the ones in egs. (5.34)-(5.36). We do a conservative
estimate of the expansion parameter a,s and set to zero (AHj),s for all those entries that
are not perturbative.

First we study the lowest eigenvalues of H at weak coupling, where we can compare
with standard perturbation theory. The perturbative corrections to the vacuum and the

"1n the ¢* theory the strong coupling can be estimated to be g > 1, see egs. (5.39) and (5.40).

5 For the ¢? perturbation studied in section 4 we find that the error in the computed eigenvalues can be
decreased by increasing Er even without introducing Ey . For the ¢* we find that Ey must be introduced.

16The dimension of the Hilbert space Hy; for Er = 10, 12, 14, 16 and 18 is 117(108), 309(305), 827(816),
2160(2084) and 5376(5238) for the Zs-even(odd) sectors, respectively.

YThe choice Er = 3Er is done so that the local expansion is a good approximation for intermediate
states with E; > Er. Also, for this Er one has that AH;’_?_ = AHﬁ =0.
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Figure 5. Left: the vacuum energy & as a function of the truncation energy Er for a coupling
of g = 0.1. Right: energy difference between the first Zs-odd excited state and the vacuum
energy £) as a function of the truncation energy for g = 0.1. In both plots, the dotted curves are
computed with the truncated Hamiltonian while the solid and dashed curves are computed with
the renormalized hamiltonian at order VV. Dashed and dotted lines correspond to the cutoffs
Ew = Er/2 and Ew = Er/5. We have overlaid two dashed black lines corresponding to the
calculation in perturbation theory, see egs. (5.39) and (5.40).

mass are given by [1]:
21¢(3)
1673
3
m2, =m?[1 - 5 g2 +2.86460(20) g° + - - | , (5.40)

A/m? = g2 +0.04164(85) 3 + ... , (5.39)

where g = g/m and mypy, is the physical mass. In figure 5 we show the result for the vacuum
energy and mpy. As explained before, only those entries with E, s energies below a cutoff
Eyy are renormalized. We do the plot for different values of Ey = Er/2, E7/5 and we find
that the vacuum energy and the physical mass do not depend much on this cutoff. For the
left plot the difference between Ey = Er/2 and Ey = E7/5 is inappreciable.!® We find
that the spectrum is much flatter as a function of Ep for renormalized eigenvalues than
the ones computed with Hp. Since the exact spectrum is independent of the truncation
energy Er, a flatter curve in E7 indicates a closer value to exact energy levels. However,
it could still happen that adding A Hs corrections shifted the spectrum by a small amount,
as it happens for the ¢? perturbation seen in figures 3 and 4 for the range 16 < Er < 20.
In the plots we have superimposed constant dashed black lines that are obtained from
the perturbative calculations in eq. (5.39) and eq. (5.40). We find that the eigenvalues
computed with AHs are much closer to the perturbative calculation than the ones done
with Hp. The difference between the perturbative result and the one from &YV is of
O(10~%) and can be attributed to higher order corrections in the perturbative expansion.

Another source of uncertainty comes from higher order AH,, corrections not included.

18Tn fact, for this case we have checked that setting Ew = Fr gives a result on top of the lines of
Ew = Er/2. This is because at weak coupling there is not much overlap between the lowest lying eigenstates
of H and the high Hj eigenstates.
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Figure 6. Left: the vacuum energy & as a function of Er for g =1, 2 and 3 in descending order.
Right: energy difference between the first excited states and the vacuum energy as a function of
the coupling Er for g = 1, 2 and 3. In all the plots of the figure the blue curves correspond to
the Zs-even sector while the red ones to the Zs-odd. The dotted curves are computed with the
truncated Hamiltonian, while the solid and dashed lines are computed adding A H, with cutoffs
EW = ET/2 and EW = ET/3

