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Abstract

multivariate approach (UMA).

to such data.

moderate sample sizes.

Background: The summary measure approach (SMA) is sometimes the only applicable tool for the analysis of
repeated measurements in medical research, especially when the number of measurements is relatively large. This
study aimed to describe techniques based on summary measures for the analysis of linear trend repeated
measures data and then to compare performances of SMA, linear mixed model (LMM), and unstructured

Methods: Practical guidelines based on the least squares regression slope and mean of response over time for
each subject were provided to test time, group, and interaction effects. Through Monte Carlo simulation studies,
the efficacy of SMA vs. LMM and traditional UMA, under different types of covariance structures, was illustrated.
All the methods were also employed to analyze two real data examples.

Results: Based on the simulation and example results, it was found that the SMA completely dominated the
traditional UMA and performed convincingly close to the best-fitting LMM in testing all the effects. However, the
LMM was not often robust and led to non-sensible results when the covariance structure for errors was
misspecified. The results emphasized discarding the UMA which often yielded extremely conservative inferences as

Conclusions: It was shown that summary measure is a simple, safe and powerful approach in which the loss of
efficiency compared to the best-fitting LMM was generally negligible. The SMA is recommended as the first choice
to reliably analyze the linear trend data with a moderate to large number of measurements and/or small to

Background

In many fields of science, repeated measurements of a
response variable are taken on each subject over time to
assess the changes in response. The cumbersome aspect
in analyzing such data is that there are relationships
between the measurements in the subject over time.
There are two major policies in terms of overcoming or
taking the relationships into account.

First, one can reduce the vector of responses of each
subject to a single value by a descriptive statistic and
apply standard univariate approaches to test the effects
related to the corresponding summary measure. The use
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of the summary measure approach (SMA) was suggested
by Wishart [1] for the first time. Several strategies based
on the least squares regression slope and mean of
response over time were recommended to evaluate the
differences between the groups [2-6]. Moreover, the uti-
lity of Kendall’s 7, as a summary measure of within-sub-
jects trend in psychiatric longitudinal studies, where the
key assumptions of parametric methods are not held,
was investigated [7,8].

Second, one can use methods which take the covar-
iances between the measurements into account. Two
common and traditional approaches for normally distrib-
uted responses are repeated measures ANOVA and
MANOVA. In order to avoid inflating type I error rate,
the denominator degrees of freedom of the F statistics in
the repeated measures ANOVA approach should be
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adjusted under departures from a restrictive assumption
on covariance structures, namely sphericity. But there is
no obvious advantage in using the adjusted F tests against
the multivariate tests, and generally the adjustments
should be avoided [9,10]. In contrast, the repeated mea-
sures MANOVA approach makes no assumption regard-
ing covariance structure and hence, it is sometimes
known as unstructured multivariate approach (UMA).
The only key advantage of the repeated measures
ANOVA approach over the UMA is that it can still be
implemented in the case where the number of measure-
ments is greater than the sample size.

The linear mixed model (LMM) is more advanced and
flexible since it allows dealing with subjects which have
incomplete measurements and are unequally spaced in
the time period. But the performance of the LMM in
testing the effects is highly dependent on the choice of
appropriate covariance structure for errors [11,12]. On
the other hand, the choice of a parsimonious covariance
structure in a small sample design can lead to more effi-
cient inferences concerning the fixed-effects parameters.
This aspect makes it inconvenient and unreliable, espe-
cially for those who are not familiar with the fundamen-
tal principles of mixed models.

Although SMA is a simple, robust and sometimes only
applicable tool for the analysis of repeated measures stu-
dies, there exists no obvious performance comparison
on using the SMA vs. other competitors. Moreover, the
application of the SMA has been mostly based on using
one summary statistic to assess only the total group
difference.

The present study includes repeated measures data in
which the pattern of the response profile can be
described by a linear trend and the responses measured
in a continuous scale. The main objectives of this study
are:

a) To describe techniques to test time (within-sub-
jects), group (between-subjects) and group x time
interaction effects on the basis of two common sum-
mary measures, i.e. least square regression slope and
mean of response over time.

b) To compare the performance of the SMA, LMM
and UMA in the analysis of simulated data from a
LMM framework under different types of covariance
structures. The approach is also illustrated and com-
pared with the competitors using two real data sets.

In our simulations, there is a focus on situations
where the LMM may provide extremely unsatisfactory
performance such as misspecification of the covariance
structure for errors, small and moderate sample sizes,
and relatively a large number of measurements.
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Methods
Unstructured multivariate approach (UMA)
The UMA handles the measurements in the subject as a
vector of multivariate responses and treats time points as
levels of a qualitative factor with no order. This approach
is restricted in equally spaced time points, balanced data
with complete measurements and also assumes the
homogeneity of covariance matrices in all the k groups.
Let Yy = (Yiin, ..., Yiun)" denote the vector of m
responses from the ith subject in group % for i = 1,...,1,
h = 1,..,k. It is assumed that the response vectors, Y,
are independent and have multivariate normal distribu-
tion with mean u;, = (i, ..., ,u,mh)T and common covar-
iance matrix X. The total mean vector is also defined as

k
=1 thl w;,- If there is no additional covariate, one

can use a profile model as
Yin = iy, + €in, 1)

where the vector &y, = (g1, ..., €imn) T 1S the vector of
error for the ith subject in group /.

