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Abstract Due to their superfluid properties some compact
astrophysical objects, like neutron or quark stars, may con-
tain a significant part of their matter in the form of a Bose–
Einstein condensate (BEC). Observationally distinguishing
between neutron/quark stars and BEC stars is a major chal-
lenge for this latter theoretical model. An observational pos-
sibility of indirectly distinguishing BEC stars from neu-
tron/quark stars is through the study of the thin accretion disks
around compact general relativistic objects. In the present
paper, we perform a detailed comparative study of the elec-
tromagnetic and thermodynamic properties of the thin accre-
tion disks around rapidly rotating BEC stars, neutron stars
and quark stars, respectively. Due to the differences in the
exterior geometry, the thermodynamic and electromagnetic
properties of the disks (energy flux, temperature distribution,
equilibrium radiation spectrum, and efficiency of energy con-
version) are different for these classes of compact objects.
Hence in this preliminary study we have pointed out some
astrophysical signatures that may allow one to observation-
ally discriminate between BEC stars and neutron/quark stars.

1 Introduction

Since its proposal by Bose [1] and the generalization by Ein-
stein [2,3], the quantum statistics of integer spin particles
(bosons) did represent a fundamental field of study in both
theoretical and experimental physics. One of the most impor-
tant properties of bosonic systems is their phase transition to
a condensed state, in which all particles are in the same quan-
tum ground state. This quantum bosonic system is called a
Bose–Einstein condensate (BEC), and from a physical point
of view it is characterized by a sharp peak over a broader dis-
tribution in both coordinate and momentum space. The quan-
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tum explanation for this behavior is that in a BEC particles
become correlated with each other, and their wavelengths
overlap. Note that the correlation means that the thermal
wavelength λT is greater than the mean inter-particle distance
l. It occurs at a critical temperature Tc < 2π h̄2n2/3/mkB,
where m is the mass of an individual condensate particle, n is
the number density, and kB is Boltzmann’s constant [4–11]. A
coherent quantum state in the bosonic system develops either
when the particle density ρ is high enough, or when the tem-
perature T is sufficiently low. From the experimental point
of view, the Bose–Einstein condensation can be detected by
the observation of a sharp peak in the velocity distribution,
which always appears when the system is below the critical
temperature, T < Tc.

In the laboratory the Bose–Einstein condensation was
observed first in 1995 in dilute alkali gases, such as vapors of
rubidium and sodium. To obtain the condensation the gases
were confined in a magnetic trap and cooled down to very low
temperatures [12–14]. The experiment producing a labora-
tory BEC did represent a major achievement in experimental
condensed matter physics, and the confirmation of the old
and important predictions in theoretical statistical physics of
Bose and Einstein [12–14]. Note that in recent years quan-
tum degenerate gases have been created by a multitude of
experimental methods, including combination of laser and
evaporative cooling techniques. Thus the observation of the
Bose–Einstein condensation did open several new lines of
multidisciplinary research at the border of atomic, statistical
and condensed matter physics [4–14].

The Bose–Einstein condensation processes are assumed to
play an important role in the understanding of many funda-
mental processes in condensed matter physics. For example,
superfluidity of low temperature liquids, like 3He, can be
explained by assuming a Bose–Einstein condensation pro-
cess [8]. It is interesting to note that experimental observa-
tions as well as quantum theoretical calculations estimate the
condensate fraction n0 at T = 0 for superfluid helium to be
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only around n0 ≈ 0.10, a very small amount. Hence, since a
strongly correlated pair of fermions behaves approximately
like a boson, the arising liquid helium superfluidity can be
interpreted as resulting from the Bose–Einstein condensation
of coupled fermions. A very similar physical model can be
used to describe the transition to a superconducting state in
a solid material (metal). Superconductivity can thus be inter-
preted as the condensation of electrons (or holes) to Cooper
pairs. The formation of the Cooper pairs drastically reduces
the resistance caused by the motion of electrons in metals,
and thus it leads to the formation of a superconductor [8].

Since Bose–Einstein condensation is a phenomenon that
has been observed and thoroughly studied in terrestrial labo-
ratories, the possibility that it may also occur in bosonic sys-
tems existing on astrophysical or cosmological scales cannot
be rejected a priori. Thus, it was proposed that dark mat-
ter, which is required to explain the dynamics of the neutral
hydrogen clouds at large distances from the centers of the
galaxies, and which is assumed to be a cold bosonic gravi-
tationally bounded system, could also exist in the form of a
BEC [15–20]. A systematic study of the properties of Bose–
Einstein condensed galactic dark matter halos was initiated in
[21], and the astrophysical and cosmological implications of
the existence of Bose–Einstein condensed dark matter have
been investigated in detail recently [22–50].

From a theoretical point of view it was shown in [21]
that by introducing the Madelung representation of the
wave function, the dynamics of the BEC dark matter halo
is described by the continuity equation, and the hydrody-
namic Euler equations of the standard classical fluid mechan-
ics. Hence, Bose–Einstein condensed dark matter can be
described theoretically as a gas, with the pressure and den-
sity related by a barotropic equation of state (EOS). In the
case of a self-interacting condensate dark matter with quartic
self-interaction potential, the EOS is polytropic with index
n = 1 [21].

Bose–Einstein condensation could play an important role
in nuclear and quark matter physics, in the framework of
the so-called Bardeen–Cooper–Schrieffer (BCS) to BEC
crossover. From a theoretical point of view it is expected
that at ultra-high densities nuclear matter exists in the form
of a degenerate Fermi gas of quarks. The Cooper pairs of
quarks form near the Fermi surface a BEC. Hence high den-
sity nuclear matter represents, from a physical point of view,
a so-called color superconductor [51,52]. When the attractive
interaction between fermions is strong enough, and the tem-
perature drops below the critical temperature, the fermions
condense to the bosonic zero mode, and form a quark BEC
[53–63]. As a first step toward the formation of the BEC the
fermions must form a BCS state, which can be realized when
the attractive interaction between particles is weak. This sys-
tem exhibits superfluid properties, which are characterized
by the existence of an energy gap for single-particle exci-

tations. The energy gap is created by the formation of the
Cooper pairs. On the other hand a BEC is formed when the
attractive interaction between fermions is extremely strong.
This interaction first leads to the formation of bound particles
(bosons), which at some critical temperature Tc start to con-
dense to the bosonic zero mode. It is important to mention that
the BCS and BEC states are smoothly connected (crossover),
without a phase transition between the two phases [64–68].
For a recent review of the BCS–BEC crossover see [69].

The possibility of the existence of some forms of BECs
in neutron stars has been considered a long time ago (see
[70] for a detailed discussion). One possibility for the for-
mation of a BEC in a dense neutron star is the condensation
of the negatively charged mesons, leading to the replace-
ment of electrons with very high Fermi momenta by mesons
[70]. Bose–Einstein condensation of kaons and anti-kaons
in compact objects was also investigated in detail [71,72]. It
turns out that the presence of pion or kaon condensates may
have at least two important effects on the global properties
of dense neutron stars. Firstly, Bose–Einstein condensation
softens the EOS of the stellar matter above the critical density
for the onset of condensation. An important consequence of
the softening of the EOS is the reduction of the maximum
neutron star mass. On the other hand, due to the softening
of the EOS, the central density increases significantly. Sec-
ondly, the condensation of mesons would lead to consider-
ably enhanced neutrino luminosities, much higher than those
of normal neutron matter. The increase in neutrino luminos-
ity has important consequences on the neutron star cooling
[70]. Another particle, which may be present inside neutron
stars, and which may form a BEC, is the H-dibaryon. The
H-dibaryon is a doubly strange six-quark composite. It has
zero spin and isospin, and a baryon number B = 2 [70].
Neutron star matter may also contain an important fraction
of � hyperons, neutral subatomic hadrons. They consist of
one up, one down and one strange quark, and they are labeled
�0 [73,74]. The � hyperons may also combine to form H-
dibaryons [75–77]. Thus, H-matter BECs may also exist at
the center of very dense neutron stars, where the matter den-
sity is extremely high [70]. An interesting possibility is that
neutrino superfluidity, as suggested by Kapusta [78], may
also lead to Bose–Einstein condensation inside neutron stars
[79].

Thus theoretical results in nuclear matter physics indi-
cate that the possibility of the existence of some forms of
Bose–Einstein condensed matter inside compact astrophysi-
cal objects, like neutron or quark stars, or even the existence
of stars formed entirely from a pure BEC, cannot be excluded
a priori. The properties of pure BEC stars have been consid-
ered in [80]. It was shown that stars formed of BECs with
particle masses of the order of two neutron masses (Cooper
pair) and scattering length of the order of 10–20 fm have
maximum masses of the order of 2M�, maximum central
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densities of the order of 0.1–0.3 × 1016 g/cm3, and mini-
mum radii in the range of 10–20 km. Hence Bose–Einstein
condensed stars can form a large class of stable astrophysi-
cal objects, whose basic astrophysical parameters (mass and
radius) sensitively depend on the mass of the condensed par-
ticle and on the scattering length. It was also suggested that
the recently observed neutron stars with masses in the range
of 2–2.4M� (Vela X-1, 4U 1700-377, and the black widow
pulsar B1957+20) are BEC stars. Further properties of BEC
stars have been considered in [81–84].