In figure 6 we show plots with different energy levels as a function of the truncation
energy Er for g =1, 2, 3. To compare with previous work, these plots have been done with
the same choice of parameters and normalizations as in figures 9-10 of ref. [1]. In all the
plots the dotted lines are computed using the truncated Hamiltonian while the solid and
dashed lines are computed using AHy with Ey = Ep/2 and Ew = Ep/3, respectively.
The diamonds and the circles correspond to states in the Zs-even and Zis-odd sectors of
the theory. We find that in all the plots, for high enough values of Er, the solid lines
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Figure 7. Left: the vacuum energy &, as a function of the coupling g. Right: energy difference
between the first excited states and the vacuum energy as a function of the coupling constant g. In
all the plots of the figure the blue curves correspond to the Zs-even sector while the red ones to the
Zs-odd. The dotted curves are computed with the truncated Hamiltonian for a truncation energy
Ep = 18, while the solid and dashed lines are computed adding A Hs with cutoffs Ey = Er/2 and
Ew = Er/3.

for the AHy are flatter than the truncated ones. The difference between the dotted and
dashed lines is bigger for the plot for ¢ = 3 than the one for ¢ = 1. This can be understood
because one expects more overlap from higher Hj excited states with the vacuum for
higher coupling. The difference between the solid and dashed lines becomes smaller as Er
is increased. This can be understood because as Er is increased bigger parts of (Hr),s are
being renormalized, and eventually the difference between using Eyw = Er/2 and Er/3
becomes negligible. An intrinsic error of our calculation of the eigenvalues is the difference
between the values obtained for different choices of Eyyy. This error could be reduced with a
more careful estimate of the expansion parameter «,. s, which would be very interesting for
the future development of the method. In fact, it seems that for Ep < 12(14) for g = 2(3)
the cutoff Eyy is too high (and might include non-perturbative corrections like the one in
eq. (5.38)) as the eigenvalues deviate a lot from the computation done with Hr. Another
small source of uncertainty in our calculation comes from not having included higher order
AH,, corrections; in the next section we explain the calculation of AHs.

In figure 7 we show two plots of the vacuum and first excited states as a function of the
coupling constant g for Ep = 18 (cf. figure 4 of ref. [1]). There is an intrinsic uncertainty
in our procedure in the choice of Ey, and as we discussed above it could be lowered by
increasing the size of the truncation Er or ideally by refining the determination of Eyy.
Notice that the renormalization of the truncated Hamiltonian matters as the solid lines
have a significant difference with respect to the truncated (as seen in figure 6 the solid
lines show a better convergence as a function of E7). For g 2 3.5 the first Zs-odd excited
state seems to become degenerate with the vacuum which is a signal of the spontaneous
breaking of the Zs symmetry. This plot can be used to determine the critical coupling, see
ref. [1].
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5.4 Three point correction and further comments

As explained in the previous section we have performed the numerical study of the ¢* theory
without taking into account the three point correction A Hs. This would be an interesting
point for the future and therefore we give a small preview of the type of expressions one
obtains when computing the three point correction. As done throughout the paper, to get
the expression for AHs we start by first computing

[e.9]

AH3(E)ys = — lim dtydty " E- BT OFL) T O (T V(TY)V (T3) s (5.41)
€ 0

where T}, = Zi;ﬁ tn,. Then we find AH3 by keeping only those terms that have all poles
at £ > Er. Then, we see that the three point correction can be split into

AHy = AHY + AHY + AHS + AHS + AHS + AHS + AHS”, (5.42)

where the subindices denote the number of fields in each term. The correction AH{%L is
given by

2 cl1+la+k1+k2,0
5922 9° L20,  k rh0 OS2 [wp, +wi,]— Br) 0(S2_ [wy, +wy,]— Br)

Wiy Why Wpy Wpo W, Wiy € — 52 [wp; + W] E-%2_, [wr, + wi,]
(5.43)

where the symmetry factor is defined in eq. (4.20). The rest of the terms AH;SQ, cee AHg’12

can be computed in a similar fashion as explained in previous sections, but we do not present

AH;(€) =
ki,pi>li

them here since we did not include them in the numerical analysis.

