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On summary measure analysis of linear trend
repeated measures data: performance
comparison with two competing methods
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Abstract

Background: The summary measure approach (SMA) is sometimes the only applicable tool for the analysis of
repeated measurements in medical research, especially when the number of measurements is relatively large. This
study aimed to describe techniques based on summary measures for the analysis of linear trend repeated
measures data and then to compare performances of SMA, linear mixed model (LMM), and unstructured
multivariate approach (UMA).

Methods: Practical guidelines based on the least squares regression slope and mean of response over time for
each subject were provided to test time, group, and interaction effects. Through Monte Carlo simulation studies,
the efficacy of SMA vs. LMM and traditional UMA, under different types of covariance structures, was illustrated.
All the methods were also employed to analyze two real data examples.

Results: Based on the simulation and example results, it was found that the SMA completely dominated the
traditional UMA and performed convincingly close to the best-fitting LMM in testing all the effects. However, the
LMM was not often robust and led to non-sensible results when the covariance structure for errors was
misspecified. The results emphasized discarding the UMA which often yielded extremely conservative inferences as
to such data.

Conclusions: It was shown that summary measure is a simple, safe and powerful approach in which the loss of
efficiency compared to the best-fitting LMM was generally negligible. The SMA is recommended as the first choice
to reliably analyze the linear trend data with a moderate to large number of measurements and/or small to
moderate sample sizes.

Background
In many fields of science, repeated measurements of a
response variable are taken on each subject over time to
assess the changes in response. The cumbersome aspect
in analyzing such data is that there are relationships
between the measurements in the subject over time.
There are two major policies in terms of overcoming or
taking the relationships into account.
First, one can reduce the vector of responses of each

subject to a single value by a descriptive statistic and
apply standard univariate approaches to test the effects
related to the corresponding summary measure. The use

of the summary measure approach (SMA) was suggested
by Wishart [1] for the first time. Several strategies based
on the least squares regression slope and mean of
response over time were recommended to evaluate the
differences between the groups [2-6]. Moreover, the uti-
lity of Kendall’s τb as a summary measure of within-sub-
jects trend in psychiatric longitudinal studies, where the
key assumptions of parametric methods are not held,
was investigated [7,8].
Second, one can use methods which take the covar-

iances between the measurements into account. Two
common and traditional approaches for normally distrib-
uted responses are repeated measures ANOVA and
MANOVA. In order to avoid inflating type I error rate,
the denominator degrees of freedom of the F statistics in
the repeated measures ANOVA approach should be
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adjusted under departures from a restrictive assumption
on covariance structures, namely sphericity. But there is
no obvious advantage in using the adjusted F tests against
the multivariate tests, and generally the adjustments
should be avoided [9,10]. In contrast, the repeated mea-
sures MANOVA approach makes no assumption regard-
ing covariance structure and hence, it is sometimes
known as unstructured multivariate approach (UMA).
The only key advantage of the repeated measures
ANOVA approach over the UMA is that it can still be
implemented in the case where the number of measure-
ments is greater than the sample size.
The linear mixed model (LMM) is more advanced and

flexible since it allows dealing with subjects which have
incomplete measurements and are unequally spaced in
the time period. But the performance of the LMM in
testing the effects is highly dependent on the choice of
appropriate covariance structure for errors [11,12]. On
the other hand, the choice of a parsimonious covariance
structure in a small sample design can lead to more effi-
cient inferences concerning the fixed-effects parameters.
This aspect makes it inconvenient and unreliable, espe-
cially for those who are not familiar with the fundamen-
tal principles of mixed models.
Although SMA is a simple, robust and sometimes only

applicable tool for the analysis of repeated measures stu-
dies, there exists no obvious performance comparison
on using the SMA vs. other competitors. Moreover, the
application of the SMA has been mostly based on using
one summary statistic to assess only the total group
difference.
The present study includes repeated measures data in

which the pattern of the response profile can be
described by a linear trend and the responses measured
in a continuous scale. The main objectives of this study
are:

a) To describe techniques to test time (within-sub-
jects), group (between-subjects) and group × time
interaction effects on the basis of two common sum-
mary measures, i.e. least square regression slope and
mean of response over time.
b) To compare the performance of the SMA, LMM
and UMA in the analysis of simulated data from a
LMM framework under different types of covariance
structures. The approach is also illustrated and com-
pared with the competitors using two real data sets.

In our simulations, there is a focus on situations
where the LMM may provide extremely unsatisfactory
performance such as misspecification of the covariance
structure for errors, small and moderate sample sizes,
and relatively a large number of measurements.

Methods
Unstructured multivariate approach (UMA)
The UMA handles the measurements in the subject as a
vector of multivariate responses and treats time points as
levels of a qualitative factor with no order. This approach
is restricted in equally spaced time points, balanced data
with complete measurements and also assumes the
homogeneity of covariance matrices in all the k groups.
Let Yih = (Yi1h, . . . ,Yimh)

T denote the vector of m
responses from the ith subject in group h for i = 1,...,nh,
h = 1,...,k. It is assumed that the response vectors, Yih,
are independent and have multivariate normal distribu-
tion with mean μh = (μ1h, ...,μmh)