The primary hypothesis interest in a profile analysis is
the parallelism of the k groups’ profiles or no group x
time interaction effect. The hypothesis can be con-
structed as Hy: C g = ... = C py for an appropriate trans-
formation matrix C with rank m-1. If the test of
interaction is not significant, the tests of the main effects
are not confounded. In order to compute any MAN-
OVA-type test statistics such as Wilk’s lambda (A1), the
condition N-k >m-1 is necessary, where N is the total
number of subjects. Otherwise, the estimated covariance
matrix of the transformed responses would not be non-
singular and positive-definite. To test time effect, one can
investigate the equality of the m elements of the total
mean vector (fi) using one-sample Hotelling’s 7 test on
the m-1 differences between adjacent measurements
from each subject. Here, the same strategy as the SMA is
utilized to test group effect, as it is often more efficient
than MANOVA-type tests to compare the groups’ mean
vectors.

Linear mixed model (LMM)

Let Y; = (Yi, ..., Yim)T denote the m; x 1 vector of
responses from the ith subject for i = 1,...,N, where N is
the total number of subjects. In contrast to the UMA,
the subjects may have different measuring time points
and be unbalanced in terms of the number of measure-
ments. The general form of the LMM is

Yi=X/B+Zb; + e, (2)

where X] is an m; x p fixed-effects design matrix for the
ith subject, B is a p x 1 vector of fixed-effects parameters
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for the population, b; is a g x 1 vector of random effects
for the ith subject, Z] is an m; x g random-effects design
matrix for the ith subject with g < p, and ¢&; is an m; x 1
vector of within-subject errors. The random-effects vec-
tors, b;, are assumed to be independent and to have a mul-
tivariate normal distribution with mean zero and
covariance matrix G;, and the error vectors, g;, are
assumed to be independent and to have a multivariate
normal distribution with mean zero and covariance matrix
R;. In addition, it is also assumed that b; and ¢; are inde-
pendent of one another. The LMM defines the covariances
of the measurements in the subject by the covariances of
the random effects (G;) and the covariances of the errors
(R;). We used the estimators based on the restricted maxi-
mum likelihood (REML) method to construct the F statis-
tics of the hypotheses since, in general, it yields less biased
estimates of the variance components than those of maxi-
mum likelihood (ML) approach and avoids inflating type I
error rates [12,13].

The summary measure approach (SMA)

In this section, we describe how to apply the least
squares regression slope and mean of response over
time for each subject to test the effects of time, group
and group x time interaction in repeated measures
studies.

The slope of least squares regression line was applied
to summarize the relationship between response and
time for each subject or within-subjects effect. If the pat-
tern of individual profiles is linear or at least monotonic,
the slopes can appropriately summarize the rate of
change of response over time in the subjects. For
repeated measures designs, the primary hypothesis is to
test whether the pattern of change over time is the same
across the k groups or no group x time interaction effect.
Under the assumption of no interaction effect, the slopes
in the k groups should not be significantly different. For
this purpose, once the slopes are obtained for each sub-
ject, the ordinary k sample tests such as one-way
ANOVA F or Kruskal-Wallis (for k > 2) and Student’s ¢
or Wilcoxon-Mann-Whitney (for k = 2) can be employed
to assess the equality of the slopes in the groups. If the
test of interaction is not significant, one would be inter-
ested in assessing the main effects.

The hypothesis of no time (within-subjects) effect
states that all the m elements of the total mean vector
() are identical. Under this assumption, the overall
mean of the slopes in the population must be zero. To
test this hypothesis, one-sample ¢ test can be applied to
the sample slopes to assess the departure of mean slopes
from zero.

For testing group (between-subjects) effect, the mean
of measurements over time for each subject is used as a
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summary measure. By analogy with the interaction effect
case, the ordinary k sample tests are applied, but this
time, to assess the equality of the individual means in
the groups.

Permutation procedure can also be employed to assess
the interaction and group effects where the constructive
assumptions of the standard tests are not held or cannot
be reasonably checked due to small sample sizes in the
groups.

Simulation study

For the purpose of data simulation, a simple linear trend
mixed model with a random coefficient only for the
intercept and a two category grouping variable was con-
sidered. The model can be expressed as

Yii = Bo + B1Xi + Batij + B3(tij x X;) + boi + &5, (3)

where Y;; is the jth measurement from ith subject and
X; is a grouping variable with the values 0 and 1, for
i=1.,Nandj = 1,.,m,.

Linear trend mixed model data was generated based
on the model (3) with the same measuring time points
t; = t; = 2j for all the subjects, m; = m = 5, 10, and 20
measurements and B, = 2, in which the random effects,
by, were assumed to be independently normally distrib-
uted with mean zero and standard deviation 0.25.

Since hypothesis testing effects related to within-sub-
jects effect is highly dependent on the number of mea-
surements, the values of 8, and 83 are adjusted with
respect to the m values. Different combinations of §;, 5
and f3 were constructed to compute the empirical type
I error rates and powers for testing the three effects.