The structure of static and rotating BEC stars was inves-
tigated numerically in [85] by solving the Gross–Pitaevskii–
Poisson system of coupled differential equations. It was
shown, with longer simulation runs, that within the compu-
tational limits of the simulation the BEC stars are stable. The
physical properties of the self-gravitating BEC were investi-
gated in both non-rotating and rotating cases.

A fundamental theoretical problem is to find some clear
astrophysical signatures, going beyond the global stellar
parameters (mass and radius) that could indicate the presence
of a BEC inside a neutron star, or to give a firm observational
evidence for the existence of pure BEC stars. It is the purpose
of the present paper to suggest that such a specific signature,
indicating the presence of a pure BEC star, may indeed exist,
and it can be obtained from the study of the radiation emis-
sion of thin accretion disks that usually form around compact
general relativistic objects.

The growth of most astrophysical objects is determined
by mass accretion. Due to the presence of interstellar matter,
accretion disks are generally formed around compact objects.
Accretion disks are well known observationally, representing
flattened astronomical structures. They are made of rapidly
rotating hot gas, slowly spiraling onto a central massive and
dense object. The gravitational energy of the gas motion
is a source of heat, generated by the internal stresses and
the dynamical friction. A small fraction of the heat is con-
verted into radiation, which partially escapes. The radiation
emission cools down the accretion disk. Therefore important
information about the accretion disk physics comes from the
radiation emitted from the disk. The radiation, detected in the
radio, optical or X-ray frequency bands, allows astronomers
to analyze its electromagnetic spectrum and its time variabil-
ity. Thus essential results as regards the physics of the disks
can be obtained from observations.

The cooling of the disk via the electromagnetic radiation
emission from its surface represents an efficient mechanism
that prevents the extreme heating of the disk. On the other
hand, the thermodynamic equilibrium established in this way
allows the disk to stabilize its thin vertical size. Usually the
inner edge of the thin disk is located at the marginally stable
orbit of the compact object potential. Hence in higher orbits
the hot gas has a Keplerian motion [86,87]. Since the electro-
magnetic radiation emission from the thin disk is determined

by the external gravitational potentials, which in turn are
determined by the EOS of the dense neutron or quark matter
in the star, astrophysical observations of the emission spectra
from accretion disks may lead to the possibility of directly
testing the EOS of the dense matter inside compact general
relativistic objects.

The emissivity properties of the accretion disks have
been used to investigated, and obtain distinctive astrophys-
ical signatures, for large classes of compact astrophysical
objects, including naked singularities [88], gravastars [89],
and wormholes [90,91]. Specific electromagnetic disk sig-
natures in different modified gravity theories, such as f (R)

gravity, brane world models, Chern–Simons models and the
Horava–Lifshitz theory were considered [92–96], while the
properties of accretion disks around rotating and non-rotating
neutron, quark, boson or fermion stars have been analyzed
in [97–104].

In the present paper we perform a comparative study of
the rotational properties and of the disk emission properties
for five neutron star EOSs, and of the quark matter bag model
EOS with the polytropic n = 1 BEC EOS. The main goal
of this preliminary investigation is to point out the possible
existence of some observational signatures that may distin-
guish between these different classes of compact objects.
We begin our analysis by considering the global rotational
properties of the considered compact objects. To obtain the
equilibrium configurations of the rotating neutron, quark, and
BEC stars we use the rotating neutron star (RNS) code, as
introduced in [105,106], and discussed in detail in [107].
The RNS software provides the metric potentials for dif-
ferent types of equations of state of compact rotating gen-
eral relativistic objects. We investigate three different cases,
corresponding to stellar models with fixed mass and angu-
lar velocity, stellar models rotating at Keplerian frequencies,
and stellar models with fixed central density and fixed polar
radius to equatorial radius ratio. As a next step in our study
we use the exterior metrics to obtain the physical properties
of the accretion disks for the considered equations of state.
Particular signatures appear in the electromagnetic spectrum
of the BEC stars, thus leading to the theoretical possibil-
ity of directly testing, and discriminating, the BEC EOS of
the dense matter by using astrophysical observations of the
emission spectra from accretion disks.

The present paper is organized as follows. In Sect. 2 we
briefly review the basics of the Bose–Einstein condensation
and discuss the properties of Newtonian BEC stars. The elec-
tromagnetic and thermodynamic properties of accretion disks
around compact general relativistic objects are described in
Sect. 3. The equations of state of the neutron, quark, and
BEC matter, as well as the global astrophysical properties of
the considered stellar models are obtained and discussed in
Sect. 4. The electromagnetic and thermodynamic properties
(flux, luminosity, and temperature distribution) of the accre-
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tion disks around neutron, quark, and BEC stars are obtained
in Sect. 5. We discuss our results and conclude our study in
Sect. 6.

2 Bose–Einstein condensation

The most important characteristic of a quantum system of N
interacting bosons in the condensed state is that most of the
particles lie in the same single-particle quantum state. For
a bosonic quantum system consisting of an extremely large
number of particles, the calculation of the physical parame-
ters of the ground state with the direct use of the Hamiltonian
is generally very difficult, due to the high computational cost.
A significant simplification of the many-body type compu-
tations can be achieved with the use of some approximate
methods. One such approximate semi-analytic method is the
mean field analysis of the quantum condensate. The basic
idea of the mean field method is the separation of the BEC
contribution to the total bosonic field operator. In the follow-
ing in our analysis we assume that the bosonic astrophysical
system consists of scalar (zero spin) particles with non-zero
mass. From a simplifying physical point of view we assume
that when the system makes a transition to a Bose–Einstein
condensed phase, the range of Van der Waals-type scalar
mediated interactions among particles becomes infinite.

2.1 The Gross–Pitaevskii equation

In the second quantization approach the Hamiltonian describ-
ing a many-body system of interacting bosons, confined by
an external potential Vext, is given by

Ĥ =
∫

d�r�̂+ (�r)
[
− h̄2

2m
∇2 + Vrot (�r) + Vext (�r)

]
�̂ (�r)

+1

2

∫
d�rd�r ′�̂+ (�r) �̂+ (�r ′) V (�r − �r ′) �̂ (�r) �̂

(�r ′) ,

(1)

where �̂ (�r) and �̂+ (�r) are the bosonic field operators, and
V

(�r − �r ′) is the two-body interatomic potential, respectively
[4–11]. The bosonic field operators annihilate and create a
particle at the position �r . Vrot (�r) is the potential associated
to the rotation of the condensate.

In order to obtain a significant simplification of the math-
ematical formalism a number of approximate methods have
been developed. One such approximate and simplifying
semi-analytic approach is the mean field description of the
condensate. In this approach the condensate contribution
to the bosonic field operator is separated out. For a uni-
form gas confined in a volume V , BEC occurs in the sin-
gle particle state �0 = 1

√
V , having zero momentum.

The field operator can then be decomposed in the form

�̂ (�r) = √
N/V + �̂′ (�r). By treating the operator �̂′ (�r) as

a small perturbation, the first order theory for the excitations
of the interacting Bose gases can be fully developed [4–11].

In the general case of a non-uniform and time-dependent
configuration the Heisenberg representation of the field oper-
ator is given by

�̂ (�r , t) = ψ (�r , t) + �̂′ (�r , t), (2)

where ψ (�r , t), also called the condensate wave function,
is the expectation value of the field operator, ψ (�r , t) =〈
�̂ (�r , t)

〉
. It is important to note that the wave function

ψ (�r , t) is a classical field, and its absolute value fixes
the particle number density of the condensate through the
relation ρ (�r , t) = |ψ (�r , t)|2. On the other hand the nor-
malization condition for the condensate wave function is
N = ∫

ρ (�r , t) d3�r , where N is the total number of parti-
cles in the BEC.

The condensate wave function satisfies the following
equation of motion, which can be obtained from Heisenberg
equation corresponding to the many-body Hamiltonian given
by Eq. (1):

i h̄
∂

∂t
�̂ (�r , t) =

[
�̂, Ĥ

]
=

[
− h̄2

2m
∇2 + Vrot (�r) + Vext (�r)

+
∫

d�r ′�̂+ (�r ′, t
)
V

(�r ′ − �r) �̂
(�r ′, t

)]
�̂ (�r , t). (3)

The zeroth-order approximation to the Heisenberg equa-
tion is obtained by replacing �̂ (�r , t) with the condensate
wave function ψ . For short distances this is in general a
poor approximation for computing the integral containing
the particle–particle interaction V

(�r ′ − �r). However, it is
important to note that in a dilute and cold gas, at low energy
only binary collisions are important. These collisions can
be characterized, independently of the exact form of the
two-body potential, by a single physical parameter, the s-
wave scattering length a. Therefore, one can obtain a very
good approximation by replacing the generally unknown
potential V

(�r ′ − �r) with an effective interaction poten-
tial V

(�r ′ − �r) = λδ
(�r ′ − �r), with the coupling constant

λ determined by the scattering length la via the relation
λ = 4π h̄2a/m, where m is the mass of the condensate
particles. With the use of the effective potential the inte-
gral in the bracket of Eq. (3) can easily be calculated to
give λ |ψ (�r , t)|2. Hence the resulting approximate equation
of motion for the condensate is the Schrödinger equation
with a quartic nonlinear term [4–11], also called the Gross–
Pitaevskii equation. However, in order to obtain a more gen-
eral and realistic description of the BEC stars, one may also
assume an arbitrary nonlinear self-interaction term of the

form g
(
|ψ (�r , t)|2

)
= g (ρ) [4].