T and common covar-
iance matrix Σ. The total mean vector is also defined as

μ̄. = 1/k
∑k

h=1
μh. If there is no additional covariate, one

can use a profile model as

Yih = μh + εih, (1)

where the vector εih = (εi1h, ..., εimh)
T is the vector of

error for the ith subject in group h.
The primary hypothesis interest in a profile analysis is

the parallelism of the k groups’ profiles or no group ×
time interaction effect. The hypothesis can be con-
structed as H0: C μ1 = ... = C μk for an appropriate trans-
formation matrix C with rank m-1. If the test of
interaction is not significant, the tests of the main effects
are not confounded. In order to compute any MAN-
OVA-type test statistics such as Wilk’s lambda (Λ), the
condition N-k >m-1 is necessary, where N is the total
number of subjects. Otherwise, the estimated covariance
matrix of the transformed responses would not be non-
singular and positive-definite. To test time effect, one can
investigate the equality of the m elements of the total
mean vector (μ̄.) using one-sample Hotelling’s T2 test on
the m-1 differences between adjacent measurements
from each subject. Here, the same strategy as the SMA is
utilized to test group effect, as it is often more efficient
than MANOVA-type tests to compare the groups’ mean
vectors.

Linear mixed model (LMM)
Let Yi = (Yi1, ...,Yim)T denote the mi × 1 vector of
responses from the ith subject for i = 1,...,N, where N is
the total number of subjects. In contrast to the UMA,
the subjects may have different measuring time points
and be unbalanced in terms of the number of measure-
ments. The general form of the LMM is

Yi = XT
i β + ZT

i bi + εi, (2)

where XT
i is an mi × p fixed-effects design matrix for the

ith subject, b is a p × 1 vector of fixed-effects parameters
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for the population, bi is a q × 1 vector of random effects
for the ith subject, ZT

i is an mi × q random-effects design
matrix for the ith subject with q ≤ p, and εi is an mi × 1
vector of within-subject errors. The random-effects vec-
tors, bi, are assumed to be independent and to have a mul-
tivariate normal distribution with mean zero and
covariance matrix Gi, and the error vectors, εi, are
assumed to be independent and to have a multivariate
normal distribution with mean zero and covariance matrix
Ri. In addition, it is also assumed that bi and εi are inde-
pendent of one another. The LMM defines the covariances
of the measurements in the subject by the covariances of
the random effects (Gi) and the covariances of the errors
(Ri). We used the estimators based on the restricted maxi-
mum likelihood (REML) method to construct the F statis-
tics of the hypotheses since, in general, it yields less biased
estimates of the variance components than those of maxi-
mum likelihood (ML) approach and avoids inflating type I
error rates [12,13].

The summary measure approach (SMA)
In this section, we describe how to apply the least
squares regression slope and mean of response over
time for each subject to test the effects of time, group
and group × time interaction in repeated measures
studies.
The slope of least squares regression line was applied

to summarize the relationship between response and
time for each subject or within-subjects effect. If the pat-
tern of individual profiles is linear or at least monotonic,
the slopes can appropriately summarize the rate of
change of response over time in the subjects. For
repeated measures designs, the primary hypothesis is to
test whether the pattern of change over time is the same
across the k groups or no group × time interaction effect.
Under the assumption of no interaction effect, the slopes
in the k groups should not be significantly different. For
this purpose, once the slopes are obtained for each sub-
ject, the ordinary k sample tests such as one-way
ANOVA F or Kruskal-Wallis (for k > 2) and Student’s t
or Wilcoxon-Mann-Whitney (for k = 2) can be employed
to assess the equality of the slopes in the groups. If the
test of interaction is not significant, one would be inter-
ested in assessing the main effects.
The hypothesis of no time (within-subjects) effect

states that all the m elements of the total mean vector
(μ̄.) are identical. Under this assumption, the overall
mean of the slopes in the population must be zero. To
test this hypothesis, one-sample t test can be applied to
the sample slopes to assess the departure of mean slopes
from zero.
For testing group (between-subjects) effect, the mean

of measurements over time for each subject is used as a

summary measure. By analogy with the interaction effect
case, the ordinary k sample tests are applied, but this
time, to assess the equality of the individual means in
the groups.
Permutation procedure can also be employed to assess

the interaction and group effects where the constructive
assumptions of the standard tests are not held or cannot
be reasonably checked due to small sample sizes in the
groups.

Simulation study
For the purpose of data simulation, a simple linear trend
mixed model with a random coefficient only for the
intercept and a two category grouping variable was con-
sidered. The model can be expressed as

Yij = β0 + β1Xi + β2tij + β3(tij × Xi) + b0i + εij, (3)

where Yij is the jth measurement from ith subject and
Xi is a grouping variable with the values 0 and 1, for
i = 1,...,N and j = 1,...,mi.
Linear trend mixed model data was generated based

on the model (3) with the same measuring time points
tij = tj = 2j for all the subjects, mi = m = 5, 10, and 20
measurements and b0 = 2, in which the random effects,
b0i, were assumed to be independently normally distrib-
uted with mean zero and standard deviation 0.25.
Since hypothesis testing effects related to within-sub-

jects effect is highly dependent on the number of mea-
surements, the values of b2 and b3 are adjusted with
respect to the m values. Different combinations of b1, b2
and b3 were constructed to compute the empirical type
I error rates and powers for testing the three effects.
We considered the following three covariance struc-

tures for errors to generate artificial data and fit the
LMMs:
• Simple or independent (IND): Ri = s2I, where I is an

m × m identity matrix.
• First-order autoregressive (AR1) with r = 0.7: Ri =

s2H, where H = [hjj’] is an m × m matrix with hjj’ = r|j-j’|

for all j and j’.
• Unstructured (UNS): Ri = [rjj’] is an m × m covar-

iance matrix with arbitrary structure.
For simplicity, we defined the true structures as those

which were used to generate data and the working
structures as those which were used to fit the model. In
all the cases, it was assumed that the errors were nor-
mally distributed with zero mean and in the cases of
IND and AR1, the error variances were fixed over time
and equal to s2 = 0.5.
1000 sample data sets were generated for n1 = n2 = n3 =

5, 10, 30 and 50 subjects under various choices of the
above circumstances.

