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Abstract

Background: One of the most challenging problems in biological image analysis is
the quantification of the dynamical mechanism and complexity of the intracellular
space. This paper investigates potential spatial chaos and complex behavior of the
intracellular space of typical cancer and normal cell images whose structural details are
revealed by the combination of scanning electron microscopy and focused ion beam
systems. Such numerical quantifications have important implications for computer
modeling and simulation of diseases.

Methods: Cancer cell lines derived from a human head and neck squamous cell
carcinoma (SCC-61) and normal mouse embryonic fibroblast (MEF) cells produced by
focused ion beam scanning electron microscopes were used in this study. Spatial
distributions of the organelles of cancer and normal cells can be analyzed at both short
range and long range of the bounded dynamical system of the image space,
depending on the orientations of the spatial cell. A procedure was designed for
calculating the largest Lyapunov exponent, which is an indicator of the potential
chaotic behavior in intracellular images. Furthermore, the sample entropy and regularity
dimension were applied to measure the complexity of the intracellular images.

Results: Positive values of the largest Lyapunov exponents (LLEs) of the intracellular
space of the SCC-61 were obtained in different spatial orientations for both long-range
and short-range models, suggesting the chaotic behavior of the cell. The MEF has
smaller positive values of LLEs in the long range than those of the SCC-61, and zero
vales of the LLEs in the short range analysis, suggesting a non-chaotic behavior. The
intracellular space of the SCC-61 is found to be more complex than that of the MEF.
The degree of complexity measured in the spatial distribution of the intracellular space
in the diagonal direction was found to be approximately twice larger than the
complexity measured in the horizontal and vertical directions.

Conclusion: Initial findings are promising for characterizing different types of cells and
therefore useful for studying cancer cells in the spatial domain using state-of-the-art
imaging technology. The measures of the chaotic behavior and complexity of the
spatial cell will help computational biologists gain insights into identifying associations
between the oscillation patterns and spatial parameters of cells, and appropriate model
for simulating cancer cell signaling networks for cancer treatment and new drug
discovery.
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Introduction
It has been recently reported that cell shape, subcellular sizes, and spatial intracellular
distribution can control how molecules interact to produce a cellular behavior [1]. Such
spatial information of the cell is important and considered as underlying mechanism for
mathematical modeling of cell signaling. In the study of cell plasticity, which refers to
the ability of cells to take on the characteristics of other cells in an organism (for exam-
ple, bone marrow stem cells that are transplanted elsewhere can change into lung or liver
cells for repairing damages to internal organs), it is critical to understand the dynamical
behavior of the molecular processes in single cells underlying cell plasticity by compu-
tational methods that implement experimental parameters of the intracellular single-cell
space into the mathematical simulation of complex molecular processes [2].
In fact the construction of a good spatial model of the cell has been suggested to be nec-

essary for studying both deterministic and stochastic phenomena of molecular dynamics
[3-5].
Furthermore, it has been observed that the spatial distributions of protein localization

within a single cell are dynamic. For example, the surface distribution and dynamic move-
ment of the localization of an outer membrane protein in Escherichia coli were found to
be complex and changing rapidly [6].
All of these intercellular properties are important for cell simulation which is aimed

to be able to predict cell behavior [7] as well as to construct biochemical reactions and
electrophysiological models of neurons and other cell types [8].
In the study of cellular dynamics, the hypothesis of cancer as a chaotic process is the

most prominent among multiple hypotheses of cancerogenesis [9,10]. Indeed, the idea
of adopting chaos for modeling cancer process has been investigated including studies
in genetics [10,11], extracellular [12-19] and intracellular [20,21] phenomena of tumor
growth. However, these models were mostly constructed based on experience and exper-
iments. In particular, at intracellular level [20-23], the spatial distribution and shape of
organelles is still not utilized for studying the possible chaotic behavior of cancer. While
many hypotheses and findings about complex patterns of cells, particularly the dynamics
of cancer cells associated with chaos, have been reported in literature, there is rarely any
work exploring the irregularity and heterogeneity of spatial distribution of cancer intra-
cellular space in images. Such a theoretical study will be helpful to help scientists gain
insights into how cells utilize intracellular features to optimize their signaling character-
istics [24] and to identify appropriate strategies for modeling and simulation of cancer
cellular signaling pathways [25].
In this study, we are particularly interested in the analysis of the spatial chaos and com-

plexity of the intracellular information of cancer and normal cells using the combination
of scanning electron microscopy (SEM), which is well known for capturing surface char-
acteristics and morphology, and focused ion beam (FIB), which is increasingly used in
biology for site-specific analysis [26].
In fact, the identification of complexity and chaotic behavior in medical and biologi-

cal systems has been an active area of research [27,28]. On the other hand, evidence for
deterministic chaos has been reported from various experiments on nonlinear systems
that has given rise to the need for detecting and quantifying chaos [29]. In chaos theory,
the notion of Lyapunov exponents is one of the most popular methods for quantifying
chaos [30-32] as it was proven to be the most useful tool for studying chaotic systems [33].
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Because the computation of the full Lyapunov spectrum is difficult and the estimate of
the largest Lyapunov exponent (LLE) is preferred for identifying chaos, many methods
have been developed for estimating the LLE. One of the most practical and reliable meth-
ods for the computation of the LLE, including small datasets, is the algorithm proposed
by Rosenstein et al. [34].
Regarding the complexity analysis of signals in terms of sequential irregularity, approx-

