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1 Introduction and summary of the results

The dS/CFT correspondence was first proposed in [1, 2] and further developed in [3] for

single field inflationary models. In analogy with the AdS/CFT correspondence, it suggests

a duality between a four dimensional gravity theory which is asymptotically de Sitter and

a three dimensional Euclidean conformal field theory. More concretely it suggests the

following dictionary

Ψ[g] = Z[g] (1.1)

Ψ[g] is the wavefunction of the universe for a given three metric g and Z[g] is the partition

function of the dual conformal field theory.

According to the inflationary paradigm the universe starts its life in a de Sitter phase

and then evolve, due to various matter fields, until it reaches a second de Sitter phase at

asymptotically late times. The primordial and final de Sitter phases are characterized by

two different Hubble constants H and H0, respectively. The isometries of de Sitter space

correspond to the conformal symmetry group of the dual field theory and therefore the
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evolution of the universe can be described, using the dS/CFT correspondence, as a renor-

malization group (RG) flow between two conformal fixed points with central charges [4–12].

cIR = H−2 (1.2)

cUV = H−2
0 (1.3)

respectively.1 The primordial de Sitter corresponds to the IR fixed point and the final

de Sitter correspond to the UV fixed point. This is a manifestation of the dS/CFT cor-

respondence as a UV/IR duality. Note that since the final Hubble constant H0 is much

smaller than the primordial one H, the central charges exhibit the inequality cUV > cIR,

as appropriate for a consistent RG flow. Moreover, a monotonically decreasing function

along the flow (or monotonically increasing with time) can be constructed and therefore a

c-theorem for cosmology can be established [14].

The dual field theory to gravity in anti-de Sitter space is known to be N = 4 SYM

and the AdS/CFT correspondence is well-established [15, 16] (including symmetry breaking

processes and geometries dual to RG flows, see for example [17, 18]). However, much less is

known about the dS/CFT correspondence and in particular the dual field theory to gravity

in de Sitter space, if exists, is not known. Therefore it is interesting to study and char-

acterize the dual theory to gravity in de Sitter space using the proposed dictionary (1.1).

But it is also possible to use the dictionary in the opposite direction, to study gravity in

de Sitter using the dual theory (or more precisely, its symmetries). For example, the con-

formal symmetry has been used to constrain the form of the three-point function [19, 20]

and the Maldacena consistency consitions [3] were rederived using the Ward identities of

the dual field theory [9].

In this paper we study single field slow-roll inflation, in which the universe departs

from its primordial de Sitter phase due to the potential of a single scalar field, the inflaton.

Since the primordial de Sitter phase of the universe is dual to the IR fixed point, the

dual process to the departure from this phase is described by a perturbation of the dual

conformal theory by a marginally irrelevant operator [5–7]. The spectrum of perturbations

caused by the inflaton is therefore dual to the spectrum of perturbations caused by the

marginally irrelevant operator. The aim of this paper is to study the dual spectrum of

perturbations in a similar manner to the study of holographic RG flows in AdS [21, 22].

In order to use the dictionary (1.1) in the same way as in AdS/CFT one has to calculate

the fluctuation in the bulk at all times. On the one hand, the dual field theory lives on

a spatial slice at asymptotically late times (analogous to the AdS boundary), and on the

other hand, the Bunch-Davies boundary conditions have to be imposed on the solution at

early times. However, the solution for the fluctuation at all times will not only be useful

for the study of the dual theory but also to study the bulk gravity, namely inflation. In

general, it is not possible to find the solution for the fluctuation at all times, but we will be

able to do this in a low momentum approximation using a technique that was developed

to understand holographic RG flows between two fixed points. The technique is called the

matching procedure and we will describe it below.

1For a different relation between inflation, field theory and holography see [13], where a cosmological

brane inflation scenario was constructed using a holographic MQCD model.
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Figure 1. The inflationary potential with two critical points. The maximum on the left represents

the primordial de Sitter space while the minimum on the right is the asymptotically late de Sitter.

The region around the maximum is called quasi-de Sitter. In the quasi-de Sitter region one can

solve the equation of motion of the fluctuation in a slow-roll expansion. On the other hand, one

can solve the equation of motion perturbatively in small momenta. This perturbative solution is

not valid at early times when the comoving Hubble radius is large compared to the wavelength of

the fluctuation. However, for small enough momenta the perturbative solution will be valid all the

way to the quasi-de Sitter region such that the two solutions overlap.