Another interesting thing to study in the future is the local expansion of AHj3 and
higher orders in AH,. Here we present some of the terms for the AHj3 case. As done
for AH>, when the local expansion applies the calculation is simplified. We use the dia-
grammatic representation explained in appendix A for the expressions at O(t°, z°) of the
local renormalization. As an example the leading local coefficients that renormalize the
operators Vs, V; and Vg are

AL = (DS XD+ OFK+ 2D+ )% (644)

where for example,

2 cl+k,0
@ _ s131 g L2 st pat0 0w + wy — EL) O(wg + 53w, — EL)
(2L)5 . WEWp, WpyWps E—w — wg E—wp — E?:lpi

(5.45)
For the renormalization of the quartic we get

AH, = ( xOX + 50N + Yo+ ) Vi (5.46)

where for example,

2 + 70
e = 20 )y L2010 0w +wi, — Br) 0(wp, +wp, — Er) . (547)
(2L)4 Lilapipe Wiy Wi, Wpy Wps &— Wiy — Wi, & - Wpy — Wpy
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For Vs

6
AL = (fon+ ) (548)
3 2 2
Y L 1 _
)@\ -0 —g: ( o M) 02wy — Ep) . (5.49)

3
k

where

As final remark, notice that the expression in eq. (5.47) is the square of the coefficient
4
of Vy (in AH;’JF) up to a numerical factor (see eq. (5.15))

(>O<)2 = 6g S . (5.50)

It would be very interesting to investigate whether certain classes of diagrams in the
AH, =), AH,, expansion can be resumed. This would reduce the error in the computed
spectrum and its dependence on the arbitrary truncation energy Er. For instance, it could

be that the resummation comes only from the leading pieces of the different diagrams.'?

5.5 Summary of the method and comparison with ref. [1]

In this section we summarize our approach to the renormalized Hamiltonian truncation
method and briefly comment on the main differences with ref. [1].

The aim of the renormalized Hamiltonian truncation method is to find the lowest
eigenvalues £ of H. This is done by diagonalizing H.g = Hp + AH, where Hp is the
truncated Hamiltonian and AH encodes the contributions from the Hj eigenstates with
E > FEp. Computing AH is difficult but the problem is simplified if one expands AH
in powers of Vj5/Hpp. One expects that the first terms of the series AH = ) AH,
are a good approximation to AH if the expansion parameter is small. These terms can be
computed as explained in section 2, by first finding AH, and keeping only the contributions
from the states with £ > Ep. Then, we notice that for some entries with E,, Es close
to Er, the series (AH),s = Y, (AHy)rs is not perturbative (for the chosen parameters g,
Er). We deal with this problem by setting to zero all those entries with FE, or Eq > Ey
where Eyy is chosen appropriately, see section 5.3.

In order to speed up the numerics and gain analytic insight, we perform several ap-
proximations to the exact expression of AHs. First we introduce a scale Ep so that
AHy = AHy_ + AHy where AHa, only receives contributions of the states with £ > Ef,
while AHs_ only receives contributions of states with Er < E < Er. The scale Ey, is cho-
sen such that AHy, can be well approximated by the first terms of a local expansion. In
our case, we only keep the leading terms AHoy = 222(2) can [ dx $*(z,t) and we find that
the coefficients ¢; can be written in terms of phase space functions. Lastly, the coefficients
¢; are approximated by taking the continuum limit and then expanding them in powers of
m/Er. On the other hand AH,_ is kept exact because its numerical implementation is
less costly and it does not admit an approximation by truncating a local expansion. The
whole procedure has been described in section 5 and used to do the plots of section 5.3.

9This is the case in standard perturbation theory. For example the Renormalization Group Equations
in d = 4 resum the leading logs coming from different diagrams.
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Comparison with ref. [1]. Refs. [1, 3] introduced a renormalized Hamiltonian trun-
cation method by diagonalizing Heg = Hp + AH and expanding AH in a series. As
explained, we have used this as our starting point. In ref. [1] though an approximation to
AH> is calculated using a different approach than in this paper. To get A Ha, ref. [1] starts
by defining the following operator M (E')

