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1 Introduction

Duality is a leading paradigm of theoretical physics. Electric-magnetic duality is one of

the oldest and most studied examples. Maxwell theory is self-dual, i.e., admits duality

symmetry under rotation of the electric field into the magnetic one. Schrödinger [1] was

the first to show that the nonlinear theory of electromagnetism of Born and Infeld, quite

remarkably has the same U(1) duality symmetry property. The study of electric-magnetic

duality symmetry has found further motivations since its appearance in extended super-

gravity theories [3–6]. In [4] the first example of a noncompact duality rotation group was

considered, it arises in N = 4 supergravity and is due to scalar fields transforming under

duality rotations. These results triggered further investigations in the general structure of

self-dual theories. In particular the symplectic formalism for nonlinear electromagnetism

coupled to scalar and fermion fields was initiated in [7], there the duality groups were shown

to be subgroups of noncompact symplectic groups (the compact case being recovered in the
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absence of scalar fields). A nonlinear example is Born-Infeld electrodynamics coupled to

axion and dilaton fields [8]. Another relevant aspect [11] is that the spontaneous breaking

of N = 2 rigid supersymmetry to N = 1 can lead to a Goldstone vector multiplet whose

action is the supersymmetric and self-dual Born-Infeld action [9, 10]. Higher supersymmet-

ric Born-Infeld type actions are also self-dual and related to spontaneous supersymmetry

breakings in field theory [12–15] and in string theory [17, 16].

Duality symmetry is a powerful tool to investigate the structure of possible countert-

erms in extended supergravity. After the explicit computations that showed the 3-loop UV

finiteness of N = 8 supergravity [18], an explanation based on E7(7) duality symmetry was

provided [19–22]. Furthermore duality symmetry arguments have also been used to suggest

all loop finiteness of N = 8 supergravity [23, 24]. Related to these developments, in [25] a

proposal on how to implement duality rotation invariant counterterms in a corrected action

S[F ] leading to a self-dual theory was put forward under the name of “deformed twisted

self-duality conditions” (see eq. (2.32)). Examples included counterterms dependent on

derivatives of the field strength. The proposal (renamed “nonlinear twisted self-duality

conditions”) was further elaborated in [26] and [27]; see also [28], and [29, 30], for the

supersymmetric extensions and examples. The proposal is equivalent to a formulation of

self-dual theories using auxiliary fields studied in [31] and [32] in case of nonlinear elec-

tromagnetism without higher derivatives of the field strength. This coincidence has been

brought to light in a very recent paper [33].

The supergravity motivated studies have provided new examples of self-dual theories

and have touched upon basic issues like consistency and equivalence of different formula-

tions of self-duality conditions, reconstruction of the action from these conditions and of

duality invariant expressions. This paper is a systematic study of these issues.

A nonlinear and higher derivative electromagnetic theory is determined by defining,

eventually implicitly, the relation between the electric field strength F (given by the electric

field E and the magnetic induction B ) and the magnetic field strength G (given by the

magnetic field H and the electric displacement D). We call constitutive relations the

relations defining G in terms of F or vice versa.

We begin section 2 by proving that (locally) the equations of motions of an arbi-

trary, not necessarily self-dual, nonlinear electromagnetic theory satisfying an integrability

condition can always be obtained from a variational principle via an action S[F ] that is

explicitly computed (reconstructed) from the constitutive relations. This reconstruction

procedure works also for theories with higher derivatives if we further assume that they

can be obtained from an action principle.

We then study the general theory of U(1) duality rotations. Self-duality of the equa-

tions of motion constrains the constitutive relations. The deformed twisted self-duality

conditions are just constitutive relations obtained from a variational procedure. In these

deformed twisted self-duality conditions the dependence of G from F is given implicitly,

but the constraint that leads to self-dual theories is easily implemented. This is due to

the use of the complex and chiral variables T+, T−, T+, T− that are the chiral projec-

tions of the variables T = F − iG and T = F + iG introduced by Schrödinger [1, 34].

The fields T+, T−, T+, T− have definite electric-magnetic duality charge and chirality:

(T+,+1,+1), (T−,+1,−1), (T+,−1,−1), (T−,−1,+1).
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The action S[F ] can always be reconstructed from the action I[T −, T −] that deter-

mines the deformed twisted self-duality conditions, and vice versa. Indeed, as also shown

in [32], the two actions are related by a Legendre transformation. This shows that the de-

formed twisted self-duality conditions are the general framework needed to discuss self-dual

theories obtained from a variational principle.

Section 3 is devoted to a detailed study of the constitutive relations of the kind G∗ µν =

N2 Fµν + N1 F∗ µν where N1 and N2 are real (pseudo)scalar functions of F , G and their

derivatives. These are not the most general constitutive relations because N1 and N2 are

not differential operators and do not act on the µν-indices of Fµν and its Hodge dual F∗ µν .

However they describe a wide class of nonlinear theories. For example theories without

higher derivatives are determined by this kind of relations.1 Equivalent but more duality

symmetric formulations of these constitutive relations are then investigated. In particular

we formulate consistent constitutive relations in terms of the complex variables T = F −iG

and T = F + iG, thus generalizing Schrödinger study of Born-Infeld theory [1, 34].

In section 4 the constitutive relations of section 3 are constrained to define self-dual

theories. These self-dual constitutive relations turn out to be very simple. They are deter-

mined for example by expressing the ratio
TµνT

µν

|Tµν T∗ µν | in terms of T, T and their derivatives.

In particular we see that self-duality constraints the phases of Tµν T∗ µν and TµνT
µν to differ

by a −π/2 angle and the square of their moduli to differ by |TµνT
µν |2.

Section 5 considers self-dual theories that do not involve higher derivatives of the field

strength. In this case the natural independent variable is |TµνT
µν |. We present a closed

form expression of the deformed twisted self-duality conditions that determine Born-Infeld

theory. Comparison of this expression with the one in terms of a hypergeometric function

F previously considered in [26] leads to a hidden quartic equation for F. This quartic

equation is not just a feature of Born-Infeld theory. It also enters the explicit relation we

obtain between deformed twisted self-duality conditions of any nonlinear theory and the

corresponding constitutive relations in the Schrödinger’s variables T ,T .

In the appendices we provide examples of self-dual theories with higher derivatives,

a basic result on the energy momentum tensor of nonlinear theories and details on a

technical calculation.

2 U(1) duality rotations in nonlinear and higher derivatives electromag-

netism

2.1 Action functionals from equations of motion

Nonlinear and higher derivatives electromagnetism is described by the equations of motion

∂µF̃
µν = 0 , (2.1)

∂µG̃
µν = 0 , (2.2)

G̃µν = hµν [F, λ] . (2.3)

1Indeed in this case the elementary antisymmetric 2-tensors in the theory are only Fµν and its Hodge

dual F∗ µν , hence any antisymmetric 2-tensor will be a linear combination (with coefficients dependent on

the field strength) of Fµν and F∗ µν .
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The first two simply state that the 2-forms F and G are closed, dF = dG = 0, indeed

F̃µν ≡ 1
2ε

µνρσFρσ, G̃
µν ≡ 1

2ε
µνρσGρσ (with ε0123 = 1). The last set G̃µν = hµν [F, λ], where

λ is the dimensionful parameter typically present in a nonlinear theory,2 are the constitutive

relations. They specify the dynamics and determine the magnetic field strength G as a

functional in term of the electric field strength F , and, vice versa, determine F in term of

G, indeed F and G should be treated on equal footing in (2.1)–(2.3). The square bracket

notation hµν [F, λ] stems from the possible dependence of hµν from derivatives of F .