The superhorizon region is defined to be where the comoving Hubble radius of the

universe, R, is smaller than the wavelength of the fluctuation

R
λ
< 1 (1.4)

It is therefore possible to solve the equation of motion for the fluctuation, in the superhori-

zon region, perturbatively in large wavelength (or small momentum). Since the comoving

Hubble radius decreases during inflation, the approximation becomes more accurate at late

times but loses its validity in the sub-horizon region at early times. On the other hand,

at early times the universe is a quasi-de Sitter space and one can solve for the fluctuation

using the standard slow-roll prescription, with the Bunch-Davies boundary conditions.

While the perturbative solution will always break down at early enough times, for suffi-

ciently large wavelength (or small momentum) its region of validity can extend all the way

to the quasi-de Sitter region. Hence, for fluctuations of sufficiently large wavelength there

is an overlapping region where both the low-momentum and the slow-roll approximations

are valid. We are then able to construct a solution which is valid at all times by matching

the two solutions in the overlapping region. This procedure is described in figure 1, where

we schematically describe the inflaton’s slow-roll potential that interpolates between the

two fixed points (corresponding to the two de Sitter spaces).

We find that the dual field theory admits two phases, depending on the solution for the

homogenous background field. Since the inflaton field admits a second order differential
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equation, it has two solutions. The solution which goes faster to zero at late times cor-

responds to a phase where conformal symmetry is spontaneously broken, while the other

solution corresponds to an explicitly broken phase. This is of course natural in the lan-

guage of AdS/CFT [21, 22]. The spectrum of perturbations is nearly scale invariant in the

explicit breaking phase. That spectrum corresponds to a perturbation by a nearly marginal

operator. The anomalous dimension of that operator is related to the slow-roll parameters.

In the spontaneous breaking phase, on the other hand, we observe a massless pole which we

associate to the propagation of the dilaton, the Goldstone boson of spontaneously broken

conformal symmetry.

From the bulk point of view the phase structure of the dual field theory is related to a

question of fine-tuning. In general, both solutions for the homogenous background inflaton

exist. Hence, the generic case corresponds to the explicit breaking phase and therefore will

generate a nearly scale invariant (or quasi-marginal) spectrum of perturbations. However,

when the leading solution for the homogenous background field at late times is fine-tuned

to zero, the dual field theory will admit a spontaneous breaking phase and the power

spectrum of perturbations, as a function of momentum, will behave as

P ∼ k2 (1.5)

That behavior of the power spectrum corresponds to the appearance of a massless dilaton

pole in the two-point function of the dual field theory. The fact that we observe a nearly

scale invariant spectrum of perturbations means that there is no fine-tuning in the universe,

in the sense discussed above.

The appearance of the massless dilaton pole in the spontaneous breaking phase is

directly related to a phenomenon of a mixing between the two fluctuating modes in the

bulk and which was recently discovered in AdS/CFT [22, 23]. The matching procedure

discussed above mix between the normalizable and the non-normalizable modes of the

fluctuation in the bulk. The meaning is that each of these modes at late times (end of

inflation) is a superposition of the two modes in the quasi-de Sitter region.

It was shown in [22] that generically (namely for general boundary conditions and

shapes of the potential) there is a mixing between the two modes in the bulk. The values

of the mixing coefficients depend on the precise details of the problem, and it is possible

to tune some of them to zero, but generically they appear. In this paper we choose the

standard Bunch-Davies boundary conditions and a slow-roll potential, but the mixing effect

does not depend on this choices.

The mixing effect between the two modes in the bulk may potentially affect cosmo-

logical observables. While the non-normalizable mode stays constant in the superhorizon

region, the normalizable mode decays exponentially fast. By the time the fluctuation re-

enters the horizon after inflation ends, the normalizable mode have practically decayed to

zero. The amplitude of the non-normalizable mode at horizon re-entry is then projected to

the cosmological observables at later times using the transfer function. Without the mixing

effect, the amplitude of the non-normalizable mode at horizon exit and horizon re-entry is

the same, and the perturbations will be described by the well-known nearly scale invariant
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power spectrum of single-field inflation. However, if the two modes mix in the superhori-

zon region, as our solution shows, the amplitude of the non-normalizable mode at horizon

re-entry will be different than its value at horizon exit, and that will affect the observed

spectrum. We find that in the explicit breaking phase, to leading order in momentum, the

spectrum is nearly scale invariant and the mixing affects only at subleading orders. In the

spontaneous breaking phase, on the other hand, we find that the mixing effect generates

a new leading term in the spectrum which is not nearly scale invariant, and hence dra-

matically changes the result. This term corresponds to the massless dilaton pole in the

dual two-point function. These results are in agreement with the measured nearly scale

invariant spectrum since the spontaneous breaking phase corresponds to a fine-tuned sit-

uation, while the generic, non-fine-tuned, case corresponds to the explicit breaking phase,

as discussed above.