& M(E
M(E),sdE = Z V;jVjs such that AHy = / dE Q, (5.51)
E E—F
E;<E<E;+dE T
and then noticing that M (FE) is related to the matrix element
C(r)rs = (r[V(7/2) V(=7/2)| s) = / dE e P B BRI M (E) (5.52)
0

by a Laplace transform. In ref. [1], the E — oo behavior of M (FE) is found by doing the
inverse Laplace transform of the non-analytic parts of C'(7) in the limit 7 — 0. This is done
in the continuum limit, which is a good approximation. The obtained result for M (E) in
this limit is taken to compute AHs. Ref. [1] differentiates two renormalization procedures,
one where the term (E, + Es)/2 in eq. (5.52) is approximated to zero (called local), and
one where it is taken into account (called sub-leading). In the later case M (FE) is given by
M(E — E,s), and therefore for entries with E,s ~ Ep taking the limit £ — E,s > m is not
justified when E ~ Ep. The way in which this problem is dealt with is by neglecting all
the contributions of M (FE — E,s) for E < E,s 4+ 5m; in other words, a (E — E.; — 5m) is
multiplied to the integrand in eq. (5.51).%°

With this, we can already find the main differences between the two approaches. In
our case we calculate the exact expression of AHy which, if needed, can be approximated.
Instead, ref. [1] finds the contributions of AHs that are leading in the limit where E — oo
(which neglects the tree and disconnected contributions). From our approach we can
recover the local result of ref. [1] if we set £, = Eyw = Ep, neglect the tree and disconnected
contributions, take the continuum limit, perform a local expansion to AHoy, and make
an expansion in m/FE < 1. The choice E;, = Ep implies AHy = AHy, and AHy— = 0,
while Fy = Ep means that no entries (AHs),s are set to zero. In a similar way we can
recover the sub-leading result taking into account the E, s terms, while introducing by hand
a 0(E — E,s — 5m) in the integrals of the coefficients.

Even though the two approaches are quite different, our method and their sub-leading
renormalization can still give similar results due to the following. For large enough Ep, the
low entries of (A Hs),s only receive contributions from loop-generated operators,?! and can
be well approximated by a local (up to the E,s dependence) expansion even if F, = Ep. On
the other hand, for high energy entries of (AH3),s the tree and disconnected operators are
non-zero, and none of the operators can be approximated by a truncated local expansion
if £, = Ep. However, in many cases these high energy entries become non perturbative
and we set them to zero when E, or E5 > Ey. Therefore we find that if Ey is used, it

20They find that M(E) starts to be well approximated by the first terms in the m/FE expansion when
E > 5m.
21This can be easily seen from the exact calculations or using the diagrams in appendix A.
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can be a good approximation for large enough Er to neglect the tree and disconnected
terms all together and set F;, = Ep while performing a local expansion. With this we
connect with ref. [1] where the scale Ey is not used to get rid of the non-perturbative
contributions. Instead the tree and disconnected terms are neglected, all the entries of
(AHs),s are approximated by the loop-generated local (up to E,s) operators only and
the (E — E,s — 5m) is introduced in eq. (5.51). As explained, neglecting the tree and
disconnected terms is justified, while the introduction of §(E — E,s — 5m) and truncating
the local expansion in practice largely reduce the values of the high energy entries with
respect to the exact result. All of these effectively act as our scale Ey. Therefore we see
that in many cases our approach and the one in ref. [1] can give similar results.

Even though the numerical results are similar, our approach introduces new tools and
insights that we think improve the renormalized Hamiltonian truncation method and can
help to develop it further.

6 Conclusion and outlook

In this paper we have developed further the Hamiltonian truncation method. In particular
we have explained a way to compute the corrections to the truncated Hamiltonian at any
order in the large Er expansion of AH =) AH,. We have applied these ideas to scalar
field theory in two dimensions and studied the spectrum of the theory as a function of the
truncation energy and the coupling constant.

There are various open directions that are very interesting and deserve further inves-
tigation. Firstly, it would be a great improvement to the method to find a more precise
estimate of the expansion parameter of the series. This estimate should be easy to imple-
ment numerically and lead to a precise definition of the cutoff Eyy. In this work we have
been pragmatic in this respect, and investigated the behaviour of the spectrum as this cut-
off is modified. It might be that only removing the contribution of certain type of matrix
elements (like the ones corresponding to high occupation number and zero momentum) the
series is greatly improved.