We considered the following three covariance struc-
tures for errors to generate artificial data and fit the
LMMs:

« Simple or independent (IND): R; = 6°I, where I is an
m x m identity matrix.

« First-order autoregressive (AR1) with p = 0.7: R; =
0°H, where H = (A7) is an m x m matrix with /. = pl"'j’|
for all j and ;.

« Unstructured (UNS): R; = [rj;] is an m x m covar-
iance matrix with arbitrary structure.

For simplicity, we defined the true structures as those
which were used to generate data and the working
structures as those which were used to fit the model. In
all the cases, it was assumed that the errors were nor-
mally distributed with zero mean and in the cases of
IND and AR, the error variances were fixed over time
and equal to 6° = 0.5.

1000 sample data sets were generated for n; = n, = n3 =
5, 10, 30 and 50 subjects under various choices of the
above circumstances.
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We have used free statistical software environment R
to generate the artificial datasets and fit all of the
approaches presented in the method section.

Results

Simulation results

Within-subject (time) and within-by-between-subjects
(interaction) effects

Tables 1 and 2 display the empirical type I error rates
and powers of the tests of time and interaction effects
for various covariance structures, respectively. The first
rows in each part, where ; = B, = 0 (83 = 0), display
the empirical type I error rates and the rows corre-
sponding to ; > 0 and 8, > 0 (B3 > 0) show the empiri-
cal powers in testing time (interaction) effect. Because
of the similarities between the results of testing time
and interaction effects, we combined the results in this
section in which the following report is right for both
effects.

First, the three approaches are compared under the
IND and ARI as true structures. As illustrated in both
Tables 1 and 2, empirical type I error rates of the SMA
and UMA were always close to (and often smaller than)
the nominal significance level (%5). However, the LMM
in testing both effects displayed notably larger values for
the IND working structure under the AR1 as true struc-
ture and more generally for the UNS working structure
under the two true structures. Unfortunately, the infla-
tion of type I error rates for the IND working structure
under the AR1 true structure tended to be fixed as n
increased. As misleading results, because of not preser-
ving the type I error rates, the empirical powers of the
LMM in these cases were notably greater than those
obtained by the other approaches. In summary, the
empirical powers of the SMA were notably greater than
those of the UMA and were often close to the corre-
sponding values of the best-fitting LMM. It is also worth
mentioning that while the powers of the SMA and LMM
tend to be 1 for some larger values of #, the values of the
UMA have evident departures from them such as n = 50
with m = 5, 10, 20 and somewhat # = 30 with m = 10, 20.

Next, we consider the simulation results for the UNS as
true covariance structure in testing time and interaction
effects. The LMMs with the IND and AR1 working struc-
tures preserved the type I error rates again. Interestingly,
like the IND and ARI true structures, the empirical type
I error rates of the LMM for the UNS working structure
were not preserved for smaller and larger values of n and
m, respectively. It is worthwhile to note that the empiri-
cal type I error rates of the LMM were relatively compar-
able to the corresponding values of the other approaches
only for larger values of n accompanied by smaller values
of m; n = 30 and 50 with m = 5, and somewhat, n = 50
with m = 10 in both Tables. However, the empirical
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powers of the SMA and all the LMMs were similar under
such circumstances. Only in the case of m = 5 with n =
30, 50 under the UNS true structure, the UMA was com-
parable with the SMA in testing both effects.
Between-subjects (group) effect

The empirical type I error rates and powers of the test of
group effect are displayed in Table 3 in which the empiri-
cal type I error rates are the values of the first rows where
B; = B> = 0 and the other rows, where ; > 0 and 3, > 0,
display the empirical powers. Again, it should be noted
that both the SMA and UMA use the same strategy to
test group effect. Hence, Table 3 only reported the results
for the SMA and LMM.

First, the simulation results for testing the group effect
are considered under the IND and AR1 as true covariance
structures. Except for the UNS working structure, both
SMA (UMA) and LMM often obtained the same empirical
type I error rates close to the nominal significance level.
Contrary to what we obtained for the two other effects, the
LMM preserved the type I error rates for the IND working
structure under the ARI as true structure. The LMM with
the UNS working structure tended to have obviously larger
empirical type I error rates than the SMA (UMA). The
empirical powers of the SMA and LMM were absolutely
similar in both IND and AR1 as true structures when the
type I error rates were preserved by the LMM.

Now, we consider the results for the UNS as true cov-
ariance structure. The LMM with the UNS working
structure yielded the preserved type I error rates only for
larger values of n accompanied by smaller values of m
such as n = 30, 50 with m = 5, 10. However, the LMM
preserved type I error rates for the IND and AR1 working
structures. In these comparable circumstances, the differ-
ences in the powers between the SMA and all the LMMs
were negligible.

lllustrative examples

Example 1: Pituitary-pteryomaxillary distance data

The first example is a small data set on a facial distance
previously published by Potthoff and Roy [14] con-
ducted at the University of North Carolina Dental
School. The distance (mm) from the centre of the pitui-
tary gland to the pteryomaxillary fissure was measured
at age 8, 10, 12, and 14 in two groups of children (11
girls and 16 boys). The data set has also been analyzed
by several analytic methods [12,15].