Since the results that we present in this paper are in a complete agreement with the

measurements, they are not of a direct phenomenological interest. However, they suggest

interesting possible effects. We have discussed the power spectrum of the perturbations but

it is not known how the mixing affects other cosmological observables such as higher order

correlators. It may very well be that, as opposed to the power spectrum, other cosmological

observables are significantly affected also in the generic, explicit breaking, case. Therefore,

it would be very interesting to study the effect of the mixing on the bispectrum (or other

cosmological observables) and to see, for example, whether it can cause a suppression of

non-gaussianities. This question is out of the scope of this paper and we leave it for further

investigation.

The paper is organized as follows. In section 2 we briefly review single field inflation

and the homogenous background solution. In section 3 we study scalar fluctuations over

the homogenous background and construct the low momentum solution at all times using

the matching procedure. Section 4 is devoted for the dual flow. We compute the two-point

function for the dual operator to the inflaton field and discuss different phases of the dual

field theory. In section 5 we study gravitational waves (tensor fluctuations). We conclude

in section 6 and propose future directions.

2 Single field inflation

We study single field inflationary models described by the Lagrangian

S =

∫
dtddx

√
−g
[

1

2
R− 1

2
∂µφ∂

µφ− V (φ)

]
(2.1)

We have set M−2
pl ≡ 8πGN = 1. The equations of motion for the metric and the scalar are

RMN = ∂Mφ∂Nφ+
2

d− 1
gMNV (φ)

�φ =
∂V

∂φ
(2.2)

The homogeneous solution to these equations has the form

ds2 = −dt2 + e2A(t)d~x2

φ = φ(t) (2.3)
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where φ(t) and A(t) obey the equations

Ä = − 1

d− 1
φ̇2

Ȧ2 =
1

d(d− 1)
φ̇2 +

2

d(d− 1)
V (2.4)

φ̈+ dȦφ̇ = −∂V
∂φ

The third equation follows from the first two.

We are interested in potentials interpolating between two fixed points, as described in

figure 1. In general, it is not possible to find an exact solution to (2.4) without specifying

the exact form of the potential. However, it is possible to study the asymptotic forms of

the solution near the fixed points. Let us start by looking exactly at a fixed point of the

potential, where its derivative is zero. At this point the potential takes a constant value

V =
d(d− 1)

2
H2 (2.5)

and the solution for (2.4) at this point is

φ(t) = φ0 (2.6)

A(t) = Ht (2.7)

where φ0 is some constant. This solution is a de Sitter space with a Hubble constant H.

The value of the potential at each of the fixed points is different and therefore the potential

interpolates between two de Sitter spaces with different Hubble constants. Next, we want

to study the behavior of the solution in the vicinity of the fixed point. Near a fixed point

the potential can be expanded as follows

V =
d(d− 1)

2
H2 +

1

2
m2(φ− φ0)2 (2.8)

Plugging this into (2.4), and defining δφ ≡ φ − φ0, we find the following equation for

the scalar

δ̈φ+ dH ˙δφ+m2δφ = 0 (2.9)

The two solutions to (2.9) are

δφ± = Ce−∆±Ht (2.10)

where ∆+ (∆−) is the larger (smaller) root of the equation

∆ (∆− d) = −
(
m

H

)2

(2.11)

and C is an arbitrary constant. The scale factor is then

A± = Ht− C2

4(d− 1)
e−2∆±Ht (2.12)

Note that the value of m2 is different in each fixed point (and, in particular, is negative for

a maximum of the potential).
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3 Fluctuations

In this section we study fluctuations over the homogenous background solution discussed

in the previous section. We will be able to construct a solution which is valid at all times

for low momentum fluctuations, as a function of the background fields. The way this is

done is called in the literature ”the matching procedure” [21]. The idea is to match two

solutions, which are valid at different regions of the space of parameters. For low enough

momentum the two regions overlap and cover together the full space of parameters. Then

one can match the two solutions at the overlapping region and by that construct a solution

which is valid everywhere.

The first solution is a perturbative expansion in momentum. We will show that the

small expansion parameter is the momentum over the inverse comoving Hubble radius.

For a given momentum, this perturbative solution will always break down at sufficiently

early times when the comoving Hubble radius is large. The second solution is valid at early

times, in the quasi-de Sitter region. Using the slow-roll approximation one can solve for the

fluctuation and impose the Bunch-Davies boundary conditions at early times [3]. The per-

turbative solution is not valid at very early times, but for low enough momentum its region

of validity extends all the way to the quasi-de Sitter regime, and the two solutions overlap.