We have not pushed the numerical aspects of the method very far and all the com-
putations have been done with Mathematica. With more efficient programming languages
it would be interesting to further study and check that as the truncation energy E7T is
increased the uncertainty in the precise choice of Eyy is reduced.

Another point that should be addressed is the dependence of the spectrum on L as
higher AH,, corrections are added; also it could be relevant to inspect if there are diagrams
that dominate for large Lm > 1.

Another very interesting path to develop further is to apply renormalization group
techniques to resum the fixed order calculations of AH. Since the exact eigenvalues do not
depend on the truncation energy Er, it may be possible resum the calculation of AH,.
Our analytic expressions for the AH,, corrections permit a precise study of the possible
resummation of the leading corrections at each order in the perturbation theory of the
large E7 expansion. One could start by studying the resummation of the leading local
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corrections, and for that the phase space formulation that we have introduced is useful as
there are simple recursion relations for the differential phase space.

Another fascinating avenue to pursue is the applicability of the method to other theories
with higher spin fields and to increase the number of dimensions. In this regard, we
notice that the derivation of egs. (5.22)—(5.24) seems to be formally valid in any space-time
dimension d. Recall that the ¢;’s are the coefficients of the local operators added to Hp to
take into account the effect of the highest energetic Hy eigenstates not included in the light
Hilbert space H;. As d is increased beyond d = 2 the UV divergencies appear due to the
increasingly rapid growth of the phase space functions ®;(FE). One can then regulate the
¢; coefficients with a cutoff A. For instance, consider the coefficient ¢4 of the ¢* operator

A
dE 1
A 2
= — —— ®y(F 1
AE) = a5 g A, (61)
in d = 4. Then, requiring that the energy levels are independent of the regulator one finds
the following S-function

dch
= A2
B(g) A
where the £ corrections can be neglected in the limit of large A > £. Redefining g = \/4!
one recovers the known result for the A¢* theory S(A) = 122 A% + O(A3), where we have
neglected the mass corrections that for A > m decouple as ®2(A) = 1/(87) + O(m?/A?).

A possible way to make contact between the calculation in the renormalized Hamiltonian

+0(") = 0,0+ 0(4". ). (6:2)

method and the standard calculation of the beta function is by noticing that the coefficient
of the divergent part of the amplitude is proportional to the coefficient of its finite imaginary
part which in turn (by the optical theorem) is proportional to the two-particle phase
space. It would be very interesting to further study RG flows from the perspective of the
renormalized Hamiltonian truncation method approach.

We think that the Hamiltonian truncation method is a very promising approach to
study strong dynamics, and that there are still open important questions to be addressed.
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A Diagramatic representation

There is a simple and powerful diagrammatic representation that permits to easily find
the expression for AH,. This can be used to either compute the full operator AH,, or
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the leading O(t%, 2°) coefficients in the local expansion of AH,,; defined in section 4. This
representation is valid for any ¢® theory, but here we give examples only for the ¢* case
for concreteness.

Local coefficients. Imagine that we want to find the local coefficients O(t°, 2°) for

AH??_T_ To find them one puts 3 vertices ordered horizontally?? and draws all possible

diagrams that have only 2 external lines, four lines meeting at each vertex and don’t have

any lines starting and ending at the same vertex. Next, we assign a momentum for each

internal line and draw a vertical line between every pair of vertices. One such diagrams is
ks

. (A.1)

ki ks

The expression corresponding to a given diagram with n vertices and N propagators is
given by
1
o 0( ije{sp} Wk; — EL)
I I
[TZ 1 2ka ) kj€{sp} “Vk;

l

(A.2)

where k;j = 2mn;/L with n; € Z. Each of the n — 1 sets of momenta {s,} consist in the
momenta of the internal lines that are cut by each vertical line. In (A.1) these would be
s1 = {ki1, ko, ks} and sy = {ks, ks, ks5}. The symbol 6, stands for a Kronecker delta that
imposes that the total momentum crossing a cut is zero; s is a symmetry factor that counts
all the ways that the lines of the vertices can be connected to form the diagram. Applying
this recipe to the diagram in (A.1) one has