Since in general we consider curved background metrics gµν , it is convenient to intro-

duce the ∗-Hodge operator; on an arbitrary antisymmetric tensor Fµν it is defined by

F∗ µν =
1

2
√
g
gµαgνβ ε

αβρσFρσ =
1√
g
F̃µν , (2.4)

where g = − det(gµν), and it squares to minus the identity. The constitutive relations (2.3)

implicitly include also a dependence on the background metric gµν and for example in case

of usual electromagnetism they read Gµν = F∗ µν = 1√
g F̃µν , while for Born-Infeld theory,

SBI =
1

λ

∫
d4x

√
g

(
1−

√
1 +

1

2
λF 2 − 1

16
λ2(F F∗ )2

)
, (2.5)

where F 2 = FF = FµνF
µν and F F∗ = Fµν F∗ µν , they read

Gµν =
F∗ µν +

1
4λ(F F∗ )Fµν√

1 + 1
2λF

2 − 1
16λ

2(F F∗ )2
. (2.6)

The constitutive relations (2.3) define a nonlinear and higher derivative extension of elec-

tromagnetism because we require that setting λ = 0 in (2.3) we recover usual electromag-

netism: Gµν = F∗ µν .

We now show that in the general nonlinear case (where the constitutive relations do

not involve derivatives of F ) the equations of motion (2.1)–(2.3) can always be obtained

from a variational principle provided they satisfy the integrability conditions

∂hµν

∂Fρσ
=

∂hρσ

∂Fµν
. (2.7)

These conditions are necessary in order to obtain (2.3) from an action S[F ] =
∫
d4xL(F ).

Indeed if3 hµν = 2 ∂L
∂Fµν

then (2.7) trivially holds.

In order to show that (2.7) is also sufficient we recall that the field strength Fµν(x)

locally is a map from spacetime to R6 (with coordinates Fµν , µ < ν). We assume hµν(F, λ)

to be well defined functions on R6 or more in general on an open submanifold M ⊂ R6

2Nonlinear and higher derivatives theories of electromagnetism admit one (or more) dimensionful cou-

pling constant(s) λ. Since the expansions for weak and slowly varying fields are expansions in adimensional

variables (like for example λFF and λF F∗ , or, schematically and using a different coupling constant,

λ∂F∂F ) we will equivalently say that these expansions are in power series of the coupling constant(s) λ.
3The factor 2 is due to the convention

∂Fρσ

∂Fµν
= δµρ δ

ν
σ adopted in [7] and in the review [35]. It will be

used throughout the paper.
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that includes the origin (Fµν = 0) and that is a star shaped region w.r.t. the origin (e.g. a

6-dimensional ball or cube centered in the origin).

Then condition (2.7) states that the 1-form h = hµνdFµν is closed, and hence, by

Poincaré lemma, exact on M ; we write h = dL. We have L(F ) − L(0) =
∫
γ h for any

curve γ(c) of coordinates γµν(c) such that γµν(0) = 0 and γµν(1) = Fµν . In particular,

choosing the straight line from the origin to the point of coordinates Fµν , and setting

S =
∫
d4xL(F ), we immediately obtain

Theorem 1. If the constitutive relations (2.3) do not depend on derivatives of F (i.e. if

hµν [F, λ] = hµν(F, λ) ) and the functions hµν(F, λ) are defined in a star shaped region M

(of coordinates Fµν) and satisfy the integrability conditions (2.7), then the constitutive

relations (2.3) are equivalent to the equations3

G̃ µν = 2
δS[F ]

δFµν
(2.8)

where the action functional S[F ] is given by

S[F ] =
1

2

∫
d4xFµν

∫ 1

0
dc hµν(cF, λ) . (2.9)

Corollary 2. On spacetimes where closed two forms are exact (dF = 0 ⇒ F = dA), the

equations of motion (2.1)–(2.3) of nonlinear electromagnetism satisfying the conditions of

Theorem 1 are equivalent to the equations of motion

δS

δAµ
= 0 (2.10)

where S = 1
2

∫
d4x

∫ 1
0 dcF h(cF, λ).

Proof. Equation (2.1) is the Bianchi identity for F = dA, (2.3) holds because of Theorem 1,

and (2.2) is equivalent to the equations of motion (2.10).

We have seen that under the integrability conditions (2.7) locally the equations of

motion of nonlinear electromagnetism (2.1)–(2.3) can be obtained from the action

S =
1

2

∫
d4x

∫ 1

0
dc cF G̃c , (2.11)

where G̃c =
1
ch(cF, λ).

It is interesting to generalize these results to the case of nonlinear and higher derivatives

electromagnetism. We here present a first step in this direction

Proposition 3. If the equations of motion (2.1)–(2.3) of a nonlinear and higher derivatives

electromagnetic theory are obtained from an action functional S[F ] then we have

S[F ] =
1

2

∫
d4x

∫ 1

0
dcF h[cF, λ] , (2.12)

that we simply rewrite S = 1
2

∫
d4x

∫ 1
0 dc cF G̃c.
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Proof. Consider the one parameter family of actions Sc[F ] = 1
c2
S[cF ]. Deriving with

respect to c we obtain

− c
∂Sc

∂c
= 2Sc −

∫
d4x F

δSc[F ]

δF
, (2.13)

i.e. −c∂Sc

∂c = 2Sc − 1
2

∫
d4x FG̃c. It is easy to see that Sc = 1

2c2

∫
d4x

∫ c
0 dc

′ c′F G̃c′ is

the primitive with the correct behaviour under rescaling of c and F . We conclude that
1
c2
S[cF ] = 1

2c2

∫
d4x

∫ c
0 dc

′ c′F G̃c′ , and setting c = 1 we obtain the thesis.

We now consider the following expansion of an action S[F ] even under F → −F ,

S[F ] = S{0}[F ] + S{2}[F ] + S{4}[F ] + . . . (2.14)

where S{2n} is the term homogeneous in 2n field strengths or their derivatives. Similarly

we consider Sc[F ] = 1
c2
S[cF ] and expand G̃c = 2 δSc

δF as

G̃c = G̃{1}
c + G̃{3}

c + G̃{5}
c + . . .

= G̃{1} + c2G̃{3} + c4G̃{5} + . . . (2.15)

where G
{2n−1}
c is the term homogeneous in 2n− 1 field strengths or their derivatives, and

in the second equality we observed that it is also the term proportional to c2n−2 so that

G
{2n−1}
c = c2n−2G

{2n−1}
c=1 = c2n−2G{2n−1}. Proposition 3 then implies

S{2n} =
1

4n

∫
d4xFG̃{2n−1} . (2.16)

This expression relates the term in the action proportional to the 2nth power of F or its

derivatives, to the term in G̃ proportional to the (2n− 1)th power of F or its derivatives.