Therefore the non-relativistic generalized Gross–Pitaevs-
kii equation, describing a gravitationally trapped rotating
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BEC, is given by

i h̄
∂

∂t
ψ (�r , t) =

[
− h̄2

2m
∇2 + Vrot (�r) + Vext (�r)

+g′ (|ψ (�r , t)|2
) ]

ψ (�r , t), (4)

where we have denoted g′ = dg/dρ. As for Vext (�r), we
assume that it is the gravitational potential, denoted for sim-
plicity by V , Vext = V . The gravitational potential satisfies
the Poisson equation of Newtonian gravity,

∇2V = 4πGρm, (5)

where ρm = mρ = m |ψ (�r , t)|2 is the mass density inside
the BEC.

2.2 The hydrodynamical representation

The physical as well as the astrophysical the properties of a
BEC, described by the generalized Gross–Pitaevskii equation
Eq. (4) can be analyzed, computed, and understood much
more easily by using the so-called Madelung representation
of the wave function [4]. In this representation we write the
condensate wave function ψ in the form

ψ (�r , t) = √
ρ (�r , t) exp

[
i

h̄
S (�r , t)

]
, (6)

where the function S (�r , t) has the physical dimensions of
an action. By substituting the above expression of ψ (�r , t)
into Eq. (4), it follows that the generalized Gross–Pitaevskii
equation decouples into a system of two first order partial
differential equations for the two real functions ρm and �v,
respectively, given by

∂ρm

∂t
+ ∇ · (ρm �v) = 0, (7)

ρm

[
∂ �v
∂t

+ (�v · ∇) �v
]

= −∇P
(ρm

m

)
− ρm∇

(
Vrot

m

)

−ρm∇
(
Vext

m

)
− ∇VQ, (8)

where we have introduced the quantum potential VQ, defined
as

VQ = − h̄2

2m

∇2√ρm√
ρm

, (9)

the velocity of the Bose–Einstein condensed fluid �v, given
by

�v = ∇S

m
, (10)

and we have denoted

P
(ρm

m

)
= g′ (ρm

m

) ρm

m
− g

(ρm

m

)
. (11)

From its definition we can immediately see that the veloc-
ity field �v is irrotational. Thus it satisfies the condition
∇ × �v = 0. Therefore we obtain the important result that
in the Madelung representation the equations of motion of
the BEC in a gravitational field take the form of the equa-
tion of continuity and of the hydrodynamic Euler equations,
respectively. Hence a BEC in an external gravitational field
can be described as a gas whose density and pressure are
related by a barotropic EOS [4–11]. The exact form of the
EOS of the BEC depends on the nonlinearity term g.

In the important case of a gravitationally bounded BEC
with a very large number of particles the quantum pressure
is important only near the external boundary of the quantum
system. Hence in all astrophysically important situations the
quantum pressure term is much smaller than the nonlinear
interaction term [21].

In the most studied approach to the BECs, the nonlinearity
term g is quadratic and is given by

g (ρm) = u0

2
|ψ |4 = u0

2
ρ2
m, (12)

where u0 = 4π h̄2la/m [4–11]. The corresponding EOS of
the condensate is

P (ρ) = Kρ2. (13)

Therefore we have obtained the very important result that
the EOS of the standard BEC with quartic nonlinearity is a
polytrope, with index n = 1.

In the following for simplicity we consider only the case
of the Bose–Einstein condensates with quartic nonlinearity.
In this particular case the physical properties of the conden-
sates are also relatively well-known from numerous labo-
ratory experiments. From a theoretical point of view it is
important to note that their properties can be described in
terms of only two free parameters, the mass m of the con-
densate particle, and the scattering length a, describing the
particle interaction, respectively.

2.3 Masses and radii of Newtonian static BEC stars

Since the EOS of a cold BEC star is a polytrope of index
n = 1, all the physical properties of the star can be derived
from the well-known Lane–Emden equation, given by [80]

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θ, (14)
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where θ is a dimensionless variable defined via ρ = ρcθ ,
with ρrmc the central density of the star, and ξ is a dimen-
sionless radial coordinate. The general non-singular solu-
tion of Eq. (14) is well known and can be represented as
θ (ξ) = sin ξ/ξ . We define the dimensionless radius of the
star by the condition θ (ξ1) = 0, giving ξ1 = π . Hence the
physical radius R of the BEC star can be represented as a
function of the scattering length and the fundamental physi-
cal constants as [80]

R = π

√
h̄2a

Gm3 = 6.61
( a

1 fm

)1/2
(

m

2mn

)−3/2

km. (15)

Form = 2mn and a = 1 fm the numerical value of the radius
of the BEC star is R ≈ 7 km. It is interesting to note that
the radius of the gravitationally bounded pure BEC star is
independent on the central density and on the mass of the
star and is fully determined by the physical characteristics a
and m of the condensate only.

The mass of the BEC star can be found as [80]

M = 4π2
(

h̄2a

Gm3

)3/2

ρc, (16)

or, equivalently,

M = 1.84

(
ρc

1016 g cm−3

) ( a

1 fm

)3/2
(

m

2mn

)−9/2

M�.

(17)

For m = 2mn , a = 1 fm, and ρrmc = 5 × 1015 g/cm3, the
mass of the condensate is M ≈ 0.92M�. On the other hand
by taking for the mass of the condensate particle the numeri-
cal value m = m∗

K = mn/10, wherem∗
K is the kaon mass, we

obtain an extremely high maximum mass of M = 63.50M�
for the kaon condensate star, with a corresponding radius of
R = 355 km. Note that the mass of the static condensate can
be expressed in terms of the radius and central density by

M = 4

π
ρc R

3. (18)

The above important equation shows that the mean density
of the star ρ = 3M/4πR3 can be obtained from the central
density of the condensate by the simple relation ρ = 3ρc/π

2.
Under a scaling of the parameters m, a, and ρc so that

m → α1m, a → α2a, ρc → α3ρc, the radii and the masses
of the Newtonian BEC stars have the scaling properties [80],

R → α
−3/2
1 α

1/2
2 R, M → α

−9/2
1 α

3/2
2 α3M. (19)

It is important to point out that general relativistic effects
impose strong constraints on the structure and global param-

eters of the BEC stars, and that the values obtained by the
simple Newtonian estimates may highly exceed the stability
limit imposed by the general relativistic analysis.

3 Electromagnetic radiation properties of thin accretion
disks in stationary axisymmetric space-times

In order to investigate the accretion disk properties around
neutron, quark, and BEC stars we first briefly introduce the
general formalism that allows us to describe the electromag-
netic radiation properties of thin accretion disks in stationary
axisymmetric space-times. In our presentation we closely
follow the approach developed in [97]. As a first step in our
study we consider the basic kinematic properties of mas-
sive particles moving in stable circular orbits in stationary
and axially symmetric geometries. The general formalism
for obtaining the constants of the motion (energy and angu-
lar momentum), the effective gravitational potential and the
radii of the marginally stable orbits are presented in some
detail. Then we briefly review the basic equations describing
the electromagnetic radiation emission from accretion disks,
and we present the general expressions for the flux, temper-
ature distribution, and luminosity of the disk.

3.1 Massive particle motion in stationary and axially
symmetric space-times

In this work our main emphasis is on the analysis of the phys-
ical properties and characteristics of particles that form a thin
accretion disk, and move in circular stable orbits around gen-
eral relativistic compact objects. The exterior geometry cre-
ated by a central dense object is assumed to be stationary and
axially symmetric, given in full generality by the following
metric:

ds2 = gtt dt2 + 2gtφ dtdφ + grr dr2 + gθθ dθ2 + gφφ dφ2.

(20)

In the equatorial approximation, i.e., |θ −π | 
 1, which we
adopt in our study, all the metric functions gtt , gtφ , grr , gθθ ,
and gφφ depend on the radial coordinate r only [86,87]. In
the following we denote the square root of the determinant
of the metric tensor by

√−g.
In order to determine the electromagnetic properties of

the disk we first obtain the radial dependence of the angu-
lar velocity �, of the specific energy Ẽ and of the spe-
cific angular momentum L̃ for particles moving in circu-
lar orbits around compact objects in the geometry given by
Eq. (20). All these physical parameters can be obtained from
the geodesic equations, which for the considered metric take
the following form [88–96]:
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dt

ds
= Ẽgφφ + L̃gtφ

g2
tφ − gtt gφφ

, (21)

dφ

ds
= − Ẽgtφ + L̃gtt

g2
tφ − gtt gφφ

, (22)

grr

(
dr

ds

)2

= −1 + Ẽ2gφφ + 2Ẽ L̃gtφ + L̃2gtt
g2
tφ − gtt gφφ

. (23)

We define an effective potential term Veff(r) as

Veff(r) = −1 + Ẽ2gφφ + 2Ẽ L̃gtφ + L̃2gtt
g2
tφ − gtt gφφ

. (24)

For particles moving in stable circular orbits in the equato-
rial plane the potential Veff(r) must satisfy the following two
important conditions: Veff(r) = 0 and Veff, r (r) = 0, respec-
tively, where a comma denotes the derivative with respect
to the radial coordinate r . From these conditions we obtain
the specific energy, the specific angular momentum, and the
angular velocity of particles moving in circular orbits for the
case of spinning general relativistic compact objects in the
form [97]

Ẽ = − gtt + gtφ�√−gtt − 2gtφ� − gφφ�2
, (25)

L̃ = gtφ + gφφ�√−gtt − 2gtφ� − gφφ�2
, (26)

� = dφ

dt
= −gtφ,r + √

(gtφ,r )2 − gtt,r gφφ,r

gφφ,r
. (27)

The marginally stable orbit around the central object can be
determined from the supplementary condition Veff, rr (r) =
0, which provides the following important relationship:

Ẽ2gφφ,rr +2Ẽ L̃gtφ,rr + L̃2gtt,rr −(g2
tφ − gtt gφφ),rr =0.