imate entropy (ApEn) [35] can quantify such complexity by assessing the randomness of
the system. ApEn has the following interesting properties [36]: (1) it is a combinatorial
algorithm which can avoid failure in a number of settings for specified sequences, (2) it
can be applied to sequences of both finite and infinite length, and (3) its computation
is explicit, in counterpoint to algorithmic complexity and axiomatic probability theory.
A low value of ApEn indicates that the signal is deterministic and of low complexity. A
high value of ApEn implies that the signal is subject to a high degree of complexity and
therefore difficult to predict. Sample entropy (SampEn) [28] was developed to avoid bias
encountered in ApEn by excluding the counting of a self-match for each sub-sequence
of the signal. Both ApEn and SampEn estimate the probability that the sequences in a
dataset which are initially closely related remain closely related, within a given similarity
tolerance, on the next incremental comparison. However, both methods require a pri-
ori knowledge of two unknown parameters m (sub-sequence length) and r (similarity
tolerance), which can be difficult to determine. The regularity dimension (RD) [37] has
recently been introduced to overcome such difficulty by allowing the specification of a
range of possible values of these two critical parameters m and r instead of using single
values of these two parameters.
The contributions of this paper are that (1) it presents the first attempt in quantifying

the spatial dynamics of FIB-SEM-based intracellular space of cancer cells, (2) it introduces
the first study on complexity analysis of FIB-SEM-based intracellular space of cancer cells,
and (3) it develops original procedures for estimating the largest Lyapunov exponents
and regularity dimension of images. Such quantifications of the dynamical behavior and
complexity of cancer cells will help life-science researchers gain important information
about spatial cell structures based on which effective strategies for cancer modeling and
simulation can be established.
The rest of this paper is organized as follows. Section “Materials and methods for

sample preparation” presents a proposed procedure for calculating the largest Lyapunov
exponents which is used as quantitative measure of potential chaos in intracellular
images. Section “Largest Lyapunov exponents of images” introduces the regularity dimen-
sion as quantitative measure of complexity applied to images. Section “Regularity dimen-
sion of images” includes experimental results and discussion. Finally, Section “Results” is
the conclusion of the new findings.

Materials andmethods for sample preparation
We used two types of cultured cells in this study: cancer cell lines derived from a human
head and neck squamous cell carcinoma (SCC-61) parental line [38,39], and normal cells
of themouse embryonic fibroblasts (MEFs) [40] (these are established cell lines and there-
fore ethical approval is not required). Head and neck squamous cell carcinoma develops
from the mucosal linings of the upper aerodigestive tract, comprising the nasal cavity
and paranasal sinuses, the nasopharynx, the hypopharynx, larynx, trachea, and the oral
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cavity and oropharynx. Squamous cell carcinoma is the most frequent malignant tumor
of the head and neck region and it was reported that head and neck squamous cell car-
cinoma is the sixth leading cancer by incidence worldwide [41]. A fibroblast is the most
common type of cell found in connective tissue, secreting collagen proteins that are used
to maintain a structural framework for many tissues (http://ghr.nlm.nih.gov/glossary=
fibroblast). MEFs are often used as feeder cells in human embryonic stem cell research. In
particular, MEFs have been utilized as a surrogate stem cell model for the postnatal bone
marrow-derived stromal stem cells to study cell differentiation [42]. The study of MEF
cells is important because it helps elucidate the molecular mechanisms underlying cellu-
lar immortalization, transformation, tumorigenesis; and can be used as a powerful tool to
analyze the genetic regulation of these cellular processes [43].
Samples were prepared by a modified transmission electron microscopy method.

Briefly, cells were fixed in solutions containing aldehydes, and sequentially treated with
osmium/ferrocyanide, thiocarbohydrazide and osmium tetroxide. Before embedding in
Epon 812 resin, samples were stained en bloc with uranyl acetate and lead aspartate
to enhance backscatter electron signal especially from membranes. A plastic embedded
sample was then sliced into hundreds of thin sections with 50 nm interval. The serially
sectioned samples were collected on a piece of Si wafer, and they are subjected to taking
photos in scanning electron microscope (SEM). This method easily avoids the charge-up,
which is often a problem in using SEM, and allows us for acquiring high resolution images
especially in the z-direction.
It should be noted about FIB-SEM that FIB and SEM are not separate imaging devices

but the two components are combined as a whole to produce the images. The repetitive
milling carried out by FIB and the image detection carried out by SEM in one vacuum
chamber enable us to automatically obtain hundreds of serially-sectioned images of a
cell. Otherwise, it is very laborious to obtain such imaging results. The specifications for
producing the FIB-SEM images are as follows. The devise is Helios NanoLab 650 manu-
factured by FEI (http://www.fei.com/), applied with an acceleration voltage of 2kV and a
working distance of 2.6 mm. The image resolution is of 2048 by 1768 pixels, whose size is
of 18.5 by 18.5 nm. The magnification is 10kX. For this type of image data, the pixel size
is more important than the magnification, which limits the image spatial resolution. The
pixel size of 18.5 nm in our images is sufficiently small in comparison to the endoplasmic
reticulum (ER) and other major organelles, because the luminal diameter of ER tubules is
almost 100 nm.