We start by introducing fluctuations over the homogenous background (2.3)

ds2 = −(1 + 2Φ)dt2 + 2eABidx
idt+ e2A [(1− 2Ψ)δij + Eij + γij ] dx

idxj (3.1)

φ = φ(t) + ϕ(t, ~x) (3.2)

where

Bi = ∂iB − Si (3.3)

Eij ≡ 2∂i∂jE + 2∂(iFj) (3.4)

and

∂iSi = ∂iFi = 0 (3.5)

γii = ∂iγij = 0 (3.6)

There are five scalar perturbations ϕ,Φ, B,Ψ, E. Two of them can always be set to zero

using a gauge transformation (see for example [24]). Out of the three variables left, there

is only one dynamical degree of freedom since two of the Einstein equations are constraint

equations. This dynamical fluctuation is given by the following gauge invariant variable

ζ = Ψ +
Ȧ

φ̇
ϕ (3.7)

which is called the comoving curvature perturbation. The vector perturbations Si and Fi
are not generated by inflation and in any case can be removed by an appropriate gauge

transformation. The tensor perturbation γij is transverse and traceless, and it is gauge

invariant. We will discuss tensor perturbations in section 5.
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We now concentrate on the scalar fluctuation and specialize to three spatial dimensions.

The action for the gauge invariant scalar perturbation ζ to second order is [3]

S =

∫
dtd3x

1

2

φ̇2

Ȧ2

[
e3Aζ̇2 − eA(∂ζ)2

]
(3.8)

At this point it will be useful to introduce conformal time, which is defined by

dτ = e−Adt (3.9)

Let us also define the following functions of the background fields

ε ≡ 1

2

φ̇2

Ȧ2
= − Ä

Ȧ2
=

1

2

φ′2

A′2
= 1− A′′

A′2
(3.10)

η ≡ ε̇

Ȧε
=

ε′

A′ε
(3.11)

κ ≡ η̇

Ȧη
=

η′

A′η
(3.12)

where ′ denotes a derivative with respect to the conformal time. The action of the fluctu-

ation (3.8) can now be written as

S =

∫
dτd3x y

[
ζ ′2 − (∂ζ)2

]
(3.13)

where we defined the variable2

y ≡ εe2A (3.14)

The equation of motion of ζ in momentum space is then(
yζ ′
)′

+ k2yζ = 0 (3.15)

The rest of this section is dedicated to solving this equation in different regions of the space

of parameters, match the solutions and construct a solution which is valid at all times.

3.1 Low momentum solution

We start by solving equation (3.15) perturbatively in small momentum. The solution takes

the following form

ζpert(τ) =
∞∑
n=0

[D0Un(τ) +D1Vn(τ)] k2n (3.16)

where U0 and V0 are the solutions to the zero momentum equation

U0 = 1 (3.17)

V0 =

∫
dτ

1

y
(3.18)

2ζ and y are related to the Mukhanov variable υ = zζ where y = 1
2
z2.
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and

Fn+1 = −
∫
dτ

1

y

∫
dτ y Fn (3.19)

Fn stands for either Un and Vn.

We want to determine the region of validity of the perturbative solution (3.16). How-

ever, since we use a dimensionful parameter, τ , as the time coordinate it is not clear

from (3.15) what is precisely the dimensionless expansion parameter. For that purpose

we would like to find a dimensionless variable which can serve as a time coordinate and

express equation (3.15) in terms of this variable. Inflationary universes only expand3 and

therefore the scale factor is a monotonically increasing function of τ . In addition, the scale

factor A(τ) is dimensionless, and for this two reasons we can use it as a time coordinate.

In terms of the scale factor as the coordinate the equation of motion now takes the form

∂2
Aζ +

∂A(yA′)

A′
∂Aζ +

(
k

A′

)2

ζ = 0 (3.20)

∂A is a derivative with respect to A. In this form everything is dimensionless and it is

transparent that the dimensionless expansion parameter is(
k

A′

)2

(3.21)

A′ is the inverse comoving Hubble radius which increase during inflation. Therefore the

low momentum approximation is more accurate at late times but loses its validity at early

times. More precisely, the expansion is valid in the superhorizon region where k < A′.

The solutions (3.16) represent a family of solutions described by the two constants

D0 and D1. In order to determine the unique solution one also has to specify what are

the boundary conditions. This solution is not valid at very early times and therefore one

cannot use it directly to impose the Bunch-Davies boundary conditions. However, since

there is an overlap between the quasi-de Sitter and the superhorizon regions, we can match

the two solutions, and by that determine the perturbative solution uniquely.

3.2 Quasi-de Sitter region

In this subsection we review the systematic slow-roll expansion of the solution in the quasi-

de Sitter region [24]. In the slow-roll regime the parameters (3.10)–(3.12) are small and

one can solve for the background fields. Solving (3.10) for A

A(τ) ' −(1 + ε) ln(−Hτ) (3.22)

In the same way one can solve (3.11) for ε and (3.12) for η

ε = (−Hτ)η (3.23)

η = (−Hτ)κ (3.24)

3There are other cosmological scenarios in which this is not true, see for example [25].
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The y-variable therefore takes the form

y = (−Hτ)1−2ν (3.25)

where

ν ≡ 3

2
+ ε+

1

2
η (3.26)

In the rest of this paper we refer to ε and η as the variables (3.10)–(3.11) evaluated in the

slow-roll regime.