.
ks 2 ck3+ka+ks,0
2 g Z L 5k1+k2+k5 0 0(wk, +wi, Twi, —Er) 0(wky +wi, +wi; —Er)
= 3 ks Z 1 QLWk ) g_wkl Wy — Wk g_wkg_wk4_wk5

ki ks

(A.3)

mnv is given in eq. (4.20). Another example of a contribution

where the symmetry factor sy
2
to AHg:L would be

2 sk1+ka+ks+ka,0 5 4
@ G2 PFY L 5k3+k4+k5, 05wk, —Er) 03 _jwr, —Er)
ks Z 1 2LWk ) g_wkl_wkg_wk3_wk4 g_wkg, _wk4_wk5

(A.4)
Notice that the ordering of the vertices matters since the diagrams of (A.3) and (A.4) have

the same topology but give different results.
With this prescription one easily recovers egs. (5.11), (5.13), and (5.15) corresponding
to the AHy, coefficients in the ¢* theory

c():@, CQ:@, C4=>Q<. (A.5)

22The vertices are ordered in a line because the V(T%)’s in eq. (2.3) are time-ordered in the whole

integration domain. This is in contrast with the standard Feynman diagrams in the calculation of an
n-point function, where each space-time integral is over the whole real domain.
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Notice that to include the contributions FE,; mentioned at the end of section 5.2 the
same diagrammatic representation applies but one must then substitute £ — & — E,5 in
eq. (A.2) making the coefficients depend on the matrix entry.

Exact AH,, opertors. A similar diagrammatic representation can be used to calculate
the exact AH, operator from which one can easily get AH,,. The prescription to follow is
very similar to the one for the local case, where one starts drawing the same diagrams and
putting vertical lines between every pair of vertices. The only difference is that now one
extends the external lines to left and right in all possible combinations for each diagram
drawn and also assigns a momentum to the external lines. For the diagram in (A.1)
this means

@ &
A
> >
S T b
- ‘1 3

Now, the operator corresponding to a given diagram with n vertices, N propagators, A
external lines starting left and B external lines starting right is

osg" Z H wrs+ZQ e{sp} WQ;— EL H 6. Aff aqr H
1(2Lwy,) V/2Lwg, e \/Qqul

k's,q's ’L_ g Wrs— ZQjE{SP} Q] a=1 r=A+1
(A7)

where the sums over ks, ¢’s sum over all possible momenta for a given k;, ¢;. Then, each

of the n —1 sets of momenta {s,} consists in the momenta of the lines that are cut by each
vertical line. For the first diagram from the left in (A.7) these would be s1 = {ki1, ko, k5}
and so = {ks, k4, ks}, and for the second one s1 = {q1, k1, ko, ks } and so = {q1, k3, ka, k5 }.
The symbol . stands for a Kronecker delta that imposes momentum conservation at each
vertex a. The symbol w,s depends on the energy of the states (E, |, | E5) on Which a and
al act i.e. it is different for each entry (aT_qT aql)m, and is given by w,s = E,s — 2 ZAJEB Wg,
where E,; = (E, + Es)/2. As before s is a symmetry factor that counts all the ways that
the lines of the vertices can be connected to form the diagram. Lastly x counts all the
equivalent ways that the external lines coming out from the same vertex can be ordered
left and right, for the diagrams in (A.7) is is always one, since there is only one external
line per vertex. Applying this recipe to the first and second diagrams in (A.7) one has

ke L25k3+k4+k5,q2

. 1 _ g221 3 Z Z k1+k2+k5,q1 9((’“}7’3 T Wy + Wy + Wiy — EL)
2 J— 94

o (2Lwy,) € — Wrs — Wiy — Wiy — Wi

T T ki, ks 41,92
% H(WTS + Wis + Wy + Wks — EL) LS a‘;la(h
k3+ka,k1+ke ’
E —Wrs — Why — Wiy — Wiy 2L, fwq Wy,

(A.8)
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ks
~— 2 ska+kat+ks+q1,0
lz —g 3% L0y Fkakta10 0(wrs + Why + Wiy + Wiy + Wy, — Er)
= X 4 H5 (2ka) E—wps — Wk — Wy — Wiy — Wqy
N 1 ks ]4;17...7]4;5 q1,92 i=1 1
q
T
O(wrs + Wiy + Wiy + Wiy +wq, — E1L) Loy 1o a’ g, g,
q1+4q2, ?
& — Wps — Wiy — Wk, — Wiy — Wey 2L\/ Wq Wqo

(A.9)

v

where wys = Ers — (wg, + Wy, )/2 and the symmetry factor s;™ is given in eq. (4.20).