Figure 1 displays the mean profiles in boys and girls and
indicates a departure from the parallelism hypothesis. In
general, boys tend to have larger pituitary-pteryomaxillary
distances and a faster growth rate than girls. In addition,
the distances increase over age points in both groups of
children.

Given model (3), three models were fitted with IND,
AR1, and UNS covariance structures. Random intercept



Vossoughi et al. BMC Medical Research Methodology 2012, 12:33
http://www.biomedcentral.com/1471-2288/12/33

Page 5 of 10

Table 1 Type | error rates and powers for testing within-subjects (time) effect where rows with §; = 0 and 8, = 0 give

the type | error rates, and the other rows are powers

True covariance structure

IND AR1 UNS
LMM working covariance LMM working covariance LMM working covariance
(mn) B; B> IND AR1 UNS SMA UMA IND AR1 UNS SMA UMA IND AR1 UNS SMA UMA
(55 0 0 0052 0071 0230 0059 0052 0183 0079 0230 0050 0043 0045 0.075 0252 0059 0.041
025 0020 0097 0118 0258 0086 0064 0264 0129 0288 0081 0064 0120 0169 0352 0.112 0.065
035 0040 0.197 0216 0373 0181 0080 0418 0251 0418 0168 0070 0287 0378 0590 0289 0.140
(5100 0 0 0052 0070 0100 0053 0046 0.165 0.072 0.109 0047 0055 0035 0060  0.101 0040 0.042
025 0020 0.114 0133 0.165 0107 0057 0317 0146 0194 0115 0083 0159 0212 0315 0171 0.124
035 0040 0352 0370 0429 0338 0183 0577 0393 0443 0315 0183 0.565 0634 0765 0565 0428
(5300 0 0 0044 0.065 0069 0043 0051 0177 0056 0064 0053 0051 0051 0.065 0065 0058 0.053
025 0020 0305 0320 0331 029 0.163 0530 0316 0335 0287 0171 0458 0513 0629 0466 0393
035 0040 0.785 0792 0809 0772 0532 0910 0809 0810 0775 0576 0963 0.975 0995 0958 0.965
(5500 0 0 0049 0054 0058 0048 0050 0.173 0059 0050 0057 0047 0048 0069 0045 0041 0.045
025 0020 0437 0443 0450 0431 0243 0681 0480 0485 0424 0262 0686 0737 0783 0715 0658
035 0040 0940 0939 0941 0941 0810 0988 0960 0972 0950 0831 0998  0.999 1.000 0999 1.000
(105 0 0 0049 0071 —* 0048 —t 0277 0070 —* 0058 -t 0047  0.060 —* 0048 -t
025 0010 0158  0.179 —* 0.148 —t 0366  0.105 ¥ 0070 -t 0176 0.194 =¥ 0156 -t
035 0020 0360 0371 —* 0286 -t 0519  0.256 =¥ 0157 —t 0492 0488 —* 0409 -t
(10,100 0 0 0.065 0078 0265 0059 0043 0290 0063 0277 0055 0057 0040 0043 0279 0043 0059
025 0010 0200 0217 0453 0189 0078 0423 0134 0385 0121 0065 0271 0277 0500 0.266 0.090
035 0020 0636 0652 0772 0580 0.152 0689 0401 0600 0327 0.107 0815 0814 0879 0.786 0.279
(10,30) O 0 0063 0076 0086 0062 0039 0268 0053 0093 0049 0039 0040 0043 0092 0038 0.045
025 0010 0507 0517 0570 0488 0.197 0621 0310 0385 0278 0136 0709 0714 0898 0697 0341
035 0020 0979 0979 1.000 0974 0715 0949 0824 0879 0764 0420 1.000 1.000 1.000 0999 0.959
(1050) 0 0 0.055 0058 0067 0054 0049 0257 0051 0061 0049 0041 0048 0048 0067 0056 0.054
025 0010 0716 0718 0725 0712 0310 0752 0484 0500 0428 0204 0893 08% 0940 0893 0603
035 0020 0999  0.99% 1.000 0999 0958 0993 0.961 0970 0941 0684 1.000 1.000 1.000 1.000 1.000
(205) 0O 0 0062 0070 —* 0054 -t 0369  0.066 —* 0054 -t 0049  0.050 —* 0050 -t
025 0005 0203 0218 =¥ 0.164 -t 0462  0.098 = 0076 -t 0.235 0.241 =¥ 0242 -t
035 0010 0619 0621 = 0529 -t 0606  0.265 = 0.1208 -t 0700 071 —* 0706 -t
(20,10) 0 0 0.065 0.069 =¥ 0058 —t 0378  0.056 —* 0046 -7 0040  0.040 —* 0040 -t
025 0005 0394  03% =¥ 0380 —t 0530 0471 —* 0143 -t 0469 0472 —* 0481 -t
035 0010 0901 0.902 —* 0870 ~t 0.790 0472 ¥ 03%4 -t 0960 0961 —* 09%1 -t
(20,30) O 0 0047 0050 0173 0049 0057 0369 0051 0.179 0045 0049 0049 0049 0178 0051 0.061
025 0005 0794 079 0883 0789 0223 0.705 0.355 0435 0327 0111 0920 0920 1.000 0918 0392
035 0010 1.000 1.000 1000 1.000 0857 0977 0889 0940 0832 0293 1.000 1.000 1.000 1000 0.985
(20,50) 0 0 0047 0049 0102 0045 0043 0360 0045 0098 0034 0039 0046 0047 0104 0049 0046
025 0005 0979 0976 1000 0942 0441 0849 0567 0628 0479 0.154 1.000 1.000 1.000 0993 0.775
035 0010 1.000 1.000 1.000 1.000 0996 1000 0991 1.000 0975 0628 1.000 1.000 1.000  1.000 1.000