Note 4. Expression S = 1
2

∫
d4x

∫ 1
0 dc cF G̃c, in the equivalent form

S =
1

4

∫
d4x

∫ 1

0
dκFG̃κ (2.17)

(where κ = c2) has been considered for self-dual theories in [27] and called reconstruction

identity. It has been used, together with an expression equivalent to (2.16), to reconstruct

the action S from equations of motion with duality rotation symmetry in examples with

higher derivatives of F .

Note 5. In appendix C we show that for nonlinear theories without higher derivatives,

the l.h.s. and r.h.s. of (2.13) are half the spacetime integral of the trace of the energy

momentum tensor.

2.2 U(1) duality rotations

Nonlinear and higher derivatives electromagnetism admits U(1) duality rotation symmetry

if given a field configuration F,G that satisfies (2.1)–(2.3) then the rotated configuration
(
F ′

G′

)
=

(
cosα − sinα

sinα cosα

)(
F

G

)
, (2.18)

– 6 –
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that is trivially a solution of ∂µF̃
µν = 0 , ∂µG̃

µν = 0 , satisfies also G̃′
µν = hµν [F

′, λ], so
that F ′, G′ is again a solution of the equations of motion. If we consider an infinitesimal

duality rotation, F → F + ∆F , G → G + ∆G then condition G̃′
µν = hµν [F

′, λ] reads

∆G̃µν =
∫
d4x

δhµν

δFρσ
∆F ρσ, i.e., F̃µν = −

∫
d4x

δhµν

δFρσ
Gρσ, that we simply rewrite

F̃µν = −
∫

d4x
δG̃µν

δFρσ
Gρσ . (2.19)

It is straightforward to check that electromagnetism and Born-Infeld theory satisfy (2.19).

If the theory is obtained from an action functional S[F ] (in the field strength F and

its derivatives) then (2.3) is given by

G̃µν = 2
δS[F ]

δFµν
. (2.20)

In particular it follows that

δG̃µν

δFρσ
=

δG̃ρσ

δFµν
, (2.21)

hence the duality symmetry condition (or self-duality condition) (2.19) equivalently reads

F̃µν = −
∫
d4x

δG̃ρσ

δFµν
Gρσ. Now writing F̃µν = δ

δFµν

1
2

∫
d4x FρσF̃

ρσ we equivalently have

δ

δFµν

∫
d4x FF̃ +GG̃ = 0 , (2.22)

where FF̃ = FρσF̃
ρσ and similarly for GG̃. We require this condition to hold for any field

configuration F (i.e. off shell of (2.1), (2.2)) and hence we obtain the Noether-Gaillard-

Zumino (NGZ) self-duality condition4

∫
d4x FF̃ +GG̃ = 0 . (2.23)

The vanishing of the integration constant is determined for example by the condition

G = F∗ for weak and slowly varying fields, i.e. by the condition that in this regime the

theory is approximated by usual electromagnetism.

We also observe that the NGZ self-duality condition (2.23) is equivalent to the invari-

ance of Sinv = S− 1
4

∫
d4xFG̃, indeed under a rotation (2.18) with infinitesimal parameter

α we have Sinv[F ′]− Sinv[F ] = −α
4

∫
d4x FF̃ +GG̃ = 0.

Note 6. If the Lagrangian L(F ) of the action functional S[F ] does not depend on the

derivatives of F , then we cannot integrate by parts and condition (2.23) is equivalent to

FF̃ +GG̃ = 0 (2.24)

4Note that (2.23) (the integrated form of (2.24)) also follows in a straightforward manner by repeating

the passages in [7] but with G the functional derivative of the action rather than the partial derivative of the

lagrangian [13, 35]. This makes a difference for nonlinear theories which also contain terms in derivatives

of F .
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since the field configuration F is arbitrary (and therefore with arbitrary support in space-

time). On shell of (2.1), (2.2) we can introduce the electric potential Aµ and the magnetic

one Bµ so that Fµν = ∂µAν −∂νAµ, Gµν = ∂µBν −∂νBµ and (2.24) becomes the (Noether-

Gaillard-Zumino) current conservation condition ∂µJ
µ = ∂µ(AνF̃

µν +BνG̃
µν) = 0.

Examples of theories satisfying (2.23) and not (2.24) are obtained in appendix A, where

we generalize the example presented in [25].

Note 7. If the Lagrangian L(F ) is in Minkowski spacetime and if it depends only on F

and not on its derivatives, then Lorentz invariance implies that it depends on the scalars

FF and (FF̃ )2, where the square in (FF̃ )2 is needed for parity symmetry (space inver-

sion invariance). More in general we can consider a Lagrangian in curved spacetime that

depends only on the (pseudo)scalars FF and F F∗ . It is then possible to integrate the

differential equation (2.24): Fµν F∗ µν − 4
(∗ ∂L
∂Fµν

)
∂L

∂Fµν
= 0. The solution is presented in [34]

(and an alternative form is presented in [36], see also [32]), it depends on an arbitrary real

valued function v(s) of a real variable s, with the initial condition that in the limit s → 0

then v(s) → −s. However L(F ) is explicitly determined only after inverting a function

related to v(s). Hence explicit solutions L(F ) in terms of simple functions are very difficult

to be found.

This suggests to look for solutions L(F ), and more in general actions S[F ], that are

power series in the coupling constant λ.

Note 8. Given an action S[F ] with self-dual equations of motion the one parameter family

of theories defined by Sc[F ] = 1
c2
S[cF ] (with c ≥ 0, cf. end of section 2.1) are also self-dual.

This is so because for any given value of c the action Sc[F ] satisfies the corresponding NGZ

self-duality conditions (2.23):

∫
d4x FF̃ − 2

δSc[F ]

δF
2
δ̃Sc[F ]

δF
= 0 . (2.25)

Indeed δSc[F ]
δF

δ̃Sc[F ]
δF = 1

c4
δS[cF ]
δF

δ̃S[cF ]
δF = 1

c2
δS[cF ]
δcF

δ̃S[cF ]
δcF . Therefore condition (2.25) is equiva-

lent to
∫
d4x cFcF̃ −2 δS[cF ]

δcF 2 δ̃S[cF ]
δcF = 0. These are the self-duality conditions for the action

S[F̂ ] with F̂ = cF . Hence these conditions hold because the self-duality conditions for the

initial action S hold for any field configuration.

This result allows to provide jet another derivation of the invariance under duality

rotation of expression (2.13) for self-dual actions: One has just to recall that the variation

of the action with respect to a duality invariant parameter is duality invariant [7].