Vossoughi et al. BMC Medical Research Methodology 2012, 12:33
http://www.biomedcentral.com/1471-2288/12/33

Page 3 of 10



We have used free statistical software environment R
to generate the artificial datasets and fit all of the
approaches presented in the method section.

Results
Simulation results
Within-subject (time) and within-by-between-subjects
(interaction) effects
Tables 1 and 2 display the empirical type I error rates
and powers of the tests of time and interaction effects
for various covariance structures, respectively. The first
rows in each part, where b1 = b2 = 0 (b3 = 0), display
the empirical type I error rates and the rows corre-
sponding to b1 > 0 and b2 > 0 (b3 > 0) show the empiri-
cal powers in testing time (interaction) effect. Because
of the similarities between the results of testing time
and interaction effects, we combined the results in this
section in which the following report is right for both
effects.
First, the three approaches are compared under the

IND and AR1 as true structures. As illustrated in both
Tables 1 and 2, empirical type I error rates of the SMA
and UMA were always close to (and often smaller than)
the nominal significance level (%5). However, the LMM
in testing both effects displayed notably larger values for
the IND working structure under the AR1 as true struc-
ture and more generally for the UNS working structure
under the two true structures. Unfortunately, the infla-
tion of type I error rates for the IND working structure
under the AR1 true structure tended to be fixed as n
increased. As misleading results, because of not preser-
ving the type I error rates, the empirical powers of the
LMM in these cases were notably greater than those
obtained by the other approaches. In summary, the
empirical powers of the SMA were notably greater than
those of the UMA and were often close to the corre-
sponding values of the best-fitting LMM. It is also worth
mentioning that while the powers of the SMA and LMM
tend to be 1 for some larger values of n, the values of the
UMA have evident departures from them such as n = 50
with m = 5, 10, 20 and somewhat n = 30 with m = 10, 20.
Next, we consider the simulation results for the UNS as

true covariance structure in testing time and interaction
effects. The LMMs with the IND and AR1 working struc-
tures preserved the type I error rates again. Interestingly,
like the IND and AR1 true structures, the empirical type
I error rates of the LMM for the UNS working structure
were not preserved for smaller and larger values of n and
m, respectively. It is worthwhile to note that the empiri-
cal type I error rates of the LMM were relatively compar-
able to the corresponding values of the other approaches
only for larger values of n accompanied by smaller values
of m; n = 30 and 50 with m = 5, and somewhat, n = 50
with m = 10 in both Tables. However, the empirical

powers of the SMA and all the LMMs were similar under
such circumstances. Only in the case of m = 5 with n =
30, 50 under the UNS true structure, the UMA was com-
parable with the SMA in testing both effects.
Between-subjects (group) effect
The empirical type I error rates and powers of the test of
group effect are displayed in Table 3 in which the empiri-
cal type I error rates are the values of the first rows where
b1 = b2 = 0 and the other rows, where b1 > 0 and b2 > 0,
display the empirical powers. Again, it should be noted
that both the SMA and UMA use the same strategy to
test group effect. Hence, Table 3 only reported the results
for the SMA and LMM.
First, the simulation results for testing the group effect

are considered under the IND and AR1 as true covariance
structures. Except for the UNS working structure, both
SMA (UMA) and LMM often obtained the same empirical
type I error rates close to the nominal significance level.
Contrary to what we obtained for the two other effects, the
LMM preserved the type I error rates for the IND working
structure under the AR1 as true structure. The LMM with
the UNS working structure tended to have obviously larger
empirical type I error rates than the SMA (UMA). The
empirical powers of the SMA and LMM were absolutely
similar in both IND and AR1 as true structures when the
type I error rates were preserved by the LMM.
Now, we consider the results for the UNS as true cov-

ariance structure. The LMM with the UNS working
structure yielded the preserved type I error rates only for
larger values of n accompanied by smaller values of m
such as n = 30, 50 with m = 5, 10. However, the LMM
preserved type I error rates for the IND and AR1 working
structures. In these comparable circumstances, the differ-
ences in the powers between the SMA and all the LMMs
were negligible.