With this set of rules one can easily get the expression for AﬁQ and AH. 3 for the ¢?
and ¢* theories. Then one finds AH, and AH3 by keeping only the contributions with all
poles £ > Er.

B AH for the ¢? perturbation

B.1 Two-point correction

In this section we give the full expressions of the AH, corrections for the scalar theory
with potential V = go [ dz¢?. Recall that the symmetry factor is given by s, = (12)) 2p!. We
will use the prescription E,s = (E, + Es)/2 where E, and E; are Hy eigenvalues.

_ 11 !
AH]I — 2 _ 7—5 Bl
2 (g)rs 9252 22 % w’% E—FE,s — 2wy " ( )

~ 1 1 1
AHY E)ps = go51—= — —¢g———— +h.c.
2 (E)rs 925122%:(4)3 a® 1€ — Brg — w, e

1 1
T B.2
+aqaq<g—Ers_2Wq+g_E7”5>:| ( )
Aflqﬁ‘*(é‘) g3s ! Z 1 [@ GgyG—q, O : h.e
_ 1 1 Ca .C.
2 rs 2°992 q1,92 Wqy Wes T ng—Ers_wm twe,
1 1
. ) h.c.
+2ag,aq,09,0 q2<5—Ers+wq2+g_Ers_wq2>+ ’
+afal, aga : + :
NEmBTLEERN £ Bt wytwe,  E— Brs—wg—We,
1
+ 4a21a22aq1aq2 E—_ETS:| . (B?))

B.2 Three-point correction

In this section we give the full expressions of the AHj3 corrections for the scalar theory
with potential V = g9 f dx¢?. Recall that the symmetry factor is given by

3

mnv p!
= . B.4
°p (p—m—n)l(p—m—v)l(p—n—2ov)mnh! (B-4)
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We use the notation AH; = AHY + AH;’2 + AH§4 + AH:?G, where

A 1 £ g%‘s%ll 1 G
H = ki, ko, ks, E B.5
3 ( )7‘8 23 g Wiy Why Whs 0( 1, 2,y A3, T) ) ( )
3 1 1
AHY (), = L2 s20000 1 (K1, k2, q1, g2, B
3 ( )TS 923 -~ Wi, Wiy m[ 2 2,1( 1, ~2,41,42 )
+ S%IOGQ,Q(kla k27‘}17 q2, ET)} ) (BG)
3,100 1 1
AH¢4 g = 9252 77G4 k7q17"'7q4 ) B7
3 ( )7"8 23 — ka ( ) ( )

3 000
1
AH?)G(S)TS = 9222

Gﬁ(ql,...,qe), (B8)

3 —
2 7 V¥ W

where
G0 = Oky 442,00k +k3,0 Lfol 2 fol 2, (B.9)
Ga,1 = gy Ggy 500k, +ky,0 [f2)15[f2]"2 + Duc. + 20l ag, 610k, 4 ky0 [f2]17[f2)57 (B.10)
Gao = af g, 010,441,000k k00 ([f2l 12l f2]12 + [follal 2] + [follal o] T2) - (B.11)

1 1
Gy = a;fh gy g5 gy 010k +q1,0005+¢4,0[f4] 1234 [ f4]12 + hrc.
1 1
+ 2‘121 agzaqsa% 525qrq3,05k+q2,0[f4]124 [f4]234

+al al ag,aq, 02(8g14+42,00k+a0,0[f1)1234 [ F1) 124 + Ogstar.00k+1,0[fa)1234[fa]T24) »
(B.12)

G = al, al, 0,049,005 Qg5 5204, 44,0005 +1.01 fo] 123456 [ f6] 1234 + h.c.