2.3 Complex and chiral variables

Following Schrödinger [1, 34] it is convenient to consider the complex variables

T = F − iG , T = F + iG , (2.26)

that under duality transform with a phase: T → e−iαT , T → eiαT , and that treat on an

equal footing the electric and magnetic field strengths F and G. In the new variables the

– 8 –
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NGZ self-duality condition (2.23) reads
∫
d4x T T̃ = 0, or equivalently

∫
d4x

√
g T T∗ = 0 . (2.27)

Following [25] we further consider the complex (anti)selfdual combinations F± = 1
2(F ±

i F∗ ), G± = 1
2(G± i G∗ ) and

T+ =
1

2
(T + i T∗ ) = F+ − iG+ , T− =

1

2
(T − i T∗ ) = F− − iG− , (2.28)

T+ =
1

2
(T − i T

∗
) = F− + iG− = T

−
, T− =

1

2
(T + i T

∗
) = F+ + iG+ = T

+
. (2.29)

The fields in the first row have duality charge +1 because transform with e−iα under the

duality rotation (2.18), while their complex conjugates in the second row have duality

charge −1. Complex conjugation inverts chirality hence T+ and T− = T
+
have chirality

+1 while T− and T+ = T
−
have chirality −1.

The (anti)selfdual combinations have definite behaviour in the coupling constant λ → 0

limit. Since in this limit we recover usual electromagnetism we have G → F∗ and G± →
∓iF±, and hence

T+ → 0 , T− → 2F− . (2.30)

The NGZ self-duality condition (2.23) in these variables reads (use ( T∗ )± = (T±)∗
= ∓iT± )

∫
d4x

√
g T+ T− − T+ T− = 0 . (2.31)

2.4 The action functional I[T−, T−]

As noticed in [26], the Bossard and Nicolai proposal [25] for constructing self-dual equa-

tions of motions is easily expressed in terms of chiral variables: We consider a real valued

functional I[T−, T−] in the chiral variables5 T−, T− and define the constitutive relations

(called deformed twisted self duality conditions in [25], and nonlinear twisted self-duality

conditions in [26])

T+µν
=

1√
g

δI[T−, T−]

δT−
µν

, T+µν =
1√
g

δI[T−, T−]

δT−
µν

. (2.32)

Reality6 of I implies that the second equation is just the complex conjugate of the first

one, hence the constitutive relations are 6 real equations as in (2.3) and in (2.20). If

moreover I is duality invariant under T− → e−iαT−, T− → eiαT− then relations (2.32)

5We stress that the independent variables in I are T− and its complex conjugate T−, just like in S[F ]

or S[F−, F+] the independent variables are F− and its complex conjugate F+. The variables T+, T+ (and

hence T, T ) are then defined in terms of the T−, T− ones.
6The reality condition is I[T−, T−] = I[T−, T−]. Then we extend I[T−, T−] to Î[T−, U−] ≡

1
2

(
I[T−, U−] + I[U−, T−]

)
that by construction satisfies Î

[
T−, U−

]
= Î

[
U− , T−

]
for arbitrary com-

plex and independent fields T− and U−. The functional variation in (2.32), where T− is kept independent

from T−, then explicitly reads T+ = 1√
g

δÎ[T−,U−]

δU−

∣∣∣
U−=T−

, T+ = 1√
g

δÎ[T−,U−]

δT−

∣∣∣
U−=T−

.
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imply the NGZ self-duality condition (2.23); indeed under an infinitesimal duality rotation

T− → T− +∆T−, ∆T− = −iαT− we have:

0 = ∆I =

∫
d4x

δI
δT−∆T− +

δI
δT−∆T− = iα

∫
d4x

√
g T+ T− − T+ T− . (2.33)

This is a powerful approach because the constitutive relations are easily given (though the

dependence G̃µν = hµν [F, λ] is determined implicitly), and the self-duality condition is also

easily implemented: just consider duality invariant functionals I. Furthermore, Lorentz

(or, in curved spacetime, diffeomorphisms) invariance of the functional I implies Lorentz

(diffeomorphisms) covariance of the nonlinear and higher derivatives equations of motion.

The problem with this approach is that of finding an action functional S[F ] such

that the constitutive relations (2.20) : G∗ µν = 2√
g
δS[F ]
δFµν

, are equivalent to the constitutive

relations (2.32).

We first approach this problem perturbatively, and give explicit expressions for the

lowest order perturbations; in the next section we solve the problem (albeit implicitly) by

using a Legendre transform between S and I.
In the perturbative approach we assume that I = I[T−, T−] is a power series in the

coupling constant λ,

I[T−, T−] = I [0][T−, T−] + I [1][T−, T−] + I [2][T−, T−] + . . . (2.34)

where I [n] denotes the term proportional to λn, and in this expansion T−, T− are considered

the elementary independent fields (and hence λ independent).

Then S[F ] = S[F−, F+] is found as a power series

S[F−, F+] = S(0)[F−, F+] + S(1)[F−, F+] + S(2)[F−, F+] + . . . (2.35)

where S(n) denotes the term proportional to λn, and in this expansion F−, F+ are the

elementary independent fields (and hence λ independent). The initial condition is I [0] = 0,

that corresponds to linear electromagnetism, S(0) = −1
4

∫
d4x

√
g F 2.

Since T+ = F−+ iG− implies T+(n)
= iG−(n)

for n ≥ 1, we see that equivalence of the

constitutive relations (2.32) and (2.20), that we rewrite as G±µν = ±2i√
g

δS
δF±

µν
, is obtained

by requiring order by order in n that the term S(n) satisfies the condition

2
δS(n)

δF−
µν

=

(
δI

δT−
µν

∣∣∣
T−[F−,F+]

T−[F−,F+]

)(n)

(2.36)

where on the right hand side we consider δI
δT− as a functional of F− and F+ because

T− = T−[F−, F+]; the dependence T− = T−[F−, F+] being implicitly determined by the

chiral variables constitutive relations (2.32) and the relations T± = F± − iG±, that, in
order to stress that the independent variables are T− and T−, we rewrite as

2F− = T− +
1√
g

δI[T−, T−]

δT−
µν

, 2F+ =
1√
g

δI[T−, T−]

δT−
µν

+ T− , (2.37)

− 2iG− = T− − 1√
g

δI[T−, T−]

δT−
µν

, −2iG+ =
1√
g

δI[T−, T−]

δT−
µν

− T− . (2.38)
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In appendix B we determine the first two nontrivial terms of the nonlinear and higher

derivatives electromagnetic action associated with an arbitrary functional I = I [0]+ I [1]+

I [2] + . . ., with I [0] = 0. They read

S(1)[F−, F+] =
1

4
I [1][2F−, 2F+] ,

S(2)[F−, F+] =
1

4
I [2][2F−, 2F+]− 1

2

∫
d4x

1√
g

δS(1)

δF−
δS(1)

δF− +
δS(1)

δF+

δS(1)

δF+
. (2.39)

We recall that at zeroth order S(0)[F−, F+] = −1
4

∫
d4x

√
g F−2

+ F+2
= −1

4

∫
d4x

√
g F 2.

2.5 From S[F ] to I[T−, T−] via Legendre transform

We now show, as in [32], that I[T−, T−] and S[F ] are related by

1

4
I[T−, T−] = S[F ]+

∫
d4x

√
g

1

2
T−F−− 1

8
T−2− 1

4
F−2

+
1

2
T−F+− 1

8
T−2− 1

4
F+2

. (2.40)

This is actually a Legendre transform, and it implies that the constitutive relations (2.32)

are equivalent to the constitutive relations (2.20), i.e., G±µν = ±2i√
g
δS[F−,F+]

δF±
µν

.