The equation of motion (3.15) can now be solved exactly to give

ζqdS(τ) = (−Hτ)ν
[
γH(1)

ν (−kτ) + βH(2)
ν (−kτ)

]
(3.27)

where H1
ν

(
H2
ν

)
is the Hankel function of the first (second) kind. To impose the Bunch-

Davies boundary condition at early times we consider the limit (see appendix A for the

properties of the Hankel function)

lim
kτ→−∞

ζqdS(τ) =

√
2

π
(−Hτ)ν−

1
2

[
γ

1√
k
e−ikτ + β

1√
k
eikτ

]
(3.28)

Comparing this to the solution in de Sitter space [24]

lim
kτ→−∞

ζ(τ) =
1

2
(−Hτ)ν−

1
2

1√
k
e−ikτ (3.29)

we find

γ =
1

2

√
π

2
, β = 0 (3.30)

We conclude that the solution in the quasi-de Sitter region is

ζqdS(τ) =
1

2

√
π

2
(−Hτ)νH(1)

ν (−kτ) (3.31)

3.3 The matching

The final step in constructing the full solution at low momentum is to match the perturba-

tive solution (3.16) with the solution in the quasi-de Sitter region (3.31). This procedure

fixes uniquely the coefficients D0 and D1 in (3.16) and therefore determine the solution at

all times.

The overlapping region between the two solutions is defined to be where both the

slow-roll and low-momentum approximations are valid. Taking the low momentum limit of

the quasi-de Sitter solution (3.31) should therefore be equal to evaluating the perturbative

solution (3.16) in the quasi-de Sitter region. The low-momentum limit of the quasi-de

Sitter solution (3.31) takes the form

ζqdS(τ) =

√
π

8

(
k

H

)−ν [
bν + aν(−kτ)2ν

]
(3.32)
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aν and bν are numerical constants depending only on the rank of the Hankel function (see

appendix A).

On the other hand, evaluating the perturbative solution (3.16) in the slow-roll regime

is more involved. The perturbative solution is given by integrals over functions of the

background fields. Since we don’t know the precise form of the background solution we

cannot evaluate these integrals (and even if we knew the exact homogenous solution the

integrals may not necessarily be solvable). Nevertheless, it is possible to approximate the

integrands in the slow-roll regime and then solve the integrals. In [22] it was argued that

this procedure gives the correct result up to some mixing terms between the two series of

the perturbative solution.

To be more concrete let us put an example. Evaluating V0 (3.18) by approximating

the integrand in the slow-roll regime gives

V0 ∼ (−Hτ)2ν (3.33)

However, evaluating V0 explicitly and then taking the slow-roll limit will generically give

V0 ∼ 1 + (−Hτ)2ν (3.34)

as was argued in [22]. The constant piece in (3.34) then mixes with the constant term

in the first series, D0. Based on generic examples, it was argued in [22] that such mixing

terms generically appear in the solution. For more details and discussions about the mixing

issue we refer the reader to [22].

The perturbative solution evaluated in the quasi-de Sitter region and including possible

mixing terms is then given by

ζpert(τ) = [D0 + c2(1 + . . . )D1]− D1 + c1(k2 + . . . )D0

2νH
(−Hτ)2ν (3.35)

c1 and c2 stand for the mixing terms between the two series. Matching the two solu-

tions (3.32) and (3.35) we find

D0 =

√
π

8
bν

(
k

H

)−ν 1− c2(1 + . . . )P (k)

1− c1c2(k2 + . . . )
(3.36)

D1

D0
=
P (k)− c1(k2 + . . . )

1− c2P (k)(1 + . . . )
(3.37)

where

P (k) ≡ −2ν
aν
bν
H

(
k

H

)2ν

(3.38)

This procedure uniquely determines the perturbative solution.

4 The dual flow

The dS/CFT correspondence postulates that the wavefunction of the universe which is

asymptotically de Sitter space is equal to the partition function of a dual field theory. The

precise dictionary is [3]

Ψ[g] = Z[g] (4.1)
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where the left hand side is the wavefunction of the universe for a given three metric g and

the right side is the partition function of some dual three dimensional field theory. The

wavefunction of the universe is given by

Ψ[g] =

∫
D[G]eiS[G] (4.2)

where G is a four metric. We will use the classical gravity approximation [3]

Ψ ' eiScl (4.3)

g is the three metric of the spatial slice at asymptotically late times τ → 0. In order to

study the dual field theory using the dictionary (4.1) we therefore first need to discuss the

asymptotic form of the solution for the fluctuation ζ.