(28)

Once the metric coefficients gtt , gtφ , and gφφ are explic-
itly given, by inserting Eqs. (25)–(27) into Eq. (28), and
numerically solving this equation for the radial coordinate r ,
we obtain the radii of the marginally stable orbits of massive
particles in stable circular orbits around a rotating general
relativistic high density compact object [88–97].

3.2 Electromagnetic emissivity of thin accretion disks

In the following we concentrate on thin accretion disks, that
is, accretion disks having their vertical size negligible as com-
pared to their horizontal extensions. This means that the disk
height H , which we define as the maximum half thickness
of the disk in the vertical direction, is much smaller than
the characteristic radius R of the disk, H 
 R. We further
assume that the thin disk is in hydrodynamical equilibrium.
Moreover, we fully neglect the possible effects of the pressure

gradient, and of the vertical entropy gradient in the disk. The
heat generated by internal stresses and dynamical friction is
emitted over the disk surface, and this emission prevents the
disk from heating up at extremely high temperatures. On the
other hand, this equilibrium determines the disk to stabilize
its thin vertical size. An important astrophysical parameter,
the inner edge of the thin disk, is located at the marginally sta-
ble orbit of the central object gravitational potential. Hence
the accreting matter has a Keplerian motion in higher orbits.

In the steady-state accretion disk model, the mass accre-
tion rate Ṁ0 is a constant that does not change in time.
An effective physical description of the disk properties is
obtained by averaging all the quantities describing the orbit-
ing gas over a characteristic time scale, e.g. �t , over the
azimuthal angle �φ = 2π , and over the height H , respec-
tively [86,108,109].

As we have already seen, the particles move in a Keplerian
orbit around the dense compact object with the four-velocity
uμ, have a rotational velocity � = dφ/dt , a specific energy
Ẽ , and a specific angular momentum L̃ . In the steady-state
thin disk model all these quantities depend only on the radii r
of the orbits. The particles form a disk of an averaged surface
density �, which is obtained as the average of the rest mass
density ρ0 of the gas in the vertical direction. The matter
in the disk is described by an anisotropic fluid source. The
density ρ0 of the disk, the energy flow vector qμ, and the
dissipative part of the energy-momentum tensor tμν are all
measured in the averaged rest-frame. In this specific frame
the specific heat and heat transfer processes are neglected.
Then one important parameter characterizing the disk struc-
ture is the surface density of the disk [86,109],

�(r) =
∫ H

−H
〈ρ0〉dz, (29)

which is obtained as the averaged rest mass density 〈ρ0〉 over
�t and 2π . Another important disk parameter is the torque

Wφ
r =

∫ H

−H
〈tφr 〉dz, (30)

representing the average of the component 〈trφ〉 of the energy-
momentum tensor over �t and 2π . The time and orbital
average of the energy flux vector gives the radiation flux
F(r) from the disk surface as

F(r) = 〈qz〉. (31)

The energy-momentum tensor of the matter in the disk is
represented in its standard form according to

Tμν = ρ0u
μuν + 2u(μqν) + tμν, (32)
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where the four-velocity of the matter satisfies the conditions
uμqμ = 0, uμtμν = 0. The four-vectors of the energy and
angular momentum flux are defined by −Eμ ≡ Tμ

ν (∂/∂t)ν

and Jμ ≡ Tμ
ν (∂/∂φ)ν , respectively. Note that the structure

equations of the thin disk can be derived by integrating the
conservation laws of the rest mass, of the energy, and of the
angular momentum of the gas forming the disk, respectively
[86,109]. From the equation of the rest mass conservation,
∇μ(ρ0uμ) = 0, first the important result follows that the
time averaged mass accretion rate is independent of the disk
radius,

Ṁ0 ≡ −2π
√−g�ur = constant. (33)

The conservation law ∇μEμ = 0 of the energy can be
reformulated in integral form, more interesting from a phys-
ical point of view, as [97]

[Ṁ0 Ẽ − 2π
√−g�Wφ

r ],r = 4π
√−gF Ẽ . (34)

The above equation shows that the energy transported by the
mass flow, Ṁ0 Ẽ , and the energy transported by the dynamical
stresses in the disk, 2π

√−g�Wφ
r , is exactly compensated

by the energy radiated away from the surface of the disk,
4π

√−gF Ẽ . The law of the angular momentum conserva-
tion, ∇μ Jμ = 0, indicates the equilibrium between the three
forms of the angular momentum transport,

[Ṁ0 L̃ − 2πrWφ
r ],r = 4π

√−gF L̃. (35)

By eliminating Wφ
r from Eqs. (34) and (35), with the use

of the universal energy–angular momentum relation dE =
�dJ for circular geodesic orbits, written in the form Ẽ,r =
�L̃ ,r , the flux F of the electromagnetic energy emitted by
the disk surface is obtained as [86,97,109]

F(r) = − Ṁ0

4π
√−g

�,r

(Ẽ − �L̃)2

∫ r

rin

(Ẽ − �L̃)L̃ ,rdr, (36)

where rin is the inner edge of the disk. In our study we assume
that rin = rms. Note that the flux depends of the specific
energy, angular momentum, and angular velocity of the gas
motion around the central general relativistic compact object.

The gas forming the accretion disk in the steady-state thin
disk model is assumed to be in thermodynamical equilibrium.
Therefore the radiation emitted by the disk surface may be
considered as perfect black body radiation, depending on the
temperature only, with the energy flux given by

F(r) = σSBT
4(r), (37)

where σSB is the Stefan–Boltzmann constant. Once the radia-
tive flux is known, from Eq. (37) we obtain the temperature
distribution on the disk surface.

The observed luminosity L (ν) of the disk surface has a
red-shifted black body spectrum, given by [98]

L (ν) = 4πd2 I (ν)

= 8πh cos γ

c2

∫ r f

rin

∫ 2π

0

ν3
e rdφdr

exp (hνe/kBT ) − 1
. (38)

In Eq. (38) h is Planck’s constant, kB is Boltzmmann’s
constant, d is the distance to the source (disk), I (ν) is the
Planck distribution function, νe is the frequency of the emit-
ted radiation, γ is the disk inclination angle, and rin and
r f indicate the positions of the inner and outer edge of
the disk, respectively. In the natural system of units with
h̄ = c = kB = 1, we obtain for the disk luminosity the
expression

L (ν) = 16π2 cos γ

∫ r f

rin

∫ 2π

0

ν3
e rdφdr

exp (2πνe/T ) − 1
. (39)

In the following we take the upper limit of integration in
Eq. (38) as infinity, that is, we assume r f → ∞. Moreover,
we expect that the flux from the disk surface vanishes at
r → ∞. This condition is independent on the geometry of
the general relativistic compact object. The frequency of the
emitted radiation is given by the relation νe = ν(1 + z),
where the red-shift factor can be written as

1 + z = 1 + �r sin φ sin γ√−gtt − 2�gtφ − �2gφφ

. (40)

In Eq. (40) we have neglected the light bending [110–112].
This approximation works well for small inclination angles,
but it is not so good for large inclination angles (edge-on
disks).

Another important characteristics of the mass accretion
processes is the efficiency ε with which the central object
converts the mass of the gas into radiation. The efficiency ε is
defined as the ratio of the rate of the energy of photons emitted
from the disk surface, and the rate at which mass-energy
is transported to the central high density general relativistic
object [86,109]. Both energies are measured at infinity. If
all photons escape to infinity, the efficiency depends on the
specific energy measured at the marginally stable orbit rms

only,

ε = 1 − Ẽms. (41)

For Schwarzschild black holes the efficiency ε is about
6 %. This result is independent on whether the photon capture
by the black hole is considered, or not. For rapidly rotating
black holes for which the capture of radiation by the black
hole is ignored, ε is equal to 42 %. For a Kerr black hole
with the photon capture explicitly considered the efficiency
is 40 % [87].
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Note that the fluxes and the emission spectra of the
accretion disks around compact objects satisfy some sim-
ple, but important, scaling relations. Such scaling relations
can be found when one considers the scaling transforma-
tion of the radial coordinate, given by r → r̃ = r/M ,
where M is the mass of the central object. Under such a
scaling transformation in general the metric tensor coeffi-
cients are invariant, while the specific energy, the angular
momentum and the angular velocity transform as Ẽ → Ẽ ,
L̃ → ML̃ , and � → �̃/M , respectively. The flux scales
as F(r) → F (̃r)/M4, giving the simple scaling law of
the temperature as T (r) → T (̃r) /M . Another important
rescaling is the transformation of the frequency of the emit-
ted radiation as ν → ν̃ = ν/M . Under this rescaling of
the radiation frequency the luminosity of the disk scales as
L (ν) → L (̃ν) /M [97]. On the other hand, since the flux is
proportional to the accretion rate Ṁ0, we obtain the important
result that an increase in the accretion rate leads to a linear
increase of the radiation flux from the disk.