Largest Lyapunov exponents of images
A Lyapunov exponent is a real value which measures the dynamics of the evolution of
trajectories in a phase space. The Lyapunov exponents of a phase space point (attractor)
are referred to as the attractor’s Lyapunov spectrum. Lyapunov exponents quantify the
chaos of a dynamical system by measuring its sensitive dependence on initial conditions
or sensitivity to initial conditions [31]. A positive value of a Lyapunov exponent refers to
the average rate at which predictability is unreliable for a bounded dynamical system that
is chaotic (chaotic or strange attractor). A zero value indicates the dynamical system is of
periodic limit cycle motion (nonchaotic or periodic attractor). A negative Lyapunov expo-
nent implies that all trajectories move closer to each other or converge to a fixed point
(nonchaotic or point attractor). Identification of the mechanism of dynamics underlying

http://ghr.nlm.nih.gov/glossary=fibroblast
http://ghr.nlm.nih.gov/glossary=fibroblast
http://www.fei.com/
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a system under study is useful because it provides insights into the uncertainty of the sys-
tem so that appropriate modeling can be constructed for prototyping and simulating such
a complex regime.
The calculation of the LLE is often used for analysis of time-series data, which is briefly

presented here as the start of the development of the determination of the LLE for images.
We now consider a discrete system with a 1-D map xk+1 = f (xk) which evolves when it
is started at two initial states x0 and (x0 + ε0). The parameter ε0 takes a very small value
to indicate the two initial states are very close to each other. The Lyapunov exponent is
defined when the two trajectories are separated by a distance εn after n iterations of the
map as follows.

|εn| ≈ |ε0| enλ, (1)

where λ is the Lyapunov exponent.
Taking the natural logarithm of both sides of Equation (1), the divergence of the two

trajectories can be approximated as [31]

λ ≈1
n
ln

∣∣∣∣εnε0
∣∣∣∣

=1
n
ln

∣∣∣∣ f n(x0 + ε0) − f n(x0)
ε0

∣∣∣∣ .
(2)

If the interest is the study of the effects of very small perturbations, the limit of Equation
(2) is taken as ε0 → 0, then the remaining term inside the logarithm is expanded using
the chain rule which defines the derivative of the function f taken at x0:

f n(x0 + ε0) − f n(x0) =(f n)′(x0)

=
n−1∏
i=0

f ′(xi),
(3)

which is the product of all the first derivatives or the rates of change for i = 0 to i = n−1.
The back substitution of Equation (3) into Equation (2) gives

λ ≈ 1
n

n−1∑
i=0

ln |f ′(xi)|. (4)

Finally, the limit of Equation (4) is taken as n → ∞, giving

λ = lim
n→∞

[
1
n

n−1∑
i=0

ln | f ′(xi)|
]
. (5)

For K-dimensional mappings, Equation (5) is extended to yield a spectrum of Lyapunov
exponents arranged in a decreasing order:

λ1 ≥ λ2 ≥ · · · ≥ λK ,

where λ1 is known as the maximum or largest Lyapunov exponent (LLE) [33]. Equation
(5) shows that the LLE is the average logarithm of the absolute values of n derivatives or
local slopes (local divergences and/or convergences) taken over the entire attractor.
Having discussed before, because of the difficulty in the computation of the Lyapunov

spectrum and the interest in estimating λ1 (LLE) which is the most significant indicator
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of chaos, the LLE estimate proposed by Rosenstein et al. [34] is applied in this study and
works as follows.
Let X = (x1 x2 . . . xN ) be an original time series whose reconstructed trajectory

can be represented as X∗ = (x1 x2 . . . xM)T where xi = (xi xi+δ . . . xi+( J−1)δ), and
M = N−[δ( J − 1)] with given values for the lag δ and the embedding dimension J. The
reconstructed phase space can be expressed in a matrix form as

X = (X1,X2, . . . ,XM)T , (6)

where X is a matrix of sizeM × J ,M = N − ( J − 1)δ, and Xi = (xi, . . . , xi+( J−1)δ) that is
the state of the system at discrete time i.
The initial distance from the jth point to its nearest neighbor, denoted as dj(0), is

defined using the Euclidean norm as

dj(0) = min
Xj∗

||Xj − Xj∗ ||, (7)

where |j − j∗| > MP, and MP is the mean period which is the reciprocal of the mean
frequency of the power spectrum.
The basic idea is that the LLE (λ1) for a dynamical system can be defined as [34]

d(t) = c eλ1t , (8)

where d(t) is the average divergence of two randomly chosen initial conditions at time t,
and c is a constant that normalizes the initial separation between neighboring points.
By the definition given in Equation (8), the jth pair of nearest neighbors can be assumed

to diverge at a rate measured by λ1 as follows:

dj(i) ≈ cj eλ1(i�t), (9)