4.1 Asymptotically late times

At asymptotically late times the universe is a de Sitter space with a Hubble constant H0. In

this region the solution is very well-approximated by the perturbative expansion (3.16). In

analogy to the quasi-de Sitter region (3.25)–(3.26), the y-variable at the late dS is given by

y = (−H0τ)1−2ν0 (4.4)

with

ν0 ≡
3

2
+ ε0 +

1

2
η0 (4.5)

ε0 and η0 are the variables (3.10) and (3.11), respectively, evaluated in the late de Sitter

space. They are the analogs of the primordial de Sitter’s slow-roll parameters, for the

late de Sitter. To be more concrete, let us evaluate them explicitly using the asymptotic

solution of the background fields (2.10) and (2.12). To leading order

−H0τ ' e−H0t (4.6)

and

ε0 '
C2∆2

±
2

(−H0τ)2∆± (4.7)

η0 ' −2∆± (4.8)

Both roots ∆± are positive and therefore ε0 goes to zero in the far future τ → 0. However,

η0 is finite and not necessarily small (as opposed to the slow-roll’s η). We therefore find that

ν0± =
3

2
−∆± = ∓

√(
3

2

)2

−
(
m

H0

)2

(4.9)

Evaluating the solution for ζ (3.16) in this region (4.4) we find

ζdS = D0 −
D1

2ν0H0
(−H0τ)2ν0 + . . . (4.10)

where the dots refer to subleading corrections to both series.
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Knowing the asymptotic form of the solution we are now able to calculate the gravi-

tational wavefunction since that in the classical approximation it is given by the on-shell

action (4.3), which is a boundary term. Using the equation of motion, the action for the

fluctuation (3.13) can be written as a boundary term

S =

∫
d3k

(2π)3

[
yζζ ′

]
τ=δ

(4.11)

δ is a cutoff which should be taken to zero eventually. Evaluating the action (4.11) on the

asymptotic solution (4.10) we find

S =

∫
d3k

(2π)3

[
D0D1 (1 + . . . )

−D2
0 (−H0δ)

−ν0 H0 (kδ)2

ν0 − 2
(1 + . . . )

−D2
1(−H0δ)

ν0 1

H0ν0
(1 + . . . )

]
(4.12)

where dots indicate higher order terms in kδ. Only the term independent of δ in the

expression above (4.12), which is proportional to D0D1, gives rise to the two-point function.

All the other terms are either divergent or vanish as δ → 0. The divergent terms are viewed

as divergences in the field theory which should be subtracted by local counterterms [3]. We

conclude that the finite non-local part of the boundary action is

Sfinite,non−local =

∫
d3k

(2π)3
D0D1 (4.13)

4.2 The two-point function

Using the dictionary (4.1) one can calculate correlation functions in the dual theory from

the gravity wavefunction. In particular, we will be interested in the two-point function of

the dual scalar operator of the inflaton

〈
O~kO~k′

〉
=

[
δ2Z

δJ(~k)δJ(~k′)

]
J=0

(4.14)

Using the result for the on-shell action (4.13), the two-point function is given by

〈
O~kO~k′

〉
= i(2π)3δ

(
~k + ~k′

)[ δ2 (D0D1)

δJ(~k)δJ(~k′)

]
J=0

(4.15)

J(~k) is the source for the dual operator and it is defined using the asymptotic form of

the bulk scalar field (4.10). More precisely, the source J(~k) is defined to be the coefficient

of the leading term in the expansion (4.10). Which of the two terms in (4.10) is leading

depends on the sign of ν0. For the lower root ν0− > 0 the second solution in (4.10) goes

to zero at late times (τ → 0) and therefore D0 is identified as the source for the dual

scalar operator

J−(~k) = D0(~k) (4.16)
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For the upper root ν0+ < 0 the second solution in (4.10) diverges at late times and therefore

D1 is proportional to the source

J+(~k) = − 1

2ν0H0
D1(~k) (4.17)

Later on we will interpret these two cases as two phases of the dual field theory: the case

ν0− will correspond to explicit breaking of conformal symmetry, while the case ν0+ will

correspond to spontaneous breaking of conformal symmetry.

Using the definitions of the source in the two cases, (4.16) and (4.17), and the bound-

ary condition we found (3.37), we are now able to explicitly evaluate the two-point func-

tion (4.15).