From an observational point of view, the use of the thermal
radiation from thin disks to test the nature of a compact gen-
eral relativistic object is often called the continuum-fitting
method, and was proposed in [113] to investigate the obser-
vational consequences of black hole spin in X-ray binaries.
The standard thin accretion disk model introduced in [86]
was used to analyze the emissivity of accretion disks around
black holes. In the case of Kerr black holes the observed
disk spectrum, however, bears several important corrections
to the simple formula given by Eq. (36). Since the X-rays
are emitted on the hot inner disk, in this region electron
scattering may dominate over the free–free absorption. As
a consequence the color temperature may be greater than
the effective temperature, with the inner disk radiating like a
diluted black body. The general relativistic corrections near
the event horizon (gravitational red-shift and focusing) can
cause the observed color temperature and the integrated flux
to be different from the true local values. The continuum-
fitting method was extensively used to observationally study
the spin of black holes [114–117].

4 Equations of state and physical parameters
of the neutron, quark, and BEC stars

To set the stage for our study, in the present section we intro-
duce first the equations of state of the dense nuclear matter
considered in our comparative study of the neutron, quark,
and BEC stars, and present some of the basic dynamical prop-
erties of the corresponding rotating stellar models. In order to
compare the properties of the BEC stars with other compact
objects we choose five equations of state of neutron matter,
and the bag model EOS for quark matter. We restrict our
study to rotating BEC stars satisfying the n = 1 polytropic

EOS. The astrophysical parameters of the stars described by
the adopted equations of state are also presented in detail.
In order to compare the properties of the stellar models we
consider three classes of models. In the first model we fix the
values of the mass and of the angular velocity for all stars.
As a second case we consider compact stars rotating at the
maximum (Keplerian) frequencies. Finally, as a third class
of models we consider stars having the same central density
and fixed ratio of the equatorial and polar radii, respectively.

4.1 Equations of state of the neutron, quark, and BEC
matter

In order to obtain a consistent and realistic physical descrip-
tion of the rapidly rotating general relativistic compact stars,
as a first step we have to adopt the equations of state for the
dense neutron, quark, and BEC stellar matter, respectively.
In the present comparative study of the physical properties of
the accretion disks as regards rapidly rotating compact gen-
eral relativistic objects we adopt the following equations of
state [97]:

1. Akmal–Pandharipande–Ravenhall (APR) [118] EOS. As
a first example of an EOS of dense neutron matter we
consider EOS APR, which was obtained numerically
by using the variational chain summation methods and
the Argonne v18 two-nucleon interaction, respectively.
Note that boost corrections to the two-nucleon interac-
tion, giving the leading relativistic effect of order (v/c)2,
as well as three-nucleon interactions, are also included
in the basic nuclear Hamiltonian. The dense matter den-
sity range described by EOS APR is from 2 × 1014

to 2.6 × 1015 g/cm3. The maximum mass limit in the
static case for this EOS is 2.20M�. To obtain a full
description of the neutron star properties the APR EOS
is joined to the composite Baym–Bethe–Pethick (BBP)
(ε/c2 > 4.3 × 1011 g/cm3) [119]—Baym–Pethick–
Sutherland (104 < 4.3 × 1011 g/cm3) [120]—Feynman–
Metropolis–Teller (ε/c2 < 104 g/cm3) [121] equations
of state, respectively.

2. Douchin–Haensel (DH) [122] EOS. EOS DH represents
a complete EOS of the neutron star matter. It describes
both the neutron star crust and its liquid core. It is con-
structed by using the effective nuclear interaction SLy of
the Skyrme type. The corresponding interaction poten-
tial describes very well the properties of very rich neutron
matter. On the other hand the structure of the crust and its
EOS are obtained in the zero temperature approximation
only, and under the assumption of the ground state com-
position. The EOS of the liquid core is calculated assum-
ing (minimal) npeμ composition. The density range is
from 3.49 × 1011 to 4.04 × 1015 g/cm3. The minimum
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and maximum masses of the static neutron stars for the
DH EOS are 0.094M� and 2.05M�, respectively.

3. Shen–Toki–Oyamatsu–Sumiyoshi (STOS) [123] EOS.
The STOS EOS of nuclear matter is obtained by using
the relativistic mean field (RMF) theory with nonlinear
σ and ω terms. It can be used in a wide neutron matter
density and temperature range, with various proton frac-
tions. The EOS was specifically designed for the use of
supernova explosion simulation and for the calculations
of the neutron star properties. To compute the properties
of inhomogeneous nuclear matter, where heavy nuclei
are formed together with free nucleon gas, the Thomas–
Fermi approximation is used. In the present paper we
consider only the zero temperature STOS EOS, namely
the EOS for T = 0, and we denote it as STOS0.

4. RMF equations of state with isovector scalar mean field
in the presence of the δ-meson field- RMF soft and RMF
stiff EOSs [124]. Even that in symmetric nuclear matter
the δ-meson mean field vanishes, this field still can sig-
nificantly influence the properties of asymmetric nuclear
matter in neutron stars. Note that the RMF contribu-
tion due to the δ-field to the nuclear symmetry energy
is smaller than zero. Therefore the energy per particle of
neutron matter is larger at high densities, as compared
to the case when no δ-field included. Also, the proton
fraction of β-stable matter increases. Splitting of proton
and neutron effective masses due to the δ-field may sig-
nificantly affect the transport properties of neutron star
matter. These equations of state can be parameterized by
the coupling parameters C2

σ = g2
σ /m2

σ , C2
ω = g2

ω/m2
ω,

b̄ = b/g3
σ , and c̄ = c/g4

σ , respectively, where mσ and
mω are the masses of the respective mesons, and b and
c are the coefficients in the potential energy U (σ ) of
the σ -field. The soft RMF EOS is parameterized by
C2

σ = 1.582 fm2, C2
ω = 1.019 fm2, b̄ = −0.7188, and

c̄ = 6.563, while the stiff RMF EOS is parameterized by
C2

σ = 11.25 fm2, C2
ω = 6.483 fm2, b̄ = 0.003825, and

c̄ = 3.5 × 10−6, respectively.
5. Baldo–Bombaci–Burgio (BBB) [125] EOS. The BBB

EOS is an EOS for asymmetric nuclear matter. It is
derived from the Brueckner–Bethe–Goldstone many-
body theory with explicit three-body forces taken into
account. Two EOSs are obtained, one corresponding to
the Argonne AV14 (BBBAV14), and the other to the
Paris two-body nuclear force (BBBParis), implemented
by the Urbana model for the three-body force. The maxi-
mum static mass configurations are Mmax = 1.8M� and
Mmax = 1.94M� when the AV14 and Paris interactions
are used, respectively. The onset of direct Urca processes
occurs at particle number densities n ≥ 0.65 fm−3 for
the AV14 potential, and n ≥ 0.54 fm−3 for the Paris
potential. The comparison with other microscopic mod-
els for the EOS shows noticeable differences, which can

also influence significantly the neutron star properties.
The density range for this EOS is from 1.35 × 1014 to
3.507 × 1015 g/cm3.

6. Bag model EOS for quark matter—Q EOS [126–129].
For the description of the quark matter we adopt a sim-
ple phenomenological description, based on the MIT bag
model EOS. Hence we assume that in quark matter the
pressure p is related to the energy density ρ by

p = 1

3
(ρ − 4B) c2, (42)

where the parameter B, called the bag constant, is the
difference between the energy density of the perturbative
and non-perturbative quantum chromodynamic vacuum.
For the bag constant we adopt the numerical value B =
4.2 × 1014 g/cm3 [126,127,129].

7. The BEC EOS. For the BEC stars we adopt the n = 1
polytropic EOS, given by

P (ρ) = Kρ2, (43)

with

K = 2π h̄2a

m3 = 0.1856×105
( a

1 fm

) (
m

2mn

)−3

, (44)

where mn = 1.6749 × 10−24 g is the mass of the neu-
tron. The behavior of the BEC EOS, as well as of the
corresponding stellar models essentially depends on the
ratio a/m3 of the scattering length and of the condensate
particle mass. In the present study we restrict our anal-
ysis to three values of the ratio (a/1 fm) (m/2mn)

−3:
(a/1 fm) (m/2mn)

−3 = 15, (a/1 fm) (m/2mn)
−3 =

30, and (a/1 fm) (m/2mn)
−3 = 50, respectively. We

denote the corresponding equations of state of the BEC
matter by BEC15, BEC30, and BEC50, respectively.

The variation of the considered equations of state with
respect to the density of the dense stellar matter is represented
in Fig. 1.

The low density behavior of the BEC15 and BEC30 EOSs
is significantly different as compared to the other considered
equations of state, indicating the possibility of the existence
of stable BEC stars at pressures lower than the neutron matter
pressure. In the adopted range of densities the BEC EOSs
show a linear pressure–density dependence.