where dj(i) is the distance between the jth pair of nearest neighbors after i discrete-
time steps which is i�t, �t is the sampling period of the time series, and cj is the initial
separation between two neighboring points.
Taking the logarithm of both sides of Equation (9), giving

ln[dj(i)]≈ λ1(i�t) + ln(cj), (10)

where dj(i) = ||Xj(i) −Xj∗(i)||. Equation (10) gives a set of approximately parallel curves,
one for each j (j = 1, . . . ,M).
If these curves are approximately linear, their slopes represent the LLE (λ1). The LLE

can be computed as the slope of a straight-line fit to the average logarithmic divergence
curve defined by

s(i) = 1
i�t

< ln[dj(i)]>j, (11)

where < · >j denotes the average over all values of j, which is essential to accurately
estimate λ1 using a small dataset [34]. More detailed derivations of Eqs. 1 - 11 can be
found in [31,34].
Using the same principle of the Rosenstein’s approach described above and taking

advantage of the image structure where each row or column of an image can be viewed as
a trajectory, an approximate procedure for measuring the sensitivity to initial conditions
is designed.
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The concatenations of the image rows (horizontal) and columns (vertical) are only two
representative orientations of the spatial distribution of an image. However, such hori-
zontal and vertical orientations have been found to be a good approximation to capture
the spatial configuration of a two-dimensional image and to take into account the effect
of an anisotropic structure [44].
The procedure works on a basis of the random selection of two nearest paths of pixels

whose average rate of convergence or divergence in a phase space is to be measured to
determine its state of disorder. Here, the phase space is an image of two dimensions. Sen-
sitivity to initial conditions in our present study implies that each pixel point in an image
space is arbitrarily closely approximated by other pixel points with significantly different
future trajectories of image intensity values. Consider an image space in a matrix form as
follows:

I =

⎡
⎢⎢⎢⎢⎢⎢⎣

I11 I12 · · · I1N
· · · · · ·
· · · · · ·
· · · · · ·

IM1 IM2 · · · IMN

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where Iij is the image intensity at location (i, j ) or the mean intensity value of a
subimage of size r × r (for purpose of faster computation), whose top-left (TL),
top-right (TR), bottom-left (BL), and bottom-right (BR) coordinates are defined as
[TL(i, j ),TR(i, j ),BL(i, j ),BR(i, j )]=[(i, j ), (i, j × r), (i × r, j ), (i × r, j × r)].
The nearest neighbor of pixel Iij, at spatial step k, can be determined by calculating

the absolute differences between pixel Iij and all other pixels row-wise or column-wise,
respectively, such that

δRij (k) = min
p

(|Iij − Ipj|), i �= p, p = 1, . . . ,M, (12)

where δRij (k) stands for the distance between pixel Iij and its nearest-neighbor row pixel
Ipj, at k iterative step, or

δCij (k) = min
q

(Iij − Iiq), j �= q, q = 1, . . . ,N , (13)

where δCij (k) stands for the distance between pixel Iij and its nearest-neighbor column
pixel Iiq measured at k iterative step.
Being analogous to the Rosenstein’s procedure, the average logarithmic divergence or

convergence over all values of pixel points Iij, at spatial iterative step k, is defined row-wise
or column-wise, respectively, by

dR(k) = ln
[
1
M

M∑
i=1

δRij (k)
]
, (14)

and

dC(k) = ln

⎡
⎣ 1
N

N∑
j=1

δCij (k)

⎤
⎦ . (15)

Finally, the so-called LLE of the image can be determined by calculating the slope of the
linear relationship of the plot of dR(k) or dC(k) versus k.
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Regularity dimension of images
Let x = {x1, . . . , xN }, and Qm be the set of all subsequences of length m in x: Qm =
{x1m, . . . , x(N−m+1)m}, where xim = {xi, . . . , xi+m−1}. It is said that xim and xjm are similar
if and only if

|xi+k − xj+k| < r,∀k, 0 ≤ k < m, (16)

where r is a threshold for similarity.
The probability of patterns of lengthm that are similar to the pattern of the same length

that begins at i is

Cim(r) = Kim(r)
N − m + 1

, (17)

where Kim(r) is the number of subsequences in Qm that are similar to xim.
The total average probability Cim(r) for all i, i = 1, . . . ,N − m + 1, is

Cm(r) = 1
N − m + 1

N−m+1∑
i=1

Cim(r). (18)

ApEn, given lengthm and tolerance value r, can now be readily computed by

ApEn(m, r) = log
[

Cm(r)
Cm+1(r)

]
. (19)

To avoid bias in self-matching encountered in ApEn, SampEn works in a slightly
different way by defining xim and xjm are similar if and only if

|xi+k − xj+k| < r,∀k, 0 ≤ k < m, i �= j. (20)

Let Lm = {x1m, . . . , x(N−m−1)m}, the probability of patterns of lengthm that are similar
to the pattern of the same length that begins at i is

Bim(r) = Jim(r)
N − m − 1

, (21)

where Jim(r) is the number of subsequences in Lm that are similar to xim.
The total average probability Bim(r) for all i, i = 1, . . . ,N − m, is