Illustrative examples
Example 1: Pituitary-pteryomaxillary distance data
The first example is a small data set on a facial distance
previously published by Potthoff and Roy [14] con-
ducted at the University of North Carolina Dental
School. The distance (mm) from the centre of the pitui-
tary gland to the pteryomaxillary fissure was measured
at age 8, 10, 12, and 14 in two groups of children (11
girls and 16 boys). The data set has also been analyzed
by several analytic methods [12,15].
Figure 1 displays the mean profiles in boys and girls and

indicates a departure from the parallelism hypothesis. In
general, boys tend to have larger pituitary-pteryomaxillary
distances and a faster growth rate than girls. In addition,
the distances increase over age points in both groups of
children.
Given model (3), three models were fitted with IND,

AR1, and UNS covariance structures. Random intercept
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and slope models with the three covariance structures
were also employed. Table 4 reports the results for the
six LMMs, UMA and SMA, as well as Akaike’s informa-
tion criterion (AIC) and Bayesian information criterion
(BIC) as two model selection indices for the LMMs. The
model with the smallest criterion provides the best fit to
data. Based on both foregoing criteria, model 1 with
IND covariance structure was preferred. It is worth

mentioning that a random intercept model with IND
covariance structure for errors yields a compound sym-
metry covariance structure between the responses.
All the LMMs and the SMA showed a significant

interaction effect at the 5% significance level. These
results indicated that the growth pattern in boys was
faster than that in girls. Although one could not reject
the hypothesis of no interaction effect by the UMA,

Table 1 Type I error rates and powers for testing within-subjects (time) effect where rows with b1 = 0 and b2 = 0 give
the type I error rates, and the other rows are powers

True covariance structure

IND AR1 UNS

LMM working covariance LMM working covariance LMM working covariance

(m, n) b1 b2 IND AR1 UNS SMA UMA IND AR1 UNS SMA UMA IND AR1 UNS SMA UMA

(5,5) 0 0 0.052 0.071 0.230 0.059 0.052 0.188 0.079 0.230 0.050 0.043 0.045 0.075 0.252 0.059 0.041

0.25 0.020 0.097 0.118 0.258 0.086 0.064 0.264 0.129 0.288 0.081 0.064 0.120 0.169 0.352 0.112 0.065

0.35 0.040 0.197 0.216 0.373 0.181 0.080 0.418 0.251 0.418 0.168 0.070 0.287 0.378 0.590 0.289 0.140

(5,10) 0 0 0.052 0.070 0.100 0.053 0.046 0.165 0.072 0.109 0.047 0.055 0.035 0.060 0.101 0.040 0.042

0.25 0.020 0.114 0.133 0.165 0.107 0.057 0.317 0.146 0.194 0.115 0.083 0.159 0.212 0.315 0.171 0.124

0.35 0.040 0.352 0.370 0.429 0.338 0.188 0.577 0.393 0.443 0.315 0.183 0.565 0.634 0.765 0.565 0.428

(5,30) 0 0 0.044 0.065 0.069 0.043 0.051 0.177 0.056 0.064 0.053 0.051 0.051 0.065 0.065 0.058 0.053

0.25 0.020 0.305 0.320 0.331 0.296 0.163 0.530 0.316 0.335 0.287 0.171 0.458 0.513 0.629 0.466 0.393

0.35 0.040 0.785 0.792 0.809 0.772 0.532 0.910 0.809 0.810 0.775 0.576 0.963 0.975 0.995 0.958 0.965

(5,50) 0 0 0.049 0.054 0.058 0.048 0.050 0.173 0.059 0.050 0.057 0.047 0.048 0.069 0.045 0.041 0.045

0.25 0.020 0.437 0.443 0.450 0.431 0.243 0.681 0.480 0.485 0.424 0.262 0.686 0.737 0.783 0.715 0.658

0.35 0.040 0.940 0.939 0.941 0.941 0.810 0.988 0.960 0.972 0.950 0.831 0.998 0.999 1.000 0.999 1.000

(10,5) 0 0 0.049 0.071 –* 0.048 –† 0.277 0.070 –* 0.058 –† 0.047 0.060 –* 0.048 –†

0.25 0.010 0.158 0.179 –* 0.148 –† 0.366 0.105 –* 0.070 –† 0.176 0.194 –* 0.156 –†

0.35 0.020 0.360 0.371 –* 0.286 –† 0.519 0.256 –* 0.157 –† 0.492 0.488 –* 0.409 –†

(10,10) 0 0 0.065 0.078 0.265 0.059 0.043 0.290 0.063 0.277 0.055 0.057 0.040 0.043 0.279 0.043 0.059

0.25 0.010 0.200 0.217 0.453 0.189 0.078 0.423 0.134 0.385 0.121 0.065 0.271 0.277 0.500 0.266 0.090

0.35 0.020 0.636 0.652 0.772 0.580 0.152 0.689 0.401 0.600 0.327 0.107 0.815 0.814 0.879 0.786 0.279

(10,30) 0 0 0.063 0.076 0.086 0.062 0.039 0.268 0.053 0.093 0.049 0.039 0.040 0.043 0.092 0.038 0.045

0.25 0.010 0.507 0.517 0.570 0.488 0.197 0.621 0.310 0.385 0.278 0.136 0.709 0.714 0.898 0.697 0.341

0.35 0.020 0.979 0.979 1.000 0.974 0.715 0.949 0.824 0.879 0.764 0.420 1.000 1.000 1.000 0.999 0.959

(10,50) 0 0 0.055 0.058 0.067 0.054 0.049 0.257 0.051 0.061 0.049 0.041 0.048 0.048 0.067 0.056 0.054

0.25 0.010 0.716 0.718 0.725 0.712 0.310 0.752 0.484 0.500 0.428 0.204 0.893 0.896 0.940 0.893 0.603

0.35 0.020 0.999 0.996 1.000 0.999 0.958 0.993 0.961 0.970 0.941 0.684 1.000 1.000 1.000 1.000 1.000