*: Since m was large relative to the sample size (N = 2n), modeling with large number of parameters was discarded.

1: Since N-k <m-1, the UMA could not be conducted

and slope models with the three covariance structures
were also employed. Table 4 reports the results for the
six LMMs, UMA and SMA, as well as Akaike’s informa-
tion criterion (AIC) and Bayesian information criterion
(BIC) as two model selection indices for the LMMs. The
model with the smallest criterion provides the best fit to
data. Based on both foregoing criteria, model 1 with
IND covariance structure was preferred. It is worth

mentioning that a random intercept model with IND
covariance structure for errors yields a compound sym-
metry covariance structure between the responses.

All the LMMs and the SMA showed a significant
interaction effect at the 5% significance level. These
results indicated that the growth pattern in boys was
faster than that in girls. Although one could not reject
the hypothesis of no interaction effect by the UMA,
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Table 2 Type | error rates and powers for testing group x time interaction effect where rows with ; = 0 give the type
| error rates, and the other rows are powers

True covariance structure

IND AR1 UNS
LMM working covariance LMM working covariance LMM working covariance
(m, n) PBs IND AR1 UNS SMA UMA IND AR1 UNS SMA UMA IND AR1 UNS SMA UMA
(55) 0 0.057 0.065 0222 0043 0043 0192 0.079 0270 0047 0055 0044 0.074 0251 0042 0068
0040 0074 0.087 0260 0065 0052 0240 0.126 0276 0076 0061 0095 0.160 0358 0099 0.086
0080  0.209 0232 0399 0167 0095 0424 0.242 0391 0141 0071 0278 0361 0589 0247 0.114
(5100 0 0.050 0.062 0099 0049 0059 0.185 0.064 0.100 0047 0050 0.040 0.060 0.100 0044 0.042
0040 0.128 0.135 019 0111 0090 0381 0.136 0202 0099 0076 0.155 0.202 0316 0161 0.117
0080 0351 0362 0412 0329 0166 0.776 0.405 0478 0317 0.166 0545 0621 0766 0.569 0442
(5300 0 0.049 0.054 0062 0050 0056 0.188 0.055 0057 0055 0048 0045 0.064 0056 0056 0.062
0040  0.295 0305 0316 0285 0.171 0501 0.297 0302 0263 0.156 0465 0.532 0637 0488 0401
0080  0.807 0.810 0823 0779 0522 0973 0.828 0840 0786 0.580 0968 0.980 0995 0971 0976
(5500 0 0.038 0.039 0045 0041 0039 0.176 0.059 0058 0054 0056 0039 0.062 0.049 0048 0.040
0040 0421 0425 0429 0414 0235 0685 0.445 0446 0393 0239 0685 0.745 0780 0717 0674
0080 0952 0952 0954 0948 0824 1.000 0.954 0957 0946 0838 0998 0.998 1.000 0998 0.998
(1050 0 0.059 0.065 —* 0052 -t 0.300 0.072 —* 0039 -t 0.050 0.059 —* 0042 -t
0020 0.129 0.138 —* 0100  —f 0412 0.123 —* 0071 —t 0.172 0.189 =¥ 0159 -t
0040 0362 0371 —* 0280 T 0.540 0.248 —* 0146 -t 0.545 0.545 —* 0418  —f
(1010) 0 0.050 0.053 0275 0055 0045 0309 0.045 0241 0040 0039 0044 0.044 0281 0049 0044
0020 0177 0.177 0400 0.184 0078 0453 0.162 0375 0129 0066 0284 0.289 0493 0275 0.113
0040 0323 0.326 0641 0576 0178  0.707 0.391 0616 0299 0097 0828 0.825 0840 0.772 0.254
(1030) 0 0.050 0.051 0097 0047 0048 0278 0.051 0088 0060 0057 0059 0.059 0095 0053 0049
0020  0.502 0.502 0587 0494 0191 059 0.297 0344 0259 0.112 0660 0.660 0774 0673 0320
0040 0977 0972 1000 0977 0725 0980 0.802 0866 0747 0370  1.000 1.000 1.000 0997 0943
(10,50) 0 0.052 0.052 0075 0049 0047 0.283 0.058 0072 0049 0065 0050 0.052 0078 0048 0.049
0020 0698 0.696 0708 0686 0351 0.762 0.460 0471 0399 0.180 0876 0.877 0909 0.887 0.600
0040 0998 0.998 1.000 0998 0949  1.000 0.966 0970 0938 0686  1.000 1.000 1.000  1.000 1.000
(2050 0 0.049 0.055 —* 0044 -7 0.340 0.052 =¥ 0048  —t 0.050 0.054 —* 0054 -t
0010  0.208 0.217 =¥ 0157 -t 0436 0.119 = 0083 -t 0.210 0.218 =¥ 0211 -t
0020 0614 0619 —* 0489 -t 0.647 0.288 = 0200 -t 0.641 0.639 = 0655 -t
(20,10) © 0.050 0.057 —* 0051 -t 0329 0.053 —* 0043 -t 0.049 0.053 —* 0054 -t
0010 0361 0.361 —* 0316 -t 0.788 0.154 —* 0122 -t 0446 0.448 —* 0445 -
0020 0911 0.908 —* 0863 -t 0.803 0.460 —* 0382 -t 0972 0971 ¥ 0955  —f
(20,30) 0 0.057 0.055 0.178 0063 0065 0.350 0.048 0169 0044 0041 0052 0.052 0.181 0048 0.050
0010  0.808 0.808 0928 0795 0258 0.736 0.384 0444 0340 0.101 0914 0914 1.000 0927 0399
0020  1.000 1.000 1.000 1.000 0871  1.000 0914 1.000 0855 0293  1.000 1.000 1.000  1.000 0987
(20,50) 0 0.049 0.046 0095 0046 0049 0346 0.042 0089 0042 0051 0049 0.050 0.104 0049 0052
0010 0935 0932 0986 0926 0442 0833 0.525 0550 0482 0.154 0990 0.992 1.000 0992 0715
0020  1.000 1.000 1.000  1.000 0997  1.000 0.986 1.000 0969 0.597  1.000 1.000 1.000 1.000 1.000