4.2 Astrophysical parameters of the neutron, quark,
and BEC stars

In quasi-isotropic coordinates the metric outside a rotat-
ing compact general relativistic star can be represented as
[105,106]
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Fig. 1 Variation of the pressure as a function of the density for the
considered equations of state of the neutron, quark and BEC dense
matter

ds2 = −eγ̄+ρ̄dt2 + e2ᾱ
(

dr̄2 + r̄2dθ2
)

+ eγ̄−ρ̄ r̄2 sin2 θ

× (dφ − ω̄dt)2 , (45)

where the metric potentials γ̄ , ρ̄, ᾱ, and the angular velocity
of the stellar fluid ω̄, measured relative to the local inertial
frame, are all functions of the quasi-isotropic radial coordi-
nate r̄ , and of the polar angle θ . The RNS code computes
numerically the metric functions in a quasi-spheroidal coor-
dinate system, as functions of the parameter s = r̄/ (r̄ + r̄e),
where r̄e is the equatorial radius of the star, which we have
converted into Schwarzschild-type coordinates r according
to the equation r = r̄ exp

[
(γ̄ − ρ̄) /2

]
. To obtain the radius

of the marginally (or innermost) stable circular orbits rms we
use a truncated form of the analytical approximation given
as [130]

rms

6M
≈ 1 − 0.54433q − 0.22619q2 + 0.17989Q2

−0.23002q3 + 0.26296qQ2 − 0.29693q4

+0.44546q2Q2, (46)

where q = J/M2 and Q2 = −M2/M3, respectively, and
where J is the spin angular momentum, and M2 is the
quadrupole moment.

4.2.1 Mass–radius relation for neutron, quark, and BEC
stars

The mass–radius relation of the compact general objects for
the considered equations of state of the dense nuclear matter,
M = M (Re), where Re is the circumferential radius at the
equator, are presented, for four fixed values of the ratio rp/re,
where rp is the polar radius, and re is the equatorial radius of
the star, in Figs. 2 and 3, respectively.

As one can see from the figures, the BEC stars form a
distinct class of stellar objects, as compared to the group
of “standard” neutron and quark stars. The mass–radius
relation is systematically shifted to the right region of the
M = M (Re) relation, has a specific shape, and indicates
a much larger radius for the BEC star. The radius increases
with increasing a/m3, so that for (a/1 fm) (m/2mn)

−3 = 50
and rp/re = 0.7 the radius of the maximum mass stable BEC
star is of the order of 30 km. Thus a first distinctive signa-
ture of rapidly rotating BEC stars is their bigger radius, as
compared to the “standard” neutron and quark stars, indicat-
ing a large value of the coefficient a/m3. On the other hand,
for (a/1 fm) (m/2mn)

−3 < 20, the radius of the maximum
mass stable BEC star is of the same order as the radii of
the “standard” stars, Re ≈ 8–15 km. Significant differences
appear in the maximum masses of the stars, with the max-
imum allowable mass of the BEC50 star varying between
2.8M� (static case) and 3.0M�, for the rapidly rotating star
with rp/re = 0.7. For the BEC15 star, the maximum mass of
the stable configuration ranges between 1.5M� (static case),
and 1.6M�, for rp/re = 0.7. Hence a specific mass–radius
relation provides a first distinctive feature of the BEC stars,
as compared to the considered neutron and quark stars.
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Fig. 2 Mass–circumferential radius relation for the rotating neutron, quark, and BEC stars for rp/re = 1 (left figure) and rp/re = 0.9 (right figure)
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Fig. 3 Mass–circumferential radius relation for the rotating neutron, quark, and BEC stars for rp/re = 0.8 (left figure) and rp/re = 0.7 (right
figure)

4.2.2 Models with fixed mass and angular velocity

In analyzing the emissivity properties of the accretion disks
we consider three types of stellar models, whose main astro-
physical properties are presented in the following in a tab-
ular form. In all Tables, ρrmc is the central density, M is
the gravitational mass, M0 is the rest mass, Re is the cir-
cumferential radius at the equator, � is the angular veloc-
ity, �p is the angular velocity of a particle in circular orbit
at the equator, T/W is the rotational–gravitational energy
ratio, cJ/GM2� is the angular momentum, I is the moment
of inertia, �2 gives the mass quadrupole moment M2 so that
M2 = c4�2/(G2M3M3�), h+ is the height from the surface
of the last stable co-rotating circular orbit in the equatorial
plane, h− is the height from surface of the last stable counter-
rotating circular orbit in the equatorial plane, ωrmc/� is the
ratio of the central value of the potential ω to �, re is the
coordinate equatorial radius, and rp/re is the ratio of the
axes (polar to equatorial), respectively.

The physical properties of the neutron, quark, and BEC
stars with fixed mass, M ≈ 1.8M� and angular velocity
� ≈ 5 × 103 s−1 are presented in Table 1.

The BEC15 EOS does not allow stellar masses of the order
of 1.8M�. The mass corresponding to an angular velocity
of � ≈ 5 × 103 s−1 is 1.541M�, with a small equato-
rial radius of the order of 6 km, and a high central density
ρrmc = 5 × 1015 g/cm3. Configurations with 1.8M� can be
obtained for the BEC30 and BEC50 EOSs. They have equa-
torial radii of the order of 22 and 28 km. A similar, but still
smaller equatorial radius, re = 18 km, can be found only
for the STOS0 EOS. The BEC30, BEC50, and STOS0 con-
figurations have similar central densities. The BEC30 and
BEC50 stars have the highest moment of inertia I , and high-
est angular momentum per unit cJ/GM , with EOS STOS0
having the closest values of these parameters.

4.2.3 Models rotating at Keplerian frequencies

As a second astrophysical model we consider the case of
the neutron, quark, and BEC stars rotating at Keplerian fre-
quencies. The physical properties of this class of stars are
presented in Table 2.

The most massive stable star for this model, with mass
M ≈ 3.5M� is obtained for the STOS0 EOS. The BEC50
star has a comparable, but somewhat lower mass, of around
3.2M�. The RMFstiff and the quark EOS Q have Keplerian
masses of the order of 2.8M�, greater than the Keplerian
mass of the BEC15 EOS, M = 2.31M�. The smallest Kep-
lerian mass is obtained for the BEC15 EOS. The BEC stars
have the biggest equatorial radii, ranging between 15 and 17
km. For the neutron and quark star EOSs the highest equato-
rial radius is obtained for the STOS0 EOS, but which is still
smaller than the equatorial radius of the BEC15 model. The
equatorial radius of the RMSsoft EOS almost coincides with
the Keplerian equatorial radius of the BEC15 EOS, with the
RMSsoft EOS having a much greater mass than the BEC15
EOS one. The Keplerian model of the STOS0 EOS has the
greatest moment of inertia, and angular momentum per unit
mass, with the BEC15 having the smallest values for these
quantities.

4.2.4 Models with fixed central density and rp/re = 0.85

The astrophysical parameters of the neutron, quark, and BEC
stars with a fixed central density ρrmc = 1015 g/cm3, and
a fixed ratio of the polar to the equatorial radius rp/re are
presented in Table 3.

Similarly to the previous cases, the higher mass for stars
having fixed central density and a polar to equatorial radius
ratio rp/re = 0.85 is obtained for the STOS0 EOS, M =
2.9792M�. The mass of the BEC50 EOS model is lower,
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with a numerical value of around 2.9M�. The lowest mass
value is obtained for the BEC15 EOS, M = 1.11M�. The
mass of the BEC30 EOS model, M = 2.068M� is signifi-
cantly smaller than the masses obtained for the Q EOS, with
M = 1.924M�, and for the RMFstiff EOS, having a corre-
sponding mass of M = 2.266M�. The BEC stars have the
larger equatorial radii, of the order of 13–18 km, while the
DH EOS has an equatorial radius re ≈ 12.6 km, the largest
equatorial radius in this class of stellar models. The BEC15
EOS has the smallest moment of inertia and angular momen-
tum per unit mass, with the highest values of these parameters
obtained for STOS0 EOS. However, the angular momentum
per unit mass of the BEC50 EOS just slightly exceeds the
angular momentum per unit mass of the RMSstiff EOS, but
it is smaller than the cJ/GM value of the quark EOS Q.

5 Electromagnetic and thermodynamic signatures of
accretion disks around Bose–Einstein condensate
stars

In the present section we consider the electromagnetic signa-
tures of the accretion disks around neutron, quark, and BEC
stars. We consider a comparative study involving three dis-
tinct classes of stellar models. The first model corresponds
to accretion disks formed around compact general relativis-
tic objects with fixed masses, of the order of M ≈ 1.8M�,
rotating at an angular speed of � ≈ 5 × 103 s−1. The sec-
ond case corresponds to accretion disks formed around stars
rotating at the maximal Keplerian frequency. Finally, we also
consider a third class of models, in which the accretion disk
is located around a star with fixed central density and polar to
equatorial radius ratio. For all these three cases we consider
the disk emissivity properties, which are strongly dependent
of the EOS of the dense matter inside the star.

5.1 Electromagnetic spectrum from accretion disks around
rotating neutron, quark, and BEC stars with fixed mass
and angular velocity

We begin our analysis of the electromagnetic signatures of
accretion disks around compact general relativistic objects by
considering the case of stars with fixed mass, M ≈ 1.8M�,
and angular velocity of � ≈ 5 × 103 s−1. The variations of
the electromagnetic flux, disk temperature, and luminosity
for neutron, quark, and BEC stars with fixed mass and angular
velocity are presented in Figs. 4, 5 and 6.