(20,5) 0 0 0.062 0.070 –* 0.054 –† 0.369 0.066 –* 0.054 –† 0.049 0.050 –* 0.050 –†

0.25 0.005 0.203 0.218 –* 0.164 –† 0.462 0.098 –* 0.076 –† 0.235 0.241 –* 0.242 –†

0.35 0.010 0.619 0.621 –* 0.529 –† 0.606 0.265 –* 0.1208 –† 0.700 0.711 –* 0.706 –†

(20,10) 0 0 0.065 0.069 –* 0.058 –† 0.378 0.056 –* 0.046 –† 0.040 0.040 –* 0.040 –†

0.25 0.005 0.394 0.394 –* 0.380 –† 0.530 0.171 –* 0.143 –† 0.469 0.472 –* 0.481 –†

0.35 0.010 0.901 0.902 –* 0.870 –† 0.790 0.472 –* 0.394 –† 0.960 0.961 –* 0.961 –†

(20,30) 0 0 0.047 0.050 0.173 0.049 0.057 0.369 0.051 0.179 0.045 0.049 0.049 0.049 0.178 0.051 0.061

0.25 0.005 0.794 0.794 0.888 0.789 0.223 0.705 0.355 0.435 0.327 0.111 0.920 0.920 1.000 0.918 0.392

0.35 0.010 1.000 1.000 1.000 1.000 0.857 0.977 0.889 0.940 0.832 0.293 1.000 1.000 1.000 1.000 0.985

(20,50) 0 0 0.047 0.049 0.102 0.045 0.043 0.360 0.045 0.098 0.034 0.039 0.046 0.047 0.104 0.049 0.046

0.25 0.005 0.979 0.976 1.000 0.942 0.441 0.849 0.567 0.628 0.479 0.154 1.000 1.000 1.000 0.993 0.775

0.35 0.010 1.000 1.000 1.000 1.000 0.996 1.000 0.991 1.000 0.975 0.628 1.000 1.000 1.000 1.000 1.000

*: Since m was large relative to the sample size (N = 2n), modeling with large number of parameters was discarded.

†: Since N-k <m-1, the UMA could not be conducted
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there was some evidence that the profiles in Figure 1
were not parallel.
All the approaches yielded significant results for the

two main effects on the facial growth measurements
of children. Based on these results, we accept that
boys have larger facial distances than girls and the
facial distances increase over age in the two groups of
children.

Example 2: Change in lung NO metabolites level data
The second example is an animal experimental study
which is about the effects of hypercapnia with or with-
out acidosis on NO production in the isolated venti-
lated-perfused rabbit lung by assessment of the NO
metabolites (nitrite and nitrate) concentration released
into the perfusate. The study was conducted at Justus-
Liebig-University, Giessen. The NO metabolites

Table 2 Type I error rates and powers for testing group × time interaction effect where rows with b3 = 0 give the type
I error rates, and the other rows are powers

True covariance structure

IND AR1 UNS

LMM working covariance LMM working covariance LMM working covariance

(m, n) b3 IND AR1 UNS SMA UMA IND AR1 UNS SMA UMA IND AR1 UNS SMA UMA

(5,5) 0 0.057 0.065 0.222 0.043 0.043 0.192 0.079 0.270 0.047 0.055 0.044 0.074 0.251 0.042 0.068

0.040 0.074 0.087 0.260 0.065 0.052 0.240 0.126 0.276 0.076 0.061 0.095 0.160 0.358 0.099 0.086

0.080 0.209 0.232 0.399 0.167 0.095 0.424 0.242 0.391 0.141 0.071 0.278 0.361 0.589 0.247 0.114

(5,10) 0 0.050 0.062 0.099 0.049 0.059 0.185 0.064 0.100 0.047 0.050 0.040 0.060 0.100 0.044 0.042

0.040 0.128 0.135 0.196 0.111 0.090 0.381 0.136 0.202 0.099 0.076 0.155 0.202 0.316 0.161 0.117

0.080 0.351 0.362 0.412 0.329 0.166 0.776 0.405 0.478 0.317 0.166 0.545 0.621 0.766 0.569 0.442

(5,30) 0 0.049 0.054 0.062 0.050 0.056 0.188 0.055 0.057 0.055 0.048 0.045 0.064 0.056 0.056 0.062

0.040 0.295 0.305 0.316 0.285 0.171 0.501 0.297 0.302 0.263 0.156 0.465 0.532 0.637 0.488 0.401

0.080 0.807 0.810 0.823 0.779 0.522 0.973 0.828 0.840 0.786 0.580 0.968 0.980 0.995 0.971 0.976

(5,50) 0 0.038 0.039 0.045 0.041 0.039 0.176 0.059 0.058 0.054 0.056 0.039 0.062 0.049 0.048 0.040

0.040 0.421 0.425 0.429 0.414 0.235 0.685 0.445 0.446 0.393 0.239 0.685 0.745 0.780 0.717 0.674

0.080 0.952 0.952 0.954 0.948 0.824 1.000 0.954 0.957 0.946 0.838 0.998 0.998 1.000 0.998 0.998