*: Since m was large relative to the sample size (N = 2n), modeling with large number of parameters was discarded.
1: Since N-k <m-1, the UMA could not be conducted

there was some evidence that the profiles in Figure 1
were not parallel.

All the approaches yielded significant results for the
two main effects on the facial growth measurements
of children. Based on these results, we accept that
boys have larger facial distances than girls and the
facial distances increase over age in the two groups of
children.

Example 2: Change in lung NO metabolites level data

The second example is an animal experimental study
which is about the effects of hypercapnia with or with-
out acidosis on NO production in the isolated venti-
lated-perfused rabbit lung by assessment of the NO
metabolites (nitrite and nitrate) concentration released
into the perfusate. The study was conducted at Justus-
Liebig-University, Giessen. The NO metabolites
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Table 3 Type | error rates and powers for testing between-subjects (group) effect where rows with 3; =0 and 3, =0

give the type | error rates, and the other rows are powers

True covariance structure

IND AR1 UNS
LMM working covariance LMM working covariance LMM working covariance
(mn) B; B> IND AR1 UNS SMA(UMA) IND AR1 UNS SMA(UMA) IND AR1 UNS  SMA(UMA)
(55 0 0 0.031 0.038 0.231 0.042 0.049 0.037 0.189 0.040 0.049 0.048 0.217 0.043
025 0020 0132 0.142 0336 0.142 0.085 0.071 0211 0.078 0.103 0.102 0.269 0.095
035 0040 0211 0.207 0409 0213 0.138 0.126 0.273 0.123 0.146 0.145 0313 0.124
(5100 0 0 0.052 0.056 0.082 0.054 0.058 0.045 0.082 0.055 0.053 0.052 0.088 0.051
025 0020 0.253 0.260 0.291 0.257 0.144 0.146 0.177 0.143 0.149 0.151 0.188 0.144
035 0040 0451 0448 0473 0450 0.239 0.223 0.249 0.234 0.259 0.259 0.298 0.255
(5300 0 0 0.044 0.046 0.052 0.044 0.047 0.051 0.058 0.046 0.053 0.055 0.061 0.053
025 0020 0673 0673 0.682 0672 0332 0336 0.346 0331 0.386 0.382 0394 0.386
035 0040 0923 0.922 0.939 0.922 0.578 0.581 0.590 0.578 0621 0619 0.622 0.620
(5500 0 0 0.049 0.049 0.049 0.046 0.050 0.054 0.051 0.050 0.047 0.046 0.045 0.047
025 0020 0886 0.884 0.890 0.886 0.509 0.580 0.577 0.509 0.569 0.570 0534 0.566
035 0040 0986 0.986 0.990 0.986 0.800 0.804 0.806 0.800 0.847 0.847 0.839 0.852
(105 0 0 0.039 0.043 —* 0.034 0.034 0.030 —* 0.038 0.037 0.038 —* 0.035
025 0010 0175 0.178 —* 0.174 0.079 0.079 —* 0.089 0.107 0.106 =¥ 0.097
035 0020 0.295 0.296 —* 0.286 0.143 0.144 —* 0.153 0.141 0.143 —* 0.125
(10,10) 0 0 0.050 0.052 0.244 0.050 0.065 0.047 0.237 0.063 0.047 0.048 0.259 0.045
025 0010 0330 0330 0.541 0328 0.173 0.175 0.348 0.172 0.185 0.185 0.393 0.182
035 0020 0574 0.570 0.709 0.573 0.307 0.300 0470 0.302 0.302 0.300 0451 0.298
(1030) 0 0 0.043 0.049 0.058 0.043 0.050 0.048 0.058 0.050 0.049 0.050 0.057 0.049
025 0010 0822 0.822 0.840 0.822 0454 0453 0462 0454 0465 0467 0480 0467
035 0020 0979 0971 0.986 0.979 0.726 0.762 0.769 0.726 0.733 0.731 0.743 0.733
(10,50) 0 0 0.045 0.045 0.050 0.045 0.050 0.042 0.050 0.050 0.049 0.049 0.050 0.050
025 0010 0952 0951 0.954 0.952 0671 0.695 0671 0671 0671 0.671 0.670 0.675
035 0020 1.000 1.000 1.000 1.000 0.906 0.934 0935 0.906 0.909 0.909 0916 0911
(205 0 0 0.053 0.057 =¥ 0.043 0.052 0.040 —* 0.049 0.048 0.049 —* 0.038
025 0005 0214 0221 —* 0.204 0.120 0.107 =¥ 0.103 0.100 0.101 —* 0.091
035 0010 0399 0403 =¥ 0.369 0.203 0.193 =¥ 0.185 0.206 0.206 —* 0.189
(20,10) 0 0 0.050 0.050 —* 0.048 0.046 0.046 =¥ 0.045 0.050 0.053 —* 0.057
025 0005 0455 0455 —* 0451 0.238 0.237 —* 0.238 0.237 0.239 —* 0.236