Bm(r) = 1
N − m

N−m∑
i=1

Bim(r). (22)

Finally, the value of SampEn, givenm and r, can be calculated by the following equation:

SampEn(m, r) = log
[

Bm(r)
Bm+1(r)

]
. (23)

The regularity dimension (RD) [37] has been introduced to overcome the problem of
selections of the two critical parameters m and r of ApEn and SampEn. The concept of
the RD is based on the general rule of the exponent dimension defined as

� ∝ s−D, (24)

where �, ∝, s, and D stand for the number of increments, proportional to, scale size, and
exponent dimension, respectively.
Based on Eq. (24), the exponent dimension can be obtained as

D ∝ ln(�)

ln(1/s)
. (25)

It has been known that information increases with decreasing size of the lag space [30]
such as m in this case. In other words, the information is approximately proportional to
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the log of 1/m. From now on information I is used to refer to SampEn. A straight line of
the semilog axes is therefore expected in a plot of 1/m versus I, and themathematical rela-
tion is a logarithmic equation. Because the relation is a straight line, it has the following
form:

Im = a + Dm ln(1/m), (26)

where Im is SampEn denoting the information subject to m, a is a constant which is the
intercept, and Dm is the slope of the straight line, which is also the regularity dimension.
Rearrangement of (26) to solve for Dm yields

Dm = Im
ln(1/m)

− a
ln(1/m)

. (27)

Setting a limit term onm, which indicates that the relation does not hold for very large
m, gives

Dm = lim
m→0

Im
ln(1/m)

− a
ln(1/m)

. (28)

When m gets smaller and smaller, 1/m and its logarithm becomes larger and larger.
Since a is a constant, the term a

ln(1/m)
approaches zero in the limit ofm approaching zero,

and therefore this term becomes negligibly small. Thus, (28) can be simplified as

Dm = lim
m→0

Im
ln(1/m)

. (29)

It can be noted from (29) that the regularity dimension Dm measures the rate of change
of signal regularity/predictability with respect to ln(1/m), it is the rate at which the
entropy of a dynamical system is gained with increasing resolution (decreasing lengthm).
Alternatively, increasing the value of r, which is the tolerance of similarity, decreases

the information in the sense that no information is gained when most subsequences are
considered to be similar (signal is highly predictable or has low complexity). Being anal-
ogous to the relation of a straight line developed for Dm, the regularity dimension Dr can
be obtained using the expression for ApEn in terms of r as follows.

Ir = a + Dr ln(1/r), (30)

where Ir is ApEn subjected to r, a is a constant which is the intercept, and Dr is the slope
of the straight line, which is the regularity dimension.
Rearrange Equation (30), we can define Dr as

Dr = Ir
ln(1/r)

− a
ln(1/r)

. (31)

To indicate the relation that does not apply to very large r, a limit term is inserted on r,
giving

Dr = lim
r→0

Ir
ln(1/r)

− a
ln(1/r)

. (32)

Removing the negligible term a
ln(1/r) in the limit of r approaching zero gives

Dr = lim
r→0

Ir
ln(1/r)

. (33)

The above procedure is designed for the analysis of time-series data. A feasible way for
the estimate of the RD in images is to concatenate the pixel values in either row-wise,
column-wise, or diagonal-wise to transform the 2-dimensional image into a sequence of
image intensities, which is then ready for application of the described computation of the
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RD in terms of either r or m. For the RD computation, the generation of the time series
of the image in either row-wise, column-wise, or diagonal-wise direction is only a repre-
sentative orientation of the spatial distribution of an image. The generation of the time
series of the image in any orientation may be considered. However, in many applications,
horizontal (row-wise) and vertical (column-wise) orientations have been found to be a
good approximation to capture the spatial configuration of a two-dimensional image and
to take into account the effect of an anisotropic structure [44-46].

Results
Figure 1 shows two typical FIB-SEM images of SCC-61 (cancer) and MEF (normal)
cells, where the organelles of each cell can be visually observed in the intracellular
space. Figure 2 shows the extracted intracellular space segments of FIB-SEM images of
SCC-61 (Figure 2 (a)) and MEF (Figure 2 (b)) cells. Rosenstein’s method and the pro-
posed approximate method for estimating LLEs were applied to study the spatial chaos

(a)

(b)

Figure 1 Typical partial images of (cancer) SCC-61 (a) and (normal) MEF (b) cells, of which organelles
are revealed by the combination of scanning electron microscopy (SEM) and focused ion beam (FIB)
technology (part of the cell, including the nucleus, membrane and organelles, can be seen on the
upper half of SCC-61).
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(a)

(b)

Figure 2 Images of the intracellular space of SCC-61 (a) and MEF (b), where the maximum regions
containing the organelles were extracted from the corresponding original images.