As one can see from the figures, the BEC stars form a
distinct group with respect to the neutron and quark stars
included in the study. The flux emitted by the accretion
disks, presented in Fig. 4, is the smallest for the BEC50 and
BEC30 equations of state, respectively. The inner disk edge
for the BEC50 and BEC30 EOSs is located at r/M � 12 and
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Fig. 4 Electromagnetic fluxes from accretion disks gravitating around
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Fig. 5 Temperature distribution of the accretion disks around compact
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mass M = 1.8M�, and rotating at an angular velocity of � = 5 ×
103 s−1

0

1

2

1015 1016 1017

ν
L(

ν )
 [1

033
 e

rg
 s

-1
]

ν[Hz]

APR
BBBAV14
BBBParis

BEC15
BEC30
BEC50

DH
Q

RMFsoft
RMFstiff
STOS0

Fig. 6 Luminosity of the accretion disks around compact general rel-
ativistic objects, having different equations of state, with mass M =
1.8M�, and rotating at an angular velocity of � = 5 × 103 s−1

r/M � 9, respectively, at the highest distance from the cen-
tral object for all considered stars. The maximum value of the
flux is obtained for EOS RMFsoft, and this maximum flux
value is about twelve and five times bigger than the maxi-
mum flux values from the BEC50 and BEC30 EOSs. The
flux emitted by the star with EOS BEC15 has high values of
the flux, comparable with those from EOS RMFsoft, but this
can be explained by the lower mass of the star, 1.541M�,
and the corresponding scaling of the flux. However, for the
BEC15 EOS the inner edge of the disk is located at a distance
of around 5.5 × r/M from the central object.

The temperature distribution in the disk, shown in Fig. 5,
generally follows the same distribution as for the flux profiles,
with the BEC stars having some specific distinctive features.
The lowest maximum disk temperature is obtained for the
BEC50 and BEC30 EOSs, with the maximum temperature
located at around 17 × r/M and 13 × r/M , respectively.
For most of the neutron and quark stars the maximum disk
temperature is reached at r/M ≈ 8. Some specific distinc-
tive features also appear for EOS STOS0, with a maximum
temperature located at around 11 × r/M , relatively close
to the temperature maximum for EOS BEC30. The highest
temperature of the disk is reached by EOS RMFsoft.

The maximum value of the luminosity νL(ν) of the disk,
presented in Fig. 6, is blue-shifted for the BEC50 and BEC30
EOSs, and it is reached at a smaller frequency. The maximum
values of the luminosity are smaller for these BEC EOSs by
a factor of around 1.8. Hence a shift in the position of the
luminosity maximum, and a lower value of the luminosity
give two specific signatures that could help identify BEC50
and BEC30 stars via the study of the luminosity of accretion
disks around stars with known physical parameters.

5.2 Electromagnetic signatures of accretion disks
gravitating around neutron, quark, and BEC
stars at Keplerian frequencies

As a second example of specific electromagnetic signatures
from accretion disks around neutron, quark, and BEC stars
we consider the case of accretion disks formed around com-
pact stars rotating at Keplerian frequencies. The correspond-
ing electromagnetic fluxes, the disk temperature distribution,
and the luminosities are presented in Figs. 7, 8, and 9.

From the point of view of the maximum of the flux emis-
sion from accretion disks around neutron, quark, and BEC
stars rotating at Keplerian frequencies, the stellar models con-
sidered in the present study can be roughly divided in two
classes: disks with high flux values, and disks with low flux
values. As can be seen from Fig. 7, EOSs APR, BBBAV14,
Q, and DH have relatively similar maximum flux values,
which exceeds the maximum flux values of EOSs RMFstiff,
RMFsoft, STOS0, and BEC50, BEC30, and BEC15, respec-
tively. Hence from the point of view of the flux maximum
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Fig. 9 Luminosity of the accretion disks around compact general rel-
ativistic objects with different equations of state rotating at Keplerian
frequencies

the BEC equations of state present some similarities with
the RMFstiff, RMFsoft and STOS0 equations of state. How-
ever, important differences do appear in the localization of
the position of the maximum of the flux. While for most of
the equations of state the maximum is located in the region 7–
10 × r/M , the position of the maximum flux for EOS BEC15
is at around 13×r/M . For this EOS the inner edge of the disk
is located at 9 × r/M , while the inner edges of the BEC50
and BEC30 EOSs are located in positions similar to the other
neutron and quark matter equations of state. Hence the deter-
mination of the position of the flux maximum from an accre-
tion disk could give a clear indication about the nature of the
central compact object. The temperature distribution of the
disks around stars rotating at Keplerian frequencies, shown
in Fig. 8, also indicates the existences of two distinct types of
stars, with the BEC stars belonging to the lower temperature
group. However, the position of the temperature maximum
gives a very clear signature of the nature of the EOS of the
compact object. The position of the temperature maximum
shifts toward higher distances from the central object with
the decrease of the parameter a/m3.

The luminosity of the disk, plotted in Fig. 9, shows that
the maximum of the luminosity is reached at about the same
frequency for all considered equations of state. However, the
luminosity maximum has different values for different EOSs,
with the BEC15 EOS having the smallest value. The BEC50
and BEC30 EOSs have similar luminosity values as for the
other considered neutron and quark matter equations of state.

5.3 Electromagnetic signatures of accretion disks around
neutron, quark, and BEC stars with fixed central
density and rp/re = 0.85

Finally, we consider the electromagnetic properties of the
accretion disks around neutron, quark, and BEC stars with
fixed central density and ratio of the polar to the equatorial
radius rp/re = 0.85. All the stellar models have high angular
speeds �. The variation with respect to r/M of the emitted
fluxes, the temperature distribution of the accretion disks,
and their luminosities are presented in Figs. 10, 11, and 12.

From the point of view of the electromagnetic flux dis-
tribution, presented in Fig. 10, the fluxes can be classi-
fied in three groups, having high flux values (EOSs Q and
APR), medium values (EOSs RMFstiff, RMFsoft, STOS0,
DH, BBBAV14, BBBParis), and low flux values, with all the
BEC EOSs belonging to this latter group. It is interesting to
note that for all BEC EOSs the maximum value of the flux
has (approximately) the same value. However, these max-
ima are located at different r/M , with the maximum of the
BEC15 EOS positioned at around 15×r/M from the central
object. The maximum value of the flux of the BEC stars is
around three to four times lower than from the stars in the
first group, with maximum fluxes (EOSs Q and APR), and
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Fig. 12 Luminosity of the accretion disks around compact general
relativistic objects with fixed central density ρc = 1015 g/cm3 and
rp/re = 0.85

around two times smaller as compared to the maximum flux
values for the EOSs of the second group. The temperature
distribution, shown in Fig. 11, follows the same pattern as the
flux, with the maximum of the disk temperature situated at
around 18 × r/M for EOS BEC15. The maximum tempera-
ture value is very similar for all three BEC equations of state.
The luminosities of the disks, plotted in Fig. 12, shows that
the maximum of the function νL(ν) is reached at roughly the
same frequency for all considered EOSs. However, there is a
clear theoretical difference in the absolute value of the lumi-
nosity maximum, with the BEC15 EOS having the smallest
luminosity. Even though EOSs BEC50 and BEC30 have disk
luminosities comparable with some neutron star models, they
still belong to the class of low luminosity disks.

5.4 Efficiency of radiation emission from accretion disks
around neutron, quark, and BEC stars

An important observable physical parameter of the disk,
which could help to observationally distinguish between dif-
ferent classes of neutron, quark, and BEC stars, is the effi-
ciency ε of the conversion of the accreting mass into radia-
tion, given by Eq. (41). The numerical values of ε show the
efficiency of the energy generating mechanism of the mass
accretion [97]. From a physical point of view, the binding
energy Ẽms, or Ẽe, represents the amount of energy released
by the matter leaving the marginally stable orbit, or the inner
edge of the disk, touching the surface of the star, and being
transferred to the star. The radii of the inner disk edges for
different EOS and the efficiency of the radiation emission
are presented, for the three stellar models considered in the
present paper, in Table 4.

The first two lines of Table 4 contain the conversion effi-
ciency of the compact neutron, quark, and BEC stars rotating
at Keplerian frequencies. In this case the values of ε for the
BEC stars are in the range of 5–8 %, having values compa-
rable to the ε values for neutron and quark stars. The highest
efficiency, 9 %, is obtained for the STOS0 EOS, while the
BEC50 EOS has a conversion efficiency close to that of the
quark stars. The smallest ε value is obtained for the BEC15
EOS, showing that these stars are less efficient engines for
the conversion of the accreted mass into outgoing radiation.

The values of ε for the compact general relativistic objects
with fixed central density and rp/re are given in the second
two lines of Table 4. The values of ε are slightly lower, as
compared to the Keplerian rotation case, with the highest
value for ε obtained for the STOS0 EOS. The smallest value
of ε is found for the BEC15 EOS. However, in this case the
efficiency of the BEC50 EOS is significantly smaller than
the efficiency of the Q EOS, being slightly higher than ε for
APR EOS.

The last two lines in Table 4 show the numerical values of
ε for disks around compact objects with mass M = 1.8M�,
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the efficiency of the radiation conversion is almost the same
for EOSs APR, BBBAV14, BBBParis, DH, Q, RMFsoft, and
RMFstiff, it has some lower values for the BEC15 EOS, and
much lower values for EOSs BEC30 and BEC50. Relatively
low values have also been obtained for the STOS0 EOS. The
efficiencies of 3.89 % obtained for the BEC15 and BEC50
stars are the lowest accretion disk efficiencies obtained in the
present study. The inner edges of the accretion disks around
BEC stars are located at a much bigger distance from the
central object as compared to the other classes of neutron
and quark stars, reaching a value of 31 km for the BEC50
EOS. Such a far away located inner edge does explain the
low efficiency of the corresponding accretion disk.