In order to recognize (2.40) as a Legendre transform we define the functional

U [F−, F+] = −2S[F−, F+] +
1

2

∫
d4x

√
g F−2

+ F+2
. (2.41)

Recalling that iG− = F−−T− (see (2.28)) the constitutive relations G±µν = ±2i√
g
δS[F−,F+]

δF±
µν

now read

T− =
1√
g

δU

δF− , T− =
1√
g

δU

δF+
. (2.42)

These relations (at least for weak and slowly varying fields) implicitly determine F± =

F±[T−, T−]. We then consider the Legendre transform

V [T−, T−] = −U [F−, F+] +

∫
d4x

√
g T−F− + T−F+ . (2.43)

Varying w.r.t. T− and T− we obtain that the dependence F± = F±[T−, T−] is given by

F− =
1√
g

δV

δT− , F+ =
1√
g

δV

δT− . (2.44)

Therefore (2.44) are the inverse relations of (2.42), in particular they are equivalent to

G±µν = ±2i√
g
δS[F−,F+]

δF±
µν

. We now define the functional I[T−, T−] via

V [T−, T−] =
1

2
I[T−, T−] +

1

4

∫
d4x

√
g T−2

+ T−2
. (2.45)

Relation (2.40) is trivially equivalent to (2.43). Furthermore the constitutive relations

G±µν = ±2i√
g
δS[F−,F+]

δF±
µν

and (2.32) are equivalent because (2.44) is easily seen to be equivalent

to (2.37), i.e., to (2.32).
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Let’s now study duality rotations. We consider F to be the elementary fields and

let S[F ] give self-dual constitutive relations. Under infinitesimal duality rotations (2.18),

F → F + ∆F = F − αG, G → G + ∆G = G + αF we have (since T− = F− − 2√
g

δS
δF− )

that T− → T− + ∆T− = T− − iαT−. We calculate the variation of (2.40) under duality

rotations. After a little algebra we see that

∆I = I[T− +∆T−, T− +∆T−]− I[T−, T−] (2.46)

= S[F +∆F ]− S[F ] +
α

4

∫
d4x

√
g GG̃− FF̃ = −α

4

∫
d4x

√
g GG̃+ FF̃ = 0

where we used that S[F +∆F ]−S[F ] =
∫
d4x δS

δF ∆F = −α
2

∫
d4x G̃G, and the self-duality

conditions (2.23). Hence I is invariant under duality rotations.

Vice versa, we can consider T−, T− to be the elementary fields and assume I[T−, T−]
to be duality invariant. Then from (2.37) and iG− = F−−T−, i.e., form (2.37) and (2.38),

it follows that under the infinitesimal rotation T− → T− + ∆T− = T− − iαT− we have

F → F + ∆F = F − αG, G → G + ∆G = G + αF , and from (2.46) we recover the

self-duality conditions (2.23) for the action S[F ].

This shows the equivalence betweeen the S[F ] and the I[T−, T−] formulations of self-

dual constitutive relations. Hence the deformed twisted self-duality condition proposal

originated in the context of supergravity counterterms is actually the general framework

needed to discuss self-dual theories starting from a variational principle.

3 Constitutive relations without self-duality

The constitutive relations (2.3) or (2.20) express G as a function of F and its derivatives.

They do not treat on equal footing F and G and therefore their eventual compatibility with

duality symmetry is hidden. On the other hand the independent chiral variables T−, T−

of the constitutive relations (2.32) (the deformed twisted self duality conditions) treat by

construction F and G on equal footing, and duality rotations are simply implemented via

multiplication by a phase. There however the relation betweeen G and F is implicitly given.

Moreover, already the description of Born-Infeld theory is quite nontrivial in these chiral

variables. We here further study the nonlinear relations between these two formulations

and related ones. This study sheds light on the structure of self-dual theories, in particular

it will lead to a closed form expression of the constitutive relations (2.32) for the Born-

Infeld theory.

We proceed with a manifestly duality symmetric reformulation of the constitutive re-

lations (2.3) (and more precisely of the relations (3.1) below). This is achieved doubling

them (to G∗ = h[F, λ] and F∗ = k[G, λ]) and then constraining them via a symplectic

matrix M. This matrix is well known in the study of duality rotations in linear electro-

magnetism coupled to scalar fields (see e.g. [35]). Here M will be in general dependent on

the field strengths F,G and their derivatives, leading to nonlinear and higher derivatives

electromagnetism. Its structure will be fully determined only by requiring that the doubled

constitutive relations consistently give just 6 independent equations that determine G in
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terms of F and vice versa. Notice that even thought our aim is the study of self-dual

theories, in this section we do not assume that the constitutive relations are compatible

with duality symmetry.

The constraints on the M matrix are then analized in terms of the Schrödinger’s

variables T , T . It is in these variables that Born-Infeld theory has an extemely simple

description [1, 34].

3.1 The N and M matrices

More insights in the constitutive relations (2.3) can be obtained if we restrict our study to

the wide subclass that can be written as

G∗ µν = N2 Fµν +N1 F∗ µν , (3.1)

where N2 is a real scalar field, while N1 is a real pseudo-scalar field (i.e., it is not invariant

under parity, or, if we are in curved spacetime, it is not invariant under an orientation

reversing coordinate transformation). Explicit examples of more general constitutive rela-

tions are in appendix A. As usual in the literature we set

N = N1 + iN2 , (3.2)

then, relations (3.1) are equivalent to G+ = NF+. In nonlinear theories N depends on

the field strength F , and in higher derivative theories also on derivatives of F , we have

therefore in general a functional dependence N = N [F, λ]. Furthermore N is required to

satisfy N → −i in the limit λ → 0 so that we recover classical electromagnetism when the

coupling constant λ → 0, or otherwise stated, in the weak and slowly varying field limit,

i.e., when we discard higher powers of F and derivatives of F . We also assume that N can

be expanded in power series of the coupling constant7 λ (we will relax this assumption in

Note 11). Then, since N2 = −1+O(λ), N2 is invertible, and from relation (3.1) we obtain

F̃ = N−1
2 N1F −N−1

2 G and G̃ = N2F +N1N−1
2 N1F −N1N−1

2 G so that the constitutive

relation (3.1) is equivalent to the more duality symmetric one

(
F∗

G∗

)
=

(
0 −1

1 0

)
M
(
F

G

)
(3.3)

where the matrix M is given by

M(N ) =

(
1 −N1

0 1

)(
N2 0

0 N−1
2

)(
1 0

−N1 1

)
=

(
N2 +N1N−1

2 N1 −N1N−1
2

−N−1
2 N1 N−1

2

)
.