of the intracellular space of the cells. Twenty scans of the FIB-SEM images of the can-
cer single cell, and sixty FIB-SEM images of the intracellular space of the normal cell of
the MEF were used to implement the Rosenstein’s method for estimating the LLE. The
image intensities were row-wise and column-wise concatenated to generate row-wise and
column-wise time-series data of the image, respectively.
The lag and the number of the embedding dimensions were selected to be 1 and 3 for

the phase-space reconstruction, respectively. For the calculation of the approximate LLE
expressed in Eqs. (14) and (15), a window of size 4×4 was used to obtain a mean intensity
value. Figures 3 and 4 show the plots of the logarithmic divergence versus iterative steps
of the row-wise and column-wise time-series data, respectively, of the two typical images
shown in Figure 2, including only the organelles of the single cancer and normal cells.
For the SCC-61, the straight segments of the slopes in both cases indicate positive LLEs
(chaotic) where convergences are quickly reached after a few iterations. The same images
of SCC-61 and MEF were used to test for chaos using the proposed approximate estimate
of the LLE. Figures 5 and 6 show the plots of the logarithmic divergence versus iterative
steps of the row-wise and column-wise time-series data of the two cell types, respectively.
Table 1 shows the average LLEs of the intracellular space of the cancer cell SCC-61 and
normal cell MEF using the Rosenstein’s and proposed (approximate) methods.
Regarding the complexity analysis, both SampEn and RD were applied to measure the

predictability of the real intracellular space of the SCC-61 and MEF cells. Because of the
selection of the similarity threshold r has been known to be much more critical than
the sublength m used in SampEn, only the estimate of Dr was carried out in this experi-
ment. The horizontal (x), vertical (y), and diagonal (z) intensity values of the images were
extracted by concatenating the intensity values in the same direction to produce 3 time-
series datasets. Values of m and r were chosen to be 3 and 0.3σ where σ is the standard
deviation of the signal, respectively. For the calculation of the RD, the range of the tol-
erance of the similarity threshold r was specified from 0.1σ to 0.5σ with a step size of
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Figure 3 Logarithmic divergence versus iterative steps obtained by Rosenstein’s method using
Eq. (11) with row-wise time-series data generated from intracellular space of SCC-61 (a) and MEF (b),
where the LLE of each plot was estimated by calculating the slope of the least-squares straight line fit.

0.025σ . The values of the SampEn and RD for the cancer and normal cell images are
shown in Tables 2 and 3, respectively. Furthermore, we applied the window sizes of 3× 3,
5 × 5 and 7 × 7 to average the pixel intensity to reduce noise in the images by replacing
the value of each pixel by the average value inside the window centered at the pixel (low-
pass filtering). The mean values of the LLE, SampEn and RD of the SCC-61 andMEF cells
using the three different window sizes are shown in Table 4.

Discussion
All positive LLEs shown in Table 1 suggest the chaotic behavior of the intracellular space
of the cancer cell. Here the LLE is an important indicator of detecting and characterizing
chaos produced from a spatial dynamical system of the real intracellular space. The LLEs
in both rows and columns of the image space estimated by the Rosenstein’s method are
very similar and higher than those by the approximate method of which row-wise LLE
is higher than column-wise LLE. While the LLEs estimated by the Rosenstein’s method
(long range) in both row-wise and column-wise directions of the intracellular space are
similar, the approximate LLE (short range) in the row-wise direction is several times (6.5)
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Figure 4 Logarithmic divergence versus iterative steps obtained by Rosenstein’s method using
Eq. (11) with column-wise time-series data generated from intracellular space of SCC-61 (a) and MEF
(b), where the LLE of each plot was estimated by calculating the slope of the least-squares straight
line fit.

higher than that in the column-wise direction. This observation suggests the change in
the image intensity of the organelles along the horizontal direction of the cell is much
more chaotic than that of the vertical direction of the cell.
Based on the nature of the data modeling, the LLEs obtained from the Rosenstein’s

method (Table 1) can refer to the long-range behavior of the phase space by joining all
the pixels into a single time series, whereas the LLEs obtained from the proposed method
(Table 1) refer to the short-range behavior of the intracellular space by considering shorter
paths along the vertical and horizontal directions of the image. Regarding the complexity
measure, the diagonal content of the image yields the highest RD indicating the poorest
predictability or most complexity of the signal in the diagonal orientation of the intracel-
lular space. In this study, the RD is calculated in terms of the SampEn. For a fixed value
of r, that is 0.3σ , the mean SampEn values of the cancer-cell signals in the horizontal (x),
vertical (y) directions are similar and slightly lower than the SampEn value of the cancer
cell in the diagonal (z) orientation (Table 2). Meanwhile, by allowing a range of values for
the threshold r in the calculation of the SampEn, the RD values of the cancer-cell signals
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Figure 5 Logarithmic divergence versus iterative steps obtained by the proposed approximate LLE
method using Eq. (14) with row-wise time-series data generated from intracellular space of SCC-61
(a) and MEF (b), where the LLE of each plot was estimated by calculating the slope of the
least-squares straight line fit.