4.3 Explicit breaking

We begin with the case ν0−, for which the source J(~k) is equal to D0(~k) and equation (4.15)

reduces to 〈
O~kO~k′

〉
− = i(2π)3δ

(
~k + ~k′

)(D1

D0

)
(4.18)

Using the boundary condition (3.37) we then find

〈
O~kO~k′

〉
− = i(2π)3δ

(
~k + ~k′

) P (k)− c1(k2 + . . . )

1− c2P (k)(1 + . . . )
(4.19)

The function P (k) (3.38) is a non-integer positive power of the momentum k and therefore

when expanding the last expressions (4.19) in small momentum we find that the leading

non-analytic piece is given by〈
O~kO~k′

〉
− = i(2π)3δ

(
~k + ~k′

)
P (k) + . . . (4.20)

The dots refer to subleading terms in momentum and analytic contributions which are

viewed as contact terms in the dual field theory. The leading non-analytic contribution to

the two point function is therefore

〈
O~kO~k′

〉
− = −i(2π)3δ

(
~k + ~k′

) 2νaν
bν

H

(
k

H

)2ν

(4.21)

The two-point function is of the form

〈OO〉− ∼ k3−2λ (4.22)

where

λ = −ε− 1

2
η (4.23)

This is a correlator of a nearly marginal operator of dimension

∆ = 3− λ (4.24)

in a three dimensional field theory.
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4.4 Spontaneous breaking

Let us go on to the second case ν0+, in which the source J(~k) is proportional to D1(~k).

Now equation (4.15) gives

〈
O~kO~k′

〉
+

= i(2π)3δ
(
~k + ~k′

)
(2ν0H0)2

(
D1

D0

)−1

(4.25)

Plugging in the boundary condition (3.37) we find

〈
O~kO~k′

〉
+

= i(2π)3δ
(
~k + ~k′

)
(2ν0H0)2 1− c2P (k)(1 + . . . )

P (k)− c1(k2 + . . . )
(4.26)

Now since P (k) ∼ k2ν , and 2ν > 2 (see (3.26)), the leading non-analytic piece in the

correlator (4.26) is

〈
O~kO~k′

〉
+

= −i(2π)3δ
(
~k + ~k′

) (2ν0H0)2

c1

1

k2
+ . . . (4.27)

where the dots again indicate subleading and analytic terms in momentum. We interpret

the massless pole appearing in the two point function as the propagator of the dilaton, the

Goldstone boson of the spontaneously broken conformal symmetry [22].

5 Gravitational waves

We now turn to study tensor fluctuations over the homogenous background. The quadratic

action for the tensor fluctuation γij is given by [3]

S =
1

8

∫
dtd3x

[
e3Aγ̇ij γ̇ij − eA∂`γij∂`γij

]
(5.1)

γij can be expanded in plane waves with definite polarization tensors

γij =

∫
d3k

(2π)3

∑
s=±

εsij(k)γs~k(t)e
i~k~x (5.2)

where εii = kiεij = 0 and εsij(k)εs
′
ij(k) = 2δss′ . Plugging this decomposition into the

action (5.1) and translating to conformal time results in

S =
1

4

∫
dτ

d3k

(2π)3
e2A

∑
s=±

[(
γs~k
′
)2
− k2

(
γs~k

)2
]

(5.3)

The equation of motion for each polarization mode is then(
e2Aγs~k

′
)′

+ k2e2Aγs~k = 0 (5.4)

This equation is very similar to the equation of motion of the scalar mode (3.15) with the

y variable (3.14) replaced by yt ≡ e2A. Therefore we can solve in the same way for the

tensor modes and find the correlator of the dual operator (the energy-momentum tensor).
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In the quasi-de Sitter region yt takes the form

yt = (−Hτ)1−2σ (5.5)

with

σ ≡ 3

2
+ ε (5.6)

From here on everything goes through precisely in the same way as for the scalar mode

with the replacement ν → σ. However, in that case we have

σ0 '
3

2
(5.7)

in the late dS space. σ0 is positive for both cases ∆± and therefore the two-point function

of the dual energy-momentum tensor is the same in both explicit and spontaneous breaking

phases, and it takes the form

〈
T s~kT

s′

~k′

〉
= −i(2π)3δss

′
δ
(
~k + ~k′

) 2σaσ
bσ

H

(
k

H

)2σ

(5.8)

The momentum dependence of the two-point function is〈
T s~kT

s′

~k′

〉
∼ k3−2λt (5.9)

where

λt = −ε (5.10)

This is a correlator of a nearly marginal operator of dimension

∆ = 3− λt (5.11)

in a three dimensional field theory.

6 Concluding remarks and future directions

In the present paper we have studied the dual flow to single-field slow-roll inflation. We

found the solution for the inflationary fluctuation at all times using a low momentum ap-

proximation and a matching procedure between a perturbative and a slow-roll expansions.