(3.4)

Finally, in order to really treat on equal footing the electric and magnetic field strengths F

and G, we should consider functionals N1[F,G, λ] and N2[F,G, λ] such that the constitutive

7By λ we can denote also more than one coupling constant. For example when a nonlinear theory in

flat space is generalized to a curved background there naturally appears a new coupling related to the

background curvature. Similarly, as already said, if the theory has higher derivatives so that it can be

expanded in appropriate powers of derivatives of F .
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relations G∗ = N2[F,G, λ]F +N1[F,G, λ] F∗ are equivalent to (3.1), i.e., such that on shell

of these relations, N1[F,G, λ] = N1[F, λ] and N2[F,G, λ] = N2[F, λ].

Since we assumeN1[F,G, λ] andN2[F,G, λ] to be power series in λ withN1 = O(λ) and

N2 = −1+O(λ) the constitutive relations G∗ = N2[F,G, λ]F+N1[F,G, λ] F∗ are well given

in the sense that they are always equivalent to the G∗ = N2[F, λ]F +N1[F, λ] F
∗ ones (just

expand in power series of λ and iteratively substitute G in N1[F,G, λ] and N2[F,G, λ]).

Henceforth, with slight abuse of notation, from now on the N , N1, N2 fields in (3.1)–

(3.4) will in general be functionals of both F and G.

The matrix M(N ) in (3.4) is symmetric and symplectic (it has indeed determinant

equal to 1). The space of symmetric and symplectic matrices has two disconnected compo-

nents, that of positive definite and of negative definite matrices. M(N ) is negative definite

because N−1
2 → −1+O(λ). Recalling that any symmetric, symplectic and negative definite

2× 2 matrix is of the kind (3.4) with N1 real and N2 real and negative (for a proof see for

example the review [35], appendix A, where it is also shown that M and N = N1 + iN2

parametrize the coset space Sp(2,R)/U(1)), we have that

Proposition 9. Any symmetric and symplectic 2 × 2 matrix M that has a power series

expansion in λ with M = −1 + O(λ) is of the kind (3.4) with N1 = O(λ) real and

N2 = −1 +O(λ) real.

We now reverse the argument that led from (3.1) to (3.3). We consider constitutive

relations of the form (
F∗

G∗

)
=

(
0 −1

1 0

)
M[F,G, λ]

(
F

G

)
(3.5)

that treat on equal footing F and G, and where M = M[F,G, λ] is now an arbitrary real

2 × 2 matrix (with scalar entries Mij). We require M = −1 + O(λ) so that we recover

classical electromagnetism when the coupling constant λ → 0. A priory (3.5) is a set of

12 real equations, twice as much as those present in the constitutive relations (3.1). We

want only 6 of these 12 relations to be independent so to be able to determine G in terms

of independent fields F (or equivalently F in terms of independent fields G). Only in this

case the constitutive relations are well given.

Proposition 10. The constitutive relations (3.5) with M[F,G, λ] = −1 + O(λ) are well

given if and only if on shell of (3.5) the matrix M[F,G, λ] is symmetric and symplectic.

Proof. i) Let M[F,G, λ] = −1 + O(λ) be symmetric and symplectic on shell of (3.5).

Then, because of Proposition 9, there exists a unique N [F,G, λ] = −i + O(λ) such

that M[F,G, λ] = M(N ) on shell of (3.5). Hence (3.5) is equivalent to (3.1) and

therefore gives well defined constitutive relations.

ii) If the constitutive relations (3.5) are a set of 6 independent relations that determine G

in terms of F then the matrix entry M22 6= 0 (because otherwise from (3.5), we would

have F∗ = −M21F that constraints the independent fields F ). It follows that (3.5)

is equivalent to G = −M−1
22 M21F −M−1

22 F∗ , i.e. to G∗ = M−1
22 F −M−1

22 M21 F∗ . Re-

peating the argument that lead from (3.1) to (3.3) we conclude that (3.5) is equivalent
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to the equations
(

F∗

G∗

)
=

(
0 −1

1 0

)(
M−1

22 +M−1
22 M2

21 M21

M21 M22

)(
F

G

)
. (3.6)

We show that on shell of the relations (3.5) the matrix M[F,G, λ] is symmetric and

symplectic because

M[F,G, λ] =

(
M−1

22 +M−1
22 M2

21 M21

M21 M22

)
(on shell). (3.7)

Since by hypothesis the relations (3.5) determineG in terms of F and G∗ = −F+O(λ),

we can also determine F in terms of G as a power series in λ. Then (3.5) is also

equivalent to G∗ = M11F +M12G and, observing that independence of the G fields

implies that the matrix entry M11 6= 0, we conclude that (3.5) is as well equivalent

to F = M−1
11 G∗ −M−1

11 M12G, that we rewrite as

F+ = P G+ , P ≡ (−M−1
11 − iM−1

11 M12) . (3.8)

Similarly (3.6) is also equivalent to its second row, G∗ = (M−1
22 +M−1

22 M2
21)F+M21G

that we rewrite as

F+ = QG+ , Q ≡
(
− (M−1

22 +M−1
22 M2

21)
−1 − i(M−1

22 +M−1
22 M2

21)
−1M21

)
. (3.9)

Independence of the fields G+ implies that subtracting (3.9) to (3.8) we obtain that

P −Q = 0 in each region of spacetime where G+ 6= 0. Moreover P −Q = 0 in each

region of spacetime where G+ = 0 because G+ = 0 in that region implies P = 1 and

Q = 1 in that same region (we consider M[F,G, λ] to be a local functional of F and

G). This shows the on shell equality P = Q. Then equality (3.7) immediately follows.

Note 11. We have assumed that the constitutive relations can be written as power series

expansions in λ. We here relax this assumption and consider constitutive relations (3.1)

such that N [F,G, λ] = −i (or M[F,G, λ] = −1) for the field configuration F = G = 0;

this is equivalent to state that for weak and slowly varying fields G∗ ≈ −F (i.e., that in

this regime the constitutive relations are those of usual electromagnetism). Then applying

the implicit function theorem to the constitutive relations (3.1) we know that there exists

neighbourhoods of the field configurations F = 0, G = 0 such that (3.1) are equivalent

to the explicit expressions G = G[F, λ] and F = F [G, λ]. The result of this section

therefore holds also without the power series expansion in λ assumption: just consider

fields sufficiently weak and slowly varying.

3.2 Complex variables

As in section 2.3 it is fruitful to consider the complex variables T = F − iG, T = F + iG.

The transition from the real to the complex variables is given by the symplectic and unitary

matrix At where

A =
1√
2

(
1 1

−i i

)
, A−1 = A† . (3.10)
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The equation of motions in these variables read dT = 0, with constitutive relations obtained

applying the matrix At to (3.5):

(
T∗

T
∗

)
= −i

(
1 0

0 −1

)
AtMA

(
T

T

)
, (3.11)

where AtMA, on shell of (3.11), is complex symplectic and pseudounitary w.r.t. the metric(
1
0

0
−1

)
, i.e. it belongs to Sp(2,C) ∩ U(1, 1) = SU(1, 1). It is also Hermitian and negative

definite. These properties uniquely characterize the matrices AtMA as the matrices

(
−
√
1 + ττ −iτ

iτ −
√
1 + ττ

)
(3.12)

where τ = τ [T, T ] is a complex field that depends on T , T and possibly also their derivatives.