can be better distinguished between different spatial orientations where the RD in the z
direction is as twice larger than those in the x and y directions (Table 3). This observation
indicates the diagonal signal of the cancer cell is more complex than the others.
The LLE values of the normal MEF cell obtained from the Rosenstein’s method (long

range) in both row-wise and column-wise orientations (Table 1) are about 1.5 times lower
than those of the cancer cell SSC-61 (Table 1) previously discussed, indicating a much less
magnitude of a chaotic behavior. Meanwhile, the LLE values of the MEF cell estimated by
the approximate method (short range) (Table 1) in both orientations are zeros, suggesting
the spatial distribution of the intracellular space of the normal cell is non-chaotic. The
SampEn values of the normal cell (Table 2 are about half less than those of the cancer cell
(Table 2). Once again, the use of the RD can help better distinguish the difference in the
complexity between the intracellular signal in the z direction versus the signals in the x
and y directions, where the RD value in the z direction is about twice larger than those
in the x and y directions (Table 3). The magnitudes of the complexity in both x and y
orientations of either the cancer or normal cell are found to be similar.
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Figure 6 Logarithmic divergence versus iterative steps obtained by the proposed approximate LLE
method using Eq. (15) with column-wise time-series data generated from intracellular space of
SCC-61 (a) and MEF (b), where the LLE of each plot was estimated by calculating the slope of the
least-squares straight line fit.

While the average logarithmic divergence of the cancer intracellular space in either row-
wise (Figure 3) (a) or column-wise (Figure 4) (a) orientation using the Rosenstein’s method
saturates at longer times since the system is bounded in phase space [34], the average
logarithmic divergence of the cancer intracellular space in either row-wise (Figure 5 (a))
or column-wise (Figure 6 (a)) orientation using the approximate LLE method fluctuates

Table 1 LLEs (mean, variance) of the intracellular space of SCC-61 (cancer) andMEF
(normal) cells based on different orientations for time-series generations (Rosenstein’s
method results are obtained from Eq. (11), and approximate LLEmethod results are
obtained from Eq. (14) for row-wise and Eq. (15) for column-wise)

Method Row-wise Column-wise

SCC-61

Rosenstein (long range) (0.5432, 0.00021) (0.5356, 0.00016)

Approximate (short range) (0.0026, 0.00003) (0.0004, 0.00001)

MEF

Rosenstein (long range) (0.3800, 0.00032) (0.3640, 0.00046)

Approximate (short range) (0, 0.00002) (0, 0.00001)
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Table 2 SampEn (mean, variance) of the intracellular space of SCC-61 (cancer) andMEF
(normal) cells using different orientations, obtained from Eq. (23)

Horizontal Vertical Diagonal

SCC-61

(0.810, 0.00046) (0.795, 0.00038) (0.837,0.00030)

MEF

(0.372, 0.00029) (0.356, 0.00020) (0.369,0.00027)

along the spatial iterations. This is because the use of a smaller phase space modelled by
Eqs. (14) and (15), where abrupt changes in the distances in terms of the image intensity
between the nearest-neighbor pixels can be expected. Similar converegence and fluctua-
tion of the average logarithmic divergence in either row-wise or column-wise orientation
are found in the analysis of the normal intracellular space using the Rosenstein’s method
(Figures 3 (b) and 4 (b)) and the approximatemethod (Figures 5 (b) and 6 (b)). The flat sat-
uration at the beginning of the curves using the approximate method shown in Figures 5
(b) and 6 (b) can be easily observed, suggesting the non-chaotic behavior in the modeling
of the intracellular space, where the value of the LLE is zero.
When a system has a positive LLE, there is an implication that small disturbances

will give rise to exponential divergence. In other words, the LLE determines a notion of
predictability for a dynamical system. In general, the LLE of the SCC-61 was found to
be about 1.5 higher than that of the MEF. Based on the meaning of the LLE, the intra-
cellular space of the SCC-61 is subject to a more spatially changing environment than
that of the MEF. The LLE results of the two cell types also agree with the interpreta-
tion of the degree of the signal predictability or regularity obtained from the SampEn
and RD methods, where the spatial distribution of the intracellular space of the MEF
was found to be about half less complex than the SCC-61 in various spatial orienta-
tions. Beside the spatial dynamics of the intracellular space distribution, the intracellular
complex systems were indirectly characterized in terms of texture complexity inherently
existing in the images, where image edges play an important criterion, because image
texture provides information about the spatial arrangement of color or intensities in an
image or a selected region of an image [47]. Here, the texture information of the SCC-61
images appear to be more complex or richer (indicated by the magnitudes of the
LLE, SampEn and RD) than that of the MEF images. Such an additional characteriza-
tion can be useful for the classification of molecular [48,49] and biological tissue [50]
images.
Regarding the image formation, the scanning process of the FIB-SEM images are differ-

ent from laser scanning confocal microscopes in which, depending on the scanningmode,

Table 3 Regularity dimensions (mean, variance) of the intracellular space of SCC-61
(cancer) andMEF (normal) cells using different orientations, obtained from Eq. (33)

Horizontal Vertical Diagonal

SCC-61

(0.141, 0.00002) (0.135, 0.00001) (0.241,0.00001)

MEF

(0.052, 0.00001) (0.058, 0.00001) (0.126,0.00001)
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Table 4Mean values of LLE, SampEn, and RD of the intracellular space of SCC-61 andMEF
cells using different window sizes and orientations (the values in brackets indicate the
results obtained from the window sizes of 3 × 3, 5 × 5, and 7 × 7, respectively)

SCC-61

Row-wise Column-wise

LLE (long range) (0.5432, 0.5430, 0.5427) (0.5354, 0.5350, 0.5348)