6 Discussions and final remarks

The possible existence of some forms of BECs in compact
general relativistic objects, or the existence of pure BEC
stars, represents an intriguing, and interesting, possibility,
for which a lot of theoretical evidence has been provided.
From an observational point of view the most important dif-
ferences between standard neutron or quark stars are repre-
sented by the differences in mass and radius. If the masses
and radii of the compact general relativistic object could be
measured with high accuracy, these measurements would put
very strong direct constraints on the EOS of the dense star.
However, presently, there are very few precise determina-
tions of both the mass and the radius of a compact object.
Therefore, in the present paper we have proposed, and pre-
liminary investigated, an alternative indirect method, which
could help observationally distinguishing between different
classes of compact objects, and their equations of state. This
method is based on the information extracted from observa-
tions of the basic physical properties of matter forming thin
accretion disks around rapidly rotating neutron, quark, and
BEC stars.

Due to the presence of a strong gravitational field, all
the astrophysical quantities related to the observable prop-
erties of the accretion disks are dependent, and they can
be obtained from the metric of the central compact object
[97]. Due to the major differences in the exterior space-
time geometry, neutron, quark, and BEC stars show, at least
on the theoretical level, some very important distinct sig-
natures with respect to the disk properties. Therefore, the
observational procedure of the analysis of the electromag-
netic radiation of accretion disks may allow one to discrimi-
nate between neutron, quark, and BEC stars, by giving some
specific distinct signatures that could differentiate between
compact objects described by different equations of state. In
the present paper we have obtained the physical parameters
of the disk—effective potential, flux, and emission spectrum
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profiles—for several equations of state of the neutron, quark,
and BEC matter, respectively.

As one can see from the flux integral in Eq. (36), as well as
from the explicit expressions of the specific energy, specific
angular momentum and angular velocity, given by Eqs. (25)–
(27), respectively, the rather different characteristics of the
radial flux distribution over the accretion disk, the disk spec-
tra, and the conversion efficiency are due to the important dif-
ferences between the metric potentials of the neutron, quark,
and BEC stars, respectively. Even if the total mass and the
angular velocity are the same for each type of the rotating
central object (neutron, quark or BEC star), with the stars
having similar values of �, Ẽ and L̃ , the radiation prop-
erties of the accretion disks around these compact general
relativistic objects exhibit observable differences [97]. The
physical reason for these differences is that the proper vol-
ume, and in turn the function

√−g, used in the calculation
of the flux integral, is strongly dependent on the behavior of
the metric component grr = (∂r/∂r)2grr , and therefore on
the geometry of the space-time. The latter expression con-
tains the derivatives with respect to the radial coordinate r of
the metric components ρ(r) and γ (r), respectively, via the
coordinate transformation between the coordinates r and r ,
which are extremely sensitive to the slope of the functions
ρ(r) and γ (r) [97]. Therefore, although the inner edges of
the disks are located at almost the same radii, the maximum
amplitudes and the numerical values of the energy fluxes
emerging form the disk surface, and propagating in any solid
angle, may show considerable differences for different equa-
tions of state of the neutron, quark, and BEC matter. These
essentially geometrical effects also give rise to the distinctive
features in the disk spectra for the various types of central
stars.

In our preliminary and idealized theoretical study of the
accretion disk properties around BEC stars we have found a
number of observational signatures distinguishing this class
of stars from the neutron and quark stars. These specific prop-
erties are the distinct positions of the maxima of the flux, of
the temperature distribution, and of the luminosity of the disk,
the position of the inner edge of the disk, and the radiation
efficiency conversion. In all three different classes of rotating
stars we have analyzed these signatures do appear distinctly.
Moreover, BEC stars have a mass–radius relation that can
also help in discriminating them with respect to other classes
of neutron and quark stars.

In the present paper, which represents a first step in the
investigation of the complex astrophysical problem of the
radiation emission from accretion disks around compact
objects with different nuclear equations of state, we made
the fundamental assumption that the inner edge of the disk is
located at the ISCO radius. This means that the ISCO posi-
tion is only determined by the space-time geometry around
the compact object. However, a number of important phys-

ical factors can affect the position and location of the inner
edge of the disk. For example, in the case of neutron stars,
the inner edge of the disk is usually set by the magnetosphere
around the star, and it is not determined by the metric of the
space-time only. But, in order to simplify the discussion of
the complex physics of the accretion disks, and by taking
into account the preliminary and purely theoretical nature
of this study, in the present paper we consider only an ideal
case, which allows us to start our analysis from very simple
physical and astrophysical considerations. As already men-
tioned, an important physical parameter that strongly influ-
ences the ISCO position is the magnetic field of the compact
central object, and so is its magnetosphere. The magnetic
field lines originating from the central object can have a con-
siderable effect on the evolution of the accretion processes
and on the disk structure. The effects of magnetic fields on
the accretion processes in a compact, spherically symmet-
ric geometry of Schwarzschild type (which describes the
exterior geometry for both black holes and compact stars)
were considered in [131]. The magnetic field was assumed
to be asymptotically uniform, and axisymmetric tidal struc-
tures were also taken into account. Due to the presence of
the magnetic field and of the tidal perturbations, the accre-
tion disk shrinks in size, and the marginally stable orbits
shift toward the central object. On the other hand the pres-
ence of the magnetic perturbation leads to an increase in the
disk radiation intensity from the accretion disk. However, the
position of the maximum of the radiation does not change,
and the radiation spectrum is blue-shifted. Interestingly, the
conversion efficiency decreases due to the presence of the
magnetic fields and of the tidal perturbations. Alternative
studies of the effects of the neutron star’s magnetic field on
the exterior metric and the position of ISCO’s can be found
in [132,133].

In the present paper we have proposed a method for dis-
criminating between different types of compact objects that
was proposed, and observationally tested, in the case of the
black holes. Black holes have an event horizon (or a very
special surface with similar properties) that prevent them
from emitting any form of electromagnetic radiation [134].
This makes the radiation emission from the disk, and due
to accretion processes, the dominant electromagnetic energy
emission mechanism, thus allowing the possibility of deter-
mining the central black hole properties from the radiation
spectrum of the disk, without any possible interference of the
electromagnetic signals from the black hole. On the other
hand, neutron stars have a solid radiation emitting surface
(crust), which makes it very difficult to distinguish between
the radiation of the star and of the disk itself. That is why
the continuum-fitting method was not applied for the study
of neutron stars [134], and up to now there is no published
observational study of the possibility of testing the neutron
star EOS by using the electromagnetic spectrum of a thin
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disk. On the other hand we would like to point out that the
electromagnetic emissivity of the zero temperature gravita-
tionally bounded BEC matter, in which all particles are in
the quantum ground state, described by a single wave func-
tion, is very low [135]. This is because the effective plasma
frequency of the condensed mater is very high. Therefore
we may assume that the radiation emissivity of the BEC
stars is very low, and they are very “black”. Consequently,
the electromagnetic emissivity of the BEC star–disk system
may be dominated by the disk emission. This situation is
similar to the case of quark stars. Since quark matter has
a very high plasma frequency, ωp, the photon emissivity of
strange quark stars is very low [136,137]. This is due to the
fact that the propagation of electromagnetic waves having
frequencies lower than ωp is exponentially damped. Hence,
only photons produced just below a few fermi from the sur-
face, with outwards pointing momenta, can be emitted by the
strange star. Hence the equilibrium photon emissivity from
a strange star is negligible small, as compared to the black
body one. Moreover, the spectrum of the emitted equilibrium
photons is very hard, with h̄ω > 20 MeV [136]. Of course,
BEC stars, as well as the quark stars, may have a crust (solid
surface), representing a powerful source of electromagnetic
radiation. The presence of such a crust would further com-
plicate the possibility of discriminating between BEC stars
and the other types of compact general relativistic objects.

Another important point we would like to stress is that
from an observational point of view not all the parameters
of the BEC star–disk system can be determined indepen-
dently from astrophysical observations. This means that a
degeneracy between the EOS and the nature of the com-
pact object, and the values of some physical parameters of
the model, could always exist. A full test of the BEC EOS
would require the precise knowledge of the mass, radius,
and spin of the central object, as well as all the electromag-
netic disk properties. In this ideal case, extremely difficult
to achieve from an observational point of view, the fitting of
the observational data could provide a convincing test of the
nature of the central object. Probably in the near future no
such increase in the precision of the astrophysical observa-
tions will be achieved, thus rendering the direct determina-
tion of the EOS of the nuclear or condensed matter beyond
the present observational capabilities. On the other hand one
could expect an increase in the determination of the masses
and radii for various compact objects, and these measure-
ments may give some hints on the true nature of the EOS of
the dense matter.

In conclusion, once the precision of the astrophysical data
is drastically increased, the observational study of the thin
accretion disks around rapidly rotating compact objects, and
of their electromagnetic properties (flux, temperature distri-
bution and luminosity), may provide a powerful tool in dis-
tinguishing between different classes of dense stellar objects,

as well as for discriminating between the different equations
of state of the dense matter.
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