(10,5) 0 0.059 0.065 –* 0.052 –† 0.300 0.072 –* 0.039 –† 0.050 0.059 –* 0.042 –†

0.020 0.129 0.138 –* 0.100 –† 0.412 0.123 –* 0.071 –† 0.172 0.189 –* 0.159 –†

0.040 0.362 0.371 –* 0.280 –† 0.540 0.248 –* 0.146 –† 0.545 0.545 –* 0.418 –†

(10,10) 0 0.050 0.053 0.275 0.055 0.045 0.309 0.045 0.241 0.040 0.039 0.044 0.044 0.281 0.049 0.044

0.020 0.177 0.177 0.400 0.184 0.078 0.453 0.162 0.375 0.129 0.066 0.284 0.289 0.493 0.275 0.113

0.040 0.323 0.326 0.641 0.576 0.178 0.707 0.391 0.616 0.299 0.097 0.828 0.825 0.840 0.772 0.254

(10,30) 0 0.050 0.051 0.097 0.047 0.048 0.278 0.051 0.088 0.060 0.057 0.059 0.059 0.095 0.053 0.049

0.020 0.502 0.502 0.587 0.494 0.191 0.596 0.297 0.344 0.259 0.112 0.660 0.660 0.774 0.673 0.320

0.040 0.977 0.972 1.000 0.977 0.725 0.980 0.802 0.866 0.747 0.370 1.000 1.000 1.000 0.997 0.943

(10,50) 0 0.052 0.052 0.075 0.049 0.047 0.283 0.058 0.072 0.049 0.065 0.050 0.052 0.078 0.048 0.049

0.020 0.698 0.696 0.708 0.686 0.351 0.762 0.460 0.471 0.399 0.180 0.876 0.877 0.909 0.887 0.600

0.040 0.998 0.998 1.000 0.998 0.949 1.000 0.966 0.970 0.938 0.686 1.000 1.000 1.000 1.000 1.000

(20,5) 0 0.049 0.055 –* 0.044 –† 0.340 0.052 –* 0.048 –† 0.050 0.054 –* 0.054 –†

0.010 0.208 0.217 –* 0.157 –† 0.436 0.119 –* 0.083 –† 0.210 0.218 –* 0.211 –†

0.020 0.614 0.619 –* 0.489 –† 0.647 0.288 –* 0.200 –† 0.641 0.639 –* 0.655 –†

(20,10) 0 0.050 0.057 –* 0.051 –† 0.329 0.053 –* 0.043 –† 0.049 0.053 –* 0.054 –†

0.010 0.361 0.361 –* 0.316 –† 0.788 0.154 –* 0.122 –† 0.446 0.448 –* 0.445 –†

0.020 0.911 0.908 –* 0.863 –† 0.803 0.460 –* 0.382 –† 0.972 0.971 –* 0.955 –†

(20,30) 0 0.057 0.055 0.178 0.063 0.065 0.350 0.048 0.169 0.044 0.041 0.052 0.052 0.181 0.048 0.050

0.010 0.808 0.808 0.928 0.795 0.258 0.736 0.384 0.444 0.340 0.101 0.914 0.914 1.000 0.927 0.399

0.020 1.000 1.000 1.000 1.000 0.871 1.000 0.914 1.000 0.855 0.293 1.000 1.000 1.000 1.000 0.987

(20,50) 0 0.049 0.046 0.095 0.046 0.049 0.346 0.042 0.089 0.042 0.051 0.049 0.050 0.104 0.049 0.052

0.010 0.935 0.932 0.986 0.926 0.442 0.833 0.525 0.550 0.482 0.154 0.990 0.992 1.000 0.992 0.715

0.020 1.000 1.000 1.000 1.000 0.997 1.000 0.986 1.000 0.969 0.597 1.000 1.000 1.000 1.000 1.000

*: Since m was large relative to the sample size (N = 2n), modeling with large number of parameters was discarded.

†: Since N-k <m-1, the UMA could not be conducted
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concentration (nmol/min) was measured at time point
0, 5, 10, 15, 30, 45, ..., and 180 minutes in three
groups of normoxic normocapnia (NX-NC, n = 7),
normoxic hypercapnia with acidosis (NX-HCA, n = 4)
and normoxic hypercapnia with normal pH level (NX-
HCN, n = 6). Since there were some variations
between the baseline measurements, values were given
as changes from the baseline. There were six samples
(lungs) with incomplete measurements.

Figure 2 displays the mean profiles of change in NO
metabolites level data over time for the three groups.
The mean profiles increase over time points in all of the
groups. However, it is not expected that the patterns of
change in NO metabolites level and the overall means
will differ between the three conditions.
In this data set, the UMA could not be conducted,

because the number of measurements (m = 14) was larger
than that of the samples with complete measurements

Table 3 Type I error rates and powers for testing between-subjects (group) effect where rows with b1 = 0 and b2 = 0
give the type I error rates, and the other rows are powers

True covariance structure

IND AR1 UNS

LMM working covariance LMM working covariance LMM working covariance

(m, n) b1 b2 IND AR1 UNS SMA(UMA) IND AR1 UNS SMA(UMA) IND AR1 UNS SMA(UMA)

(5,5) 0 0 0.031 0.038 0.231 0.042 0.049 0.037 0.189 0.040 0.049 0.048 0.217 0.043

0.25 0.020 0.132 0.142 0.336 0.142 0.085 0.071 0.211 0.078 0.103 0.102 0.269 0.095

0.35 0.040 0.211 0.207 0.409 0.213 0.138 0.126 0.273 0.123 0.146 0.145 0.313 0.124