Approximate (short range) (0.0025, 0.0024, 0.0022) (0.0004, 0.0003, 0.0003)

Horizontal Vertical Diagonal

SampEn (0.802, 0.798, 0.785) (0.795, 0.797, 0.788) (0.830, 0.832, 0.827)

RD (0.141, 0.139, 0.138) (0.135, 0.132, 0.132) (0.241, 0.238, 0.235)

MEF

Row-wise Column-wise

LLE (long range) (0.3800, 0.3766, 0.3762) (0.3640, 0.3581, 0.3552)

Approximate (short range) (0, 0, 0) (0, 0, 0)

Horizontal Vertical Diagonal

SampEn (0.368, 0.363, 0.363) (0.350, 0.346, 0.346 ) (0.362, 0.354, 0.350)

RD (0.049, 0.045, 0.043) (0.050, 0.048, 0.045 ) (0.125, 0.121, 0.118)

the pixel acquisition of the next line starts either in a reverse order relative to the preced-
ing line, or in the same order but only after another reversal of the sweep direction [51].
The areas of the cell surfaces studied here were scanned in a raster fashionwhere the beam
sweeps horizontally left-to-right at a steady rate, then blanks and rapidly moves back to
the left, where it turns back on and sweeps out the next line; therefore the separation of
pixels in either rows or columns of the image is consistent in the concatenated time-series.
Regarding the reproducible statistics of the results; the maximum intracellular regions of
all scans of the cells, which exclude the non-organelle background, were selected for the
analysis of the spatial chaos and complexity. Such a selection of the intracellular space of
each image scan of the cells guarantees the negligible variance of the results. By applying
the low-pass filter with the window sizes of 3×3, 5×5 and 7×7 to the intracellular space
images of the cancer and normal cells, the results obtained from the same procedures for
the calculations of the LLE (long range and short range), SampEn and RD (Table 4) were
not significantly different to about two decimal places from those without the averaging
processes.
The potential exhibitions of complexity, short-range and long-range chaotic behaviors

of the cancer intracellular space as suggested in this study can provide some insight into
our modeling and simulation of the single cancer cell spatial parameters [39]. The intra-
cellular organelles such as mitochondria and endoplasmic reticulum can act as obstacles
for the protein diffusion. As an example, if the distribution of mitochondria is regular
in line, their effect as obstacles will be smaller in comparison to the staggered distribu-
tion. Thus, the distribution of mitochondria will change the oscillation pattern of the
protein complex if the number of mitochondria is the same. The chaotic distribution of
intracellular organelles can dramatically alter the oscillation pattern of the protein dif-
fusion. In summary, given that the relations and distributions between cell organelles
(nucleus, ribosome, vesicle, rough endoplasmic reticulum, Golgi apparatus, cytoskele-
ton smooth endoplasmic reticulum, mitochondria, vacuole, cytosol, lysosome, centrioles
within centrosome, cell membrane) can be complex, the simulation can be more accurate
over several local regions rather than the whole intracellular space as the short-range LLE
estimated by the proposed method suggests negligible rate of the loss of predictability.
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The cells used in the current analysis were in the interphase. However, it is known that
cells in the cultivating dish change due to their life cycle, and this change has a substan-
tial effect on their structure that includes their appearance revealed in the image. These
differences are extensive and dependent on the cell type. Therefore, the state of cells at
the time of fixation should be specified and considered in the interpretation of results.
Such a comprehensive study is an important target of our near future research. In order
to define the life cycle, we should fix and immunolabel cells, and measure their fluores-
cence. Alternatively, we can use fluorescence ubiquitination cell cycle indicator [52] that
would allow us to follow cell division within a cell population. In this paper, we intended
to show a possibility to characterize cells using our proposed methods

Conclusion
We have presented the application of the largest Lyapunov exponent to investigate the
possible chaotic behavior of typical cancer and normal intracellular signals obtained from
FIB-SEM imaging system. The positive values of the LLE of the cancer cell, which are
twice larger than those of the normal cell, indicate some degree of chaos exhibiting in the
spatial distribution of the intracellular space of the cancer. The short-range LLE values
of the normal cell are zeros in both x and y directions refers to the non-chaotic distribu-
tion of the organelles in the intracellular space under a specific image structure model.
Appropriate numerical methods for the determination of largest Lyapunov exponents are
important for accurate quantification of the chaotic behavior of the problem under study.
We have further presented the application of nonlinear dynamical methods to investi-
gate the complexity of cancer intracellular signals on FIB-SEM images and can distinguish
the difference in the complexity between cancer-cell and normal-cell models. The rela-
tively high values of the SampEn and RD found in the intracellular space of the cancer cell
suggest the potential complexity of the cancer cellular information.
It should be noted that, due to the limited experimental materials, the results presented

here are of illustrations of the capabilities of the proposed image analysis and not as a
suggestion of the proof on differences between cancer and non-cancer cells. Nevertheless,
the initial findings of this study are promising for providing an insight into a challenging
problem of identification of an underlying mechanism of cancer imaging, which can be
used for constructing appropriate types of modeling, simulation and control of cancer.
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