We then see that the constitutive relations (3.11) are equivalent to the equations

T∗ µν = i
√
1 + ττ Tµν − τ Tµν (3.13)

Notice that if M = −1 + O(λ) (or equivalently N = −i + O(λ)), then τ = O(λ). In

particular electromagnetism is obtained setting τ = 0.

In conclusion equations (3.13) are the most general way of writing six independent

real equations that allow to express G = i
2(T + T ) in terms of F = 1

2(T + T ) as in (3.1)

(equivalently F in terms of G). These constitutive relations are determined by a complex

function N (depending on F,G and their derivatives N = N [F,G]) or equivalently τ

(depending on T, T and their derivatives τ = τ [T, T ]).

4 Schrödinger approach to self-duality conditions

In the previous section we have clarified the structure of the constitutive relations for

an arbitrary nonlinear theory of electromagnetism. The theory can also be with higher

derivatives of the field strength because the complex field N , or equivalently the matrix

M in (3.5) of (pseudo)scalar entries, can depend also on derivatives of the electric and

magnetic field strengths F and G.

We now further examine the constitutive relations for theories that satisfy the NGZ

self-duality condition (2.24), i.e., T T̃ = 0, or equivalently,

T T∗ = 0 . (4.1)

The constitutive relations (3.13) determine the dependence of the magnetic field strength

G form the electric one F or vice versa. We notice that this dependence is determined also

if we constrain the fields in (3.13) to satisfy the condition T T∗ 6= 0. This is so because

the set of field configurations satisfying T T̃ 6= 0 is dense in the set of unconstrained field

configurations. Hence if we multiply or divide the constitutive relations (3.13) by T T̃ we

obtain a set of equivalent constitutive relations. Having explained why we can freely divide

by T T̃ we can state the following
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Proposition 12. The constitutive relations (3.13) and the self-duality conditions (4.1)

are equivalent to defining a nonlinear and higher derivatives extension of usual electromag-

netism by the relations

T∗ µν = − T 2

T T∗
Tµν − τTµν , (4.2)

that henceforth we call self-dual constitutive relations in Schrödinger variables.

Equivalently we have the self-dual constitutive relations

T∗ µν = − T 2

T T∗
Tµν −

TT

T T∗
Tµν , (4.3)

TT = r |T T∗ | (4.4)

where the second equation is a scalar equation where |T T∗ | is the modulus of T T∗ and r

is a dimensionless scalar field that depends on T, T and their derivatives, that takes values

in the non-negative real number and that is duality invariant.

Proof. Contracting the indices of (3.13) with T∗ µν we obtain

− T 2 = i
√
1 + ττ T T∗ . (4.5)

Hence the self-duality condition (4.1) (i.e. (2.24)), and the constitutive relations (3.13)

imply (4.2).

Vice versa (4.2) implies (4.1) and (3.13). Indeed, contracting (4.2) with T∗ µν we obtain

T T∗ = 0. This is trivially the case if τ 6= 0. It holds also if τ = 0 because then (4.2) reads

T∗ = − T 2

T T
∗ T , i.e., (T T∗ )2 = −T 2T 2 that implies T = ±i T∗ , i.e., F = ± G∗ . This last

relation implies the self-duality condition (4.1).

In order to show that (4.2) implies (3.13) first we contract (4.2) with T
∗

µν , and obtain

TT = τ T T∗ . (4.6)

Then we contract (4.2) with Tµν , and obtain

T T∗ = − T 2

T T∗
T 2 − τTT . (4.7)

This expression and the complex conjugate of (4.6) imply 1 + ττ = − T 2T 2

(T T
∗

)
2 , and hence

− T 2

T T
∗ = i

√
1 + ττ , that substituted in (4.6) gives (3.13), as was to be proven. The sign

of the square root
√
1 + ττ is determined considering the limit λ → 0, where we want to

recover usual electromagnetism, that in these variables reads T∗ = iT .

The self-duality condition T T∗ = 0 implies (4.6) that fixes the phase of τ to equal that

of T T∗ . This constraint is automatically satisfied by setting r = |τ | and

τ = r
T T∗

|T T∗ | . (4.8)

The equivalence of (4.2) with the self-dual constitutive relations (4.3), (4.4) is then im-

mediate. Trivially r ≥ 0. Finally, recalling that F and G∗ are tensors while F∗ and G
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are pseudo-tensors we easily check that TT and T T∗ T T∗ are scalars, hence r is a scalar

field depending on T, T and their derivatives (i.e., r is invariant under orientation reversal).

Duality invariance of r (under T → e−iαT ) immediately follows from (4.4).

In the self-duality conditions (4.3), (4.4) we have been able to disentangle the general

relations that a self-dual theory must satisfy, i.e., (4.3), from the specific condition that

defines the nonlinear theory: the scalar equation (4.4) that determines the ratio TT/|T T∗ |.
Nonlinear self-dual theories are defined by imposing that this ratio equals an arbitrary

duality invariant real and nonnegative scalar function r of T, T and their derivatives.

Examples 13. Linear electromagnetism (G = F∗ ) corresponds to the case r = 0. Indeed

TT = 0 in linear electromagnetism, while T T∗ = 2F F∗ + 2iF 2 is arbitrary.

Born-Infeld nonlinear theory satisfies the constitutive relations, λ T
∗ µν = ∂

∂Tµν

(
4T 2

T T
∗
)
, i.e.,

T∗ µν = − T 2

T T∗
Tµν −

λ

8
(T T∗ )Tµν (4.9)

as remarked by Schrödinger [1], see [34] for a clear account in nowadays notations. Com-

parison with (4.3) and (4.4), shows that Born-Infeld theory is determined by

r =
λ

8
|T T∗ | . (4.10)

We gain further insights in the self-dual constitutive relations by analyzing the phases

and moduli of the scalars fields that enter (4.3) and (4.4). Relation (4.5) implies that the

phase of T T∗ is bigger than the phase of T 2 by a π/2 angle. In polar coordinates we have,

T 2 = |T 2|eiϕ , T T∗ = i|T T∗ |eiϕ . (4.11)

Use of (4.6) leads to the relation ττ = |TT |2/|T T∗ |2, that inserted in (4.5) gives8

|T 2|2 = |T T∗ |2 + |TT |2 . (4.12)

4.1 Chiral variables

The self-dual constitutive relations further simplify when we rewrite them in term of the

chiral variables T+, T− and their complex conjugates.

We consider the Hodge dual of equation (4.3), sum it to ±i-times (4.3), and, with the

help of (2.28) and (2.29), we obtain the equivalent relations

T±
µν = − TT

2T∓2

T T∗

T T∗
T∓

µν (4.13)

where 2T ∓2
= T 2 ∓ iT T∗ = (|T 2| ± |T T∗ |)eiϕ. Further use of the phase relations (4.11)

leads to T±
µν = TT

2T∓2 T∓
µν , i.e., to

T+
µν = t eiϕ T−

µν , (4.14)

8This equation suggests to set coshβ = ρT2/ρT ∗T , sinhβ = ρTT /ρT ∗T , so that (4.12) is automatically

satisfied. With these variables the constitutive relations read T∗ = i coshβ T − i sinhβ T2

ρ
T2

T . Different

nonlinear theories are determined by the dependence of the angle β from the fields T, T and their derivatives.
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and T−
µν = t−eiϕT+

µν , where the dimensionless, nonnegative and duality rotation invariant

scalar fields t and t− are defined by

t ≡ TT

|T 2|+ |T T∗ | , (4.15)

and t− ≡ TT
|T 2|−|T T∗ | . Equations T

−
µν = t−eiϕT+

µν are equivalent to T+
µν = teiϕT−

µν because,

due to (4.12), t− = t−1.