(5,10) 0 0 0.052 0.056 0.082 0.054 0.058 0.045 0.082 0.055 0.053 0.052 0.088 0.051

0.25 0.020 0.253 0.260 0.291 0.257 0.144 0.146 0.177 0.143 0.149 0.151 0.188 0.144

0.35 0.040 0.451 0.448 0.473 0.450 0.239 0.223 0.249 0.234 0.259 0.259 0.298 0.255

(5,30) 0 0 0.044 0.046 0.052 0.044 0.047 0.051 0.058 0.046 0.053 0.055 0.061 0.053

0.25 0.020 0.673 0.673 0.682 0.672 0.332 0.336 0.346 0.331 0.386 0.382 0.394 0.386

0.35 0.040 0.923 0.922 0.939 0.922 0.578 0.581 0.590 0.578 0.621 0.619 0.622 0.620

(5,50) 0 0 0.049 0.049 0.049 0.046 0.050 0.054 0.051 0.050 0.047 0.046 0.045 0.047

0.25 0.020 0.886 0.884 0.890 0.886 0.509 0.580 0.577 0.509 0.569 0.570 0.534 0.566

0.35 0.040 0.986 0.986 0.990 0.986 0.800 0.804 0.806 0.800 0.847 0.847 0.839 0.852

(10,5) 0 0 0.039 0.043 –* 0.034 0.034 0.030 –* 0.038 0.037 0.038 –* 0.035

0.25 0.010 0.175 0.178 –* 0.174 0.079 0.079 –* 0.089 0.107 0.106 –* 0.097

0.35 0.020 0.295 0.296 –* 0.286 0.143 0.144 –* 0.153 0.141 0.143 –* 0.125

(10,10) 0 0 0.050 0.052 0.244 0.050 0.065 0.047 0.237 0.063 0.047 0.048 0.259 0.045

0.25 0.010 0.330 0.330 0.541 0.328 0.173 0.175 0.348 0.172 0.185 0.185 0.393 0.182

0.35 0.020 0.574 0.570 0.709 0.573 0.307 0.300 0.470 0.302 0.302 0.300 0.451 0.298

(10,30) 0 0 0.043 0.049 0.058 0.043 0.050 0.048 0.058 0.050 0.049 0.050 0.057 0.049

0.25 0.010 0.822 0.822 0.840 0.822 0.454 0.453 0.462 0.454 0.465 0.467 0.480 0.467

0.35 0.020 0.979 0.971 0.986 0.979 0.726 0.762 0.769 0.726 0.733 0.731 0.743 0.733

(10,50) 0 0 0.045 0.045 0.050 0.045 0.050 0.042 0.050 0.050 0.049 0.049 0.050 0.050

0.25 0.010 0.952 0.951 0.954 0.952 0.671 0.695 0.671 0.671 0.671 0.671 0.670 0.675

0.35 0.020 1.000 1.000 1.000 1.000 0.906 0.934 0.935 0.906 0.909 0.909 0.916 0.911

(20,5) 0 0 0.053 0.057 –* 0.043 0.052 0.040 –* 0.049 0.048 0.049 –* 0.038

0.25 0.005 0.214 0.221 –* 0.204 0.120 0.107 –* 0.103 0.100 0.101 –* 0.091

0.35 0.010 0.399 0.403 –* 0.369 0.203 0.193 –* 0.185 0.206 0.206 –* 0.189

(20,10) 0 0 0.050 0.050 –* 0.048 0.046 0.046 –* 0.045 0.050 0.053 –* 0.057

0.25 0.005 0.455 0.455 –* 0.451 0.238 0.237 –* 0.238 0.237 0.239 –* 0.236

0.35 0.010 0.716 0.714 –* 0.705 0.387 0.392 –* 0.383 0.360 0.359 –* 0.368

(20,30) 0 0 0.055 0.056 0.103 0.055 0.056 0.066 0.097 0.060 0.049 0.049 0.110 0.048

0.25 0.005 0.899 0.899 0.942 0.899 0.595 0.611 0.646 0.597 0.580 0.580 0.619 0.583

0.35 0.010 0.993 0.993 1.000 0.993 0.873 0.890 0.917 0.873 0.830 0.832 0.881 0.844

(20,50) 0 0 0.046 0.047 0.079 0.045 0.042 0.042 0.079 0.047 0.049 0.049 0.082 0.050

0.25 0.005 0.992 0.990 1.000 0.990 0.831 0.855 0.881 0.831 0.781 0.780 0.834 0.796

0.35 0.010 1.000 1.000 1.000 1.000 0.960 0.979 1.000 0.977 0.999 0.998 1.000 1.000