035 0010 0716 0.714 —* 0.705 0.387 0.392 —* 0.383 0.360 0.359 —* 0.368
(20,30) 0 0 0.055 0.056 0.103 0.055 0.056 0.066 0.097 0.060 0.049 0.049 0.110 0.048
025 0005 0899 0.899 0.942 0.899 0.595 0611 0.646 0.597 0.580 0.580 0619 0.583
035 0010 0993 0.993 1.000 0.993 0.873 0.890 0917 0.873 0.830 0.832 0.881 0.844
(2050) 0 0 0.046 0.047 0.079 0.045 0.042 0.042 0.079 0.047 0.049 0.049 0.082 0.050
025 0005 0992 0.990 1.000 0.990 0.831 0.855 0.881 0.831 0.781 0.780 0.834 0.796
035 0010  1.000 1.000 1.000 1.000 0.960 0.979 1.000 0977 0.999 0.998 1.000 1.000

*: Since m was large relative to the sample size (N = 2n), modeling with large number of parameters was discarded

concentration (nmol/min) was measured at time point
0, 5, 10, 15, 30, 45, ..., and 180 minutes in three
groups of normoxic normocapnia (NX-NC, n = 7),
normoxic hypercapnia with acidosis (NX-HCA, n = 4)
and normoxic hypercapnia with normal pH level (NX-
HCN, n = 6). Since there were some variations
between the baseline measurements, values were given
as changes from the baseline. There were six samples
(lungs) with incomplete measurements.

Figure 2 displays the mean profiles of change in NO
metabolites level data over time for the three groups.
The mean profiles increase over time points in all of the
groups. However, it is not expected that the patterns of
change in NO metabolites level and the overall means
will differ between the three conditions.

In this data set, the UMA could not be conducted,
because the number of measurements (m = 14) was larger
than that of the samples with complete measurements
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Figure 1 Mean profiles of pituitary-pteryomaxillary distances.

(11 lungs) during the period of study. On the other hand,
the UMA and repeated measures ANOVA approaches are
not able to handle the experimental units with missing
observations.

Table 5 displays the results for the LMM with random
intercept, random intercept and slope and also the
SMA. Note that AIC prefers random intercept and slope
model with UNS, IND and AR1 covariance structures,
models 6, 4 and 5, respectively, whereas random inter-
cept and slope model with IND and ARI1 covariance
structures are to be preferred based on BIC, models 4
and 5, respectively. The reason is that a heavier penalty
in the calculation of BIC than AIC was imposed when
the number of parameters in the model increased. Since
there were a limited number of lungs and a large num-
ber of measurements, the danger of over-fitting
increases. In these cases, it is more reasonable to rely on
BIC to select the best parsimonious model. Note that
model 6 has larger parameters (4 = 112) than model 4
(d = 8) which must be estimated.

Based on the results of the LMMs 4 and 5 selected on
the basis of BIC, and also the SMA, one can accept that
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Figure 2 Mean profiles of change in NO metabolites level.

the rates of NO metabolites change in the three groups
do not differ. Although this result coincides with that
obtained by the most complicated model 6, the unsuita-
ble models 1 and 3 reject the hypothesis of no interac-
tion effect which is not illustrated in Figure 2.

All the LMMs, as well as the SMA, confirmed the effect
of time on increasing the mean change over time in all of
the groups. Except for the unreasonable model 6, all the
models and the SMA confirmed that the mean change
profiles for the three groups were the same throughout
the time points; therefore, there was no significant group
effect.