Using this solution we were able to apply the postulate of the dS/CFT correspondence,

in the same way as in AdS, and calculate the two-point function of the dual operator to

the inflaton. We found that the dual flow admits two phases of explicit and spontaneous

breaking of conformal symmetry (or of the de Sitter isometries). The two-point function

of the dual operator in the explicit breaking phase is

〈OO〉explicit ∼ k3−2λ (6.1)
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λ is the anomalous dimension of the dual irrelevant operator and is related to the slow-roll

parameters by

λ = −ε− 1

2
η (6.2)

Since the slow-roll parameters are small, the dual operator is nearly marginal (or slightly

irrelevant). The two-point function of the dual operator in the spontaneous breaking phase,

on the other hand, is a massless pole

〈OO〉spontaneous ∼
1

k2
(6.3)

which is associated with the dilaton - the Goldstone boson of spontaneously broken con-

formal symmetry.

From the bulk point of view, the two phases are related to the behavior of the ho-

mogenous background inflaton, which has two solutions. The solution which goes faster to

zero at late times corresponds to the spontaneous breaking phase while the other solution

corresponds to the explicit breaking phase. It is therefore necessary to fine-tune the lead-

ing background solution at late times to zero in order to land in the spontaneous breaking

phase. Since the power spectrum of fluctuations in the bulk is schematically given by

P ∼ 1

〈OO〉
(6.4)

we conclude that in a generic, non-fine-tuned, case slow-roll inflation generates a nearly

scale invariant (or quasi-marginal) power spectrum

P ∼ 1

k3−2λ
(6.5)

However, we find a possible fine-tuned situation in which

P ∼ k2 (6.6)

We conclude that slow-roll inflation does not guarantees a nearly scale invariant spectrum,

but the spectrum is generically nearly scale invariant except in fine-tuned situations.

The appearance of the spontaneous breaking phase is a direct consequence of the mixing

between the two fluctuating modes in the bulk. The matching procedure mix between

the normalizable and the non-normalizable modes such that each of the modes at late

times is a superposition of the two modes in the quasi-de Sitter region. The mixing effect

induce a dramatic change in the spontaneous breaking phase, but does not affect the power

spectrum in the explicit breaking phase (at least to leading order in momentum). Together

with the fact that the spontaneous breaking phase is fine-tuned this is consistent with the

experimental measurement of a nearly scale invariant power spectrum. However, it opens

a window for a variety of other effects of the mixing on other cosmological observables.

For example, it may be very interesting to study the effect of the mixing between the two

modes in the bulk on the bispectrum (the three point function) and see if it has a unique

signature on the shape of non-gaussianities.
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Further proposals for future directions are in place. The effective field theory of in-

flation was first introduced in [26] using the Stückelberg trick. The Goldstone boson is

introduced by performing a broken time diffeomorphism and its effective action parame-

terizes the most general theory of fluctuations around the quasi-de Sitter background. The

effective action was then used to put constraints on inflation, find consistency conditions

and discover new cosmological models. It would be interesting to relate the Goldstone bo-

son in the bulk to the spurion field of the boundary conformal symmetry (the dilaton in the

case of spontaneous breaking). In particular, the constraints on the dilaton effective action

that were found in the seminal works [27, 28] could then be translated into constrains on

the effective action in the bulk. In this context let us mention, for example, two interesting

works [29, 30] which discuss the relation between conformal symmetry and inflation and

which can be used for the purposes discussed above. Another direction we would like to

pursue is to borrow the effective field theory approach of inflation to holography. In the

same way in which the Goldstone boson of inflation was introduced, one can use a broken

radial diffeomorphism along the holographic direction to introduce a Goldstone boson for

holography. The effective action of this Goldstone boson will then parameterize the most

general asymptotically AdS holographic background. Such effective action can be useful

for discovering new dualities and to better understand the holographic correspondence be-

tween gravity and quantum field theory. Finally, multi-trace deformations were intensively

studied in AdS/CFT. In a similar way, it would be interesting to study multi-trace defor-

mations in dS/CFT and their effect on inflation (see [31] for a recent work on double-trace

deformations in dS/CFT).
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A The Hankel function

Hereby we give some properties of the Hankel function of the two kinds. The limit at infinty

lim
z→∞

H
(1,2)
θ (z) =

√
2

π

1√
z
e±iz (A.1)

The limit at zero

lim
z→0

H
(1)
θ (z) = +bθz

−θ + aθz
θ (A.2)

lim
z→0

H
(2)
θ (z) = −bθz−θ − e2πθiaθz

θ (A.3)
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where

bθ ≡ −
i2θΓ(θ)

π
(A.4)

aθ ≡
2−θ [1 + i cot(πθ)]

Γ(1 + θ)
(A.5)

Open Access. This article is distributed under the terms of the Creative Commons
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