+ 2al, al,ab aq,04; 046 0384, +45,0005+46,0[fo] 12356 fo] 12456 - (B.13)

We have defined wfy = Eps — 237 | wg, 64 = (522121%2?_#1% (the Kronecker delta that

imposes momentum conservation to the creation/annihilation operators) and

9(0)55 + EiE{Q}wqi + ZiE{K}wk’i — ET)

K _
[fp]Q E— Wb, — Zie{Q} We; — ZiE{K} Wi

(B.14)

C AMH for the ¢* theory

In this appendix we give the exact two-point correction and the first terms in the local
expansion of the three-point correction. Getting the exact three-point correction would be
straightforward.

~ 31—



C.1 Two-point correction

In this appendix we give the full expressions of the AHy for the ¢* theory. Using the
notation AHy = Zi:o AH;W we have

2
1
AHYNE, Br) = 29 —— Fo(ky, ko, ks, ke, Ep) (C.1)
24L bk Wiy Why Whs Wy
2
2 S3g 1 1
AH? (87ET) = FQ(k17k27k37QI7qQ7ET)7 (CZ)
24712 k1§k3 (11% Wy Why Wy +/Wq1 Was
1
AHS (6. Bp) = 529 Ey(ky, kayqu, ... qa, B C.3
5 (€, Er) 24LQZ Z o a(ki, k2, quy ..oy qa B7), (C.3)
k1,k2 Q1,Q2,Q3,Q4
AR (6. Bp) = 519 71? k 06, E C.4
2 ( ’ T) 24.[/22 Z A 6( , 41,42, , 46, T)7 ( )
k a1, »QG
2
8 S09g 1
AHY (E,Er) = — s, B C.5
2 ( ) T) 2472 Z Wq g S(QLCD, » 48, T) ( )
q17“"q8
The F; functions are given by
Fy = 5k1+k2+k3+k4,0 [f0]1234 (06)
Fy, = at];1 Qqy 01 6k1+k2+k37(J1 ([f2]123 + [f ]123) + aq, g, do 6k1+k2+k37Q1 [fQ] +h.c. (07)

Fy = gy Qg Qg3 gy do 5/€1+k27fh +4q2 [f4]§421 +h.c.
+ 2&2;1 alh Qg30Qq, 01 (6k1+/€27¢h*qz [f4]%2 + 6/€1+k2,*Q1+¢Z2 [f4H§4> +h.c.
+ ath q2a‘¢I3 N 02 (5k1+k2,Q1+QQ [f4]12 + 5k1+k2,7q17q2 [f4H§34 +4 5k1+k2,q17q3 [f‘dﬁ) (CS)

1
Fe = agla’%a%a%aqsaqa 01 0k ga+g5—a1 3 [fo]1456 + hc.
1
+ afn j]za% Qg, Qg5 Agq 02 (9 Ok,qs+qs—ar [f6]156 T 3 Ok.g5—q1—as [f6]12456) + h.c.

+ a’q1 q2 ;3 gy Qg5 Qgq 03 (9 Ok,qatas—a1 [f6H6 + 90k, —ga—gs+a1 [f6]2345 + Okt q +Q2+QS70[f6H23456)
(C.9)

— T 41
Fy = Gg, aLI2 qu3 Qqy Qg5 Qgs Qg7 Qg 2 66111 +Q2*Q3*Q4,0[f8]125678 +h.c.
al
+ alh q2 lh Qq,Qq5Qqs g7 Qg 53 (246q1+q2*q4*% [f8]12678 + 45q1+q2+q3,q4 [fg]1235678) + h.c.
T T 41
+al,ababaf ag 004,04, 04 (165qrq57q67q7,0([f slis + [ fs2sa567)

+ 3604, +g—q5—q6,0 [ fs] 1278 + 5q1+q2+q3+q4,0[f8]12345678) :
(C.10)

We have defined w?s = E, — 5 Zz | Wy 0d = 5Ed RS (the Kronecker delta that

imposes momentum conservation to the creation/annihilation operators) and
‘9(%1?3 + Ez‘e{Q}qu + ZiE{K}wki — Er)
£ —wrs — Zie{Q} We; — Zie{K} Wk;

[fp]g = (C-ll)
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