Discussion

Based on the simulation and example results, it was
found that obtaining accurate inferences in a LMM
requires heavy statistical knowledge on the true and
working covariance structures. However, due to develop-
ments in computer sciences, using mixed models is
nowadays widespread in experimental designs and clini-
cal trial studies where the sample sizes are not sufficiently
large and/or sometimes the number of measurements is

Table 4 Pituitary-pteryomaxillary distances data: summary of test results

Effect
Method no Structure Group Time Group x Time AIC BIC
LMM with Random intercept 1 IND 0.005 < 0.001 0014 445.76 461.62
2 AR1 0.006 < 0.001 0.012 447.71 466.22
3 UNS 0.007 < 0.001 0.009 450.17 481.90
LMM with Random intercept and slope 4 IND 0.009 < 0.001 0.026 44858 469.74
5 AR1 0.015 < 0.001 0.021 446.81 470.61
6 UNS 0.010 < 0.001 0.009 454.12 491.14
SMA 7 - 0.005 < 0.001 0.019 - -
UMA 8 - 0.005 < 0.001 0.070 - -
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Table 5 Change in NO metabolites level data: summary of test results
Effect
Method no Structure Group Time Group x Time AIC BIC
LMM with Random intercept 1 IND 0.264 < 0.001 < 0.001 121.38 14831
2 AR1 0.248 < 0.001 0.026 5877 89.06
3 UNS 0.175 < 0.001 < 0.001 1091 34414
LMM with Random intercept and slope 4 IND 0212 < 0.001 0.236 451 38.17
5 AR1 0.209 < 0.001 0.234 5.90 4293
6 UNS < 0.001 < 0.001 0.262 -0.57 339.39
SMA 7 - 0273 < 0.001 0.241 - -

large. This serious aspect has previously been reported in
a simulation study by Park [12] somewhat in a different
way, where there was no random effect in the process of
data generating. The interested reader is referred to
[16-19] for the sample size and power calculations in
repeated measurements analysis.

Interestingly, the SMA was robust to the true covar-
iance structures in testing main and interaction effects
even for small sample sizes and large number of mea-
surements. Moreover, the SMA in the analysis of linear
trend data was a powerful method in which its empirical
powers were convincingly close to those of the best-fit-
ting LMM, in general. This means that the least squares
slope and mean of response are appropriate measures to
summarize the corresponding effects.

In this study, we fitted the LMMs using the “nlme”
package in the software R in which it follows the inner-
outer approach for calculating the denominator degrees
of freedom (df) of F statistics [20]. In comparison with
the packages nlme and Ime4 in R, the MIXED proce-
dure in SAS provides also Satterthwaite and Kenward-
Roger approximation methods for calculating the
denominator df which especially result in some
improvements in the resulting p-values. Although the
superiority of these complex methods in terms of better
preservation of type I error rates has been previously
illustrated in unbalance designs [21-23], the differences
are rather negligible when LMMs are employed inside
the context of longitudinal analyses and there is no
missing data. The R packages do have the advantage
over the SAS procedure in providing the useful alterna-
tive algorithms Monte Carlo simulation and parametric
bootstrap for getting more sensible p-values and confi-
dence intervals. However, they are computationally
intensive to be included in a simulation study.

The SMA clearly dominated the traditional UMA in
testing time and interaction effects. The reason is that
the SMA utilizes the linear trend in such data by com-
puting the least squares slopes. However, the UMA
assumes a more general nonlinear model with more
parameters which must be estimated, and also imposes

the most complex structure on the covariances of errors
in which it may not be necessary.

Though not reported here some simulations based on
the non-normal data show that, in general, the
approaches were relatively robust to departures from
multivariate normality. However, this had been reported
previously for the two-sample Hotelling’s 72 test [24,25]
and somewhat LME models [26,27].

This paper did not aim to deal with missing observa-
tions and baseline or pre-treatment measurement tech-
niques. If the missing observations do not occur
completely at random, it can introduce potential bias
into parameter estimation and decision-making in statis-
tical models. Barton and Cramer [28] and Catellier and
Muller [29] have proposed several approximating
denominator df on this issue. In this respect, the perfor-
mance of SMA is highly dependent on weighting the
individual’s summary statistics [30] which may be cum-
bersome in practice. There are also more complex and
efficient approaches to adjust the effect of baseline value
(values) for the SMA such as including the baseline
(average of baselines) or estimated intercept as covariate
in an analysis of covariance (ANCOVA) model [4].

Conclusions

It was shown that the SMA, on the basis of the two sum-
mary measures, was a simple, safe and powerful method in
testing main and interaction effects in which it performed
reasonably as the best-fitting LMM. However, The LMM
often led to seriously inflated type I error rates and hence
non-sensible inferences when the covariance structure for
errors is misspecified. Moreover, this simple approach
dominated the widely used UMA in assessing the linear
trend data from a mixed model framework. The SMA is
recommended as the first choice to confidently analyze
linear trend data with a moderate to large number of mea-
surements and/or small to moderate sample sizes.
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