*: Since m was large relative to the sample size (N = 2n), modeling with large number of parameters was discarded
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(11 lungs) during the period of study. On the other hand,
the UMA and repeated measures ANOVA approaches are
not able to handle the experimental units with missing
observations.
Table 5 displays the results for the LMM with random

intercept, random intercept and slope and also the
SMA. Note that AIC prefers random intercept and slope
model with UNS, IND and AR1 covariance structures,
models 6, 4 and 5, respectively, whereas random inter-
cept and slope model with IND and AR1 covariance
structures are to be preferred based on BIC, models 4
and 5, respectively. The reason is that a heavier penalty
in the calculation of BIC than AIC was imposed when
the number of parameters in the model increased. Since
there were a limited number of lungs and a large num-
ber of measurements, the danger of over-fitting
increases. In these cases, it is more reasonable to rely on
BIC to select the best parsimonious model. Note that
model 6 has larger parameters (d = 112) than model 4
(d = 8) which must be estimated.
Based on the results of the LMMs 4 and 5 selected on

the basis of BIC, and also the SMA, one can accept that

the rates of NO metabolites change in the three groups
do not differ. Although this result coincides with that
obtained by the most complicated model 6, the unsuita-
ble models 1 and 3 reject the hypothesis of no interac-
tion effect which is not illustrated in Figure 2.
All the LMMs, as well as the SMA, confirmed the effect

of time on increasing the mean change over time in all of
the groups. Except for the unreasonable model 6, all the
models and the SMA confirmed that the mean change
profiles for the three groups were the same throughout
the time points; therefore, there was no significant group
effect.

Discussion
Based on the simulation and example results, it was
found that obtaining accurate inferences in a LMM
requires heavy statistical knowledge on the true and
working covariance structures. However, due to develop-
ments in computer sciences, using mixed models is
nowadays widespread in experimental designs and clini-
cal trial studies where the sample sizes are not sufficiently
large and/or sometimes the number of measurements is

Figure 1 Mean profiles of pituitary-pteryomaxillary distances.

Table 4 Pituitary-pteryomaxillary distances data: summary of test results

Effect

Method no Structure Group Time Group × Time AIC BIC

LMM with Random intercept 1 IND 0.005 < 0.001 0.014 445.76 461.62

2 AR1 0.006 < 0.001 0.012 447.71 466.22

3 UNS 0.007 < 0.001 0.009 450.17 481.90

LMM with Random intercept and slope 4 IND 0.009 < 0.001 0.026 448.58 469.74

5 AR1 0.015 < 0.001 0.021 446.81 470.61

6 UNS 0.010 < 0.001 0.009 454.12 491.14

SMA 7 - 0.005 < 0.001 0.019 - -

UMA 8 - 0.005 < 0.001 0.070 - -

Figure 2 Mean profiles of change in NO metabolites level.
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large. This serious aspect has previously been reported in
a simulation study by Park [12] somewhat in a different
way, where there was no random effect in the process of
data generating. The interested reader is referred to
[16-19] for the sample size and power calculations in
repeated measurements analysis.
Interestingly, the SMA was robust to the true covar-

iance structures in testing main and interaction effects
even for small sample sizes and large number of mea-
surements. Moreover, the SMA in the analysis of linear
trend data was a powerful method in which its empirical
powers were convincingly close to those of the best-fit-
ting LMM, in general. This means that the least squares
slope and mean of response are appropriate measures to
summarize the corresponding effects.
In this study, we fitted the LMMs using the ‘’nlme’’

package in the software R in which it follows the inner-
outer approach for calculating the denominator degrees
of freedom (df) of F statistics [20]. In comparison with
the packages nlme and lme4 in R, the MIXED proce-
dure in SAS provides also Satterthwaite and Kenward-
Roger approximation methods for calculating the
denominator df which especially result in some
improvements in the resulting p-values. Although the
superiority of these complex methods in terms of better
preservation of type I error rates has been previously
illustrated in unbalance designs [21-23], the differences
are rather negligible when LMMs are employed inside
the context of longitudinal analyses and there is no
missing data. The R packages do have the advantage
over the SAS procedure in providing the useful alterna-
tive algorithms Monte Carlo simulation and parametric
bootstrap for getting more sensible p-values and confi-
dence intervals. However, they are computationally
intensive to be included in a simulation study.
The SMA clearly dominated the traditional UMA in

testing time and interaction effects. The reason is that
the SMA utilizes the linear trend in such data by com-
puting the least squares slopes. However, the UMA
assumes a more general nonlinear model with more
parameters which must be estimated, and also imposes

the most complex structure on the covariances of errors
in which it may not be necessary.
Though not reported here some simulations based on

the non-normal data show that, in general, the
approaches were relatively robust to departures from
multivariate normality. However, this had been reported
previously for the two-sample Hotelling’s T2 test [24,25]
and somewhat LME models [26,27].
This paper did not aim to deal with missing observa-

tions and baseline or pre-treatment measurement tech-
niques. If the missing observations do not occur
completely at random, it can introduce potential bias
into parameter estimation and decision-making in statis-
tical models. Barton and Cramer [28] and Catellier and
Muller [29] have proposed several approximating
denominator df on this issue. In this respect, the perfor-
mance of SMA is highly dependent on weighting the
individual’s summary statistics [30] which may be cum-
bersome in practice. There are also more complex and
efficient approaches to adjust the effect of baseline value
(values) for the SMA such as including the baseline
(average of baselines) or estimated intercept as covariate
in an analysis of covariance (ANCOVA) model [4].

Conclusions
It was shown that the SMA, on the basis of the two sum-
mary measures, was a simple, safe and powerful method in
testing main and interaction effects in which it performed
reasonably as the best-fitting LMM. However, The LMM
often led to seriously inflated type I error rates and hence
non-sensible inferences when the covariance structure for
errors is misspecified. Moreover, this simple approach
dominated the widely used UMA in assessing the linear
trend data from a mixed model framework. The SMA is
recommended as the first choice to confidently analyze
linear trend data with a moderate to large number of mea-
surements and/or small to moderate sample sizes.
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