The scalar equation (4.4) determines the value of the ratio TT/|T T∗ |. Because of the

moduli relation (4.12), it equivalently determines the ratio t in (4.15). Therefore, as in

the previous section (see paragraph after the proof of Proposition 12), we can conclude

that (4.14) is the general relation that a self-dual theory must satisfy, while the specific

condition that defines the nonlinear theory is the dependence of the real nonnegative duality

invariant scalar function t from a set of independent variables and their derivatives, for

example T− and T−.

It is useful to present the explicit relation between the ratio r = TT/|T T∗ | and t.

We calculate

|T−2|(1− t2) =
1

2
(|T 2|+ |T T∗ |)(1− t2) = |T T∗ | , (4.16)

multiply this last equality by r = TT/|T T∗ | and obtain

(1− t2)r = 2t . (4.17)

5 Nonlinear theories without higher derivatives

If the constitutive relations Gµν = hµν [F, λ] (see (2.3)) do not involve derivatives of the

fields then, as noticed in the introduction, any antisymmetric 2-tensor is a linear combina-

tion of Fµν and F∗ µν with coefficients that are (pseudo)scalar functions of Fµν . Hence the

constitutive relations (3.1) or (3.3) are the most general ones. Furthermore, if we are in

Minkowski spacetime Lorentz invariance implies that the field N in (3.1) and the matrix

M in (3.3) can be expressed in terms of the Lorentz invariant combinations F 2 and (F F∗ ).

Similarly, if we choose the chiral fields T− and T− as independent variables (cf. sections 2.4

and 4.1) then any Lorentz invariant field is a function of T−2
and T− 2

.

More in general we consider theories in curved spacetime that depend only on F 2 and

F F∗ , or T−2
and T− 2

. Since the action functional I[T−, T−] studied in section 2.4 and

the scalar field t defined in (4.15) are duality invariant, and under a duality of angle α we

have the phase rotation T−2 → e2iαT−2
, we conclude that I and t depend only on the

modulus of T−2
, hence I = I[T−, T−] and t = t[T−, T−] simplify to

I =
1

λ

∫
d4x

√
g I(u) , t = t(u) , (5.1)

where I(u) is an adimensional scalar function, and the variable u is defined by

u ≡ 2λ|T−2| = λ(|T 2|+ |T T∗ |) . (5.2)
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Similarly, the constitutive relations (2.32) simplify to

T+µν
=

1

λ

∂I

∂T−
µν

=
1

λ

dI

du

∂u

∂T−
µν

, (5.3)

and comparison with with (4.14) leads to

t = 2
dI

du
. (5.4)

In fact, deriving u2 we obtain ∂u

∂T−
µν

= 2λeiϕ T−
µν where we used the same conventions as

in footnote 3, and that T−2
= |T−2|eiϕ (see expression immediately after (4.13)).

5.1 Born-Infeld nonlinear theory

In this section we determine the scalar field t = t(u) = 2 dI
du in case of Born-Infeld the-

ory. This is doable thanks to Schrödinger’s formulation (4.9) of Born-Infeld theory, that

explicitly gives r = λ
8 |T T∗ |, see (4.10). Then from (4.16) we have

r =
1

16
u(1− t2) , (5.5)

and recalling (4.17) we obtain [37, 33]

(1− t2)2u = 32t . (5.6)

Now in the limit u → 0, i.e., λ → 0, we see from (4.15) that t → 0. The function t = t(u)

defining Born-Infeld theory is therefore given by the unique positive root of the fourth

order polynomial equation (5.6) that has the correct λ → 0 limit. Explicitly,

t =
1√
3

(√
1 + s+ s−1 −

√

2− s− s−1 +
24
√
3

u
√
1 + s+ s−1

)
, (5.7)

where

s =
1

u

(
216 u+ 12

√
3
√
108 + u2 u+ u3

)1
3
. (5.8)

5.2 The hypergeometric function and its hidden identity

In [26] the action functional I and the function t(u) corresponding to the Born-Infeld

action were found via an iterative procedure order by order in λ (or equivalently in u).

The first coefficients of the power series expansion of t(u) were recognized to be those of a

generalized hypergeometric function, leading to the conclusion

t(u) =
u

32
3F2

(
1

2
,
3

4
,
5

4
;
4

3
,
5

3
; − u2

33 · 22
)
, (5.9)

and, integrating (5.4),

I(u) = 6

(
1− 3F2

(
− 1

2
,−1

4
,
1

4
,
1

3
,
2

3
; − u2

33 · 22
))

. (5.10)

– 20 –



J
H
E
P
0
5
(
2
0
1
3
)
0
8
7

We have checked that the expansion in power series of u of the closed form expression of

t(u) derived in (5.7), (5.8) coincides, up to order O(u1000) with u
32 times the hypergeometric

function in (5.9). Therefore we conjecture that the hypergeometric function in (5.9)

F(u2) ≡ 3F2

(
1

2
,
3

4
,
5

4
;
4

3
,
5

3
; − u2

33 · 22
)

= 2
∞∑

k=0

(4k + 1)!

(3k + 2)!k!

(
− u2

45

)k

(5.11)

has the closed form expression F(u2) = 32
u t(u) where t(u) is given in (5.7), (5.8), and,

because of (5.6), that it satisfies the “hidden” identity

F(u2) =

(
1− u2

45
F(u2)

2
)2

. (5.12)

It is indeed this identity that we have verified up to O(u1000).

5.3 General nonlinear theory

Since Born-Infeld theory is singled out by setting r = λ
8 |T T∗ |, and Maxwell theory by

setting r = 0 (cf. Example 13), it is convenient to describe a general nonlinear theory

without higher derivatives by setting

r =
λ

8
|T T∗ |f(u)/u (5.13)

where f(u) is a positive function of u. We require the theory to reduce to electromagnetism

in the weak field limit, i.e., G∗ µν = −F +o(F ) for F → 0. Then we have T− = O(F ), T+ =

o(F ), u = O(F 2). Hence from (4.14) we obtain limu→0 t = 0. Moreover from (4.17), r =

O(t) and from r = 1
16f(u)(1−t2) (that follows from (5.13) and (4.16)) f = O(t). Hence the

theory reduces to electromagnetism in the weak field limit if and only if limu→0 f(u) = 0.9

From r = 1
16f(u)(1 − t2) (that follows from (5.13) and (4.16)) and (4.17) we obtain

that the composite function t(f(u)) satisfies the fourth order polynomial equation

(1− t2)2f(u) = 32t , (5.14)

so that t(f(u)) is obtained with the substitution u → f(u) in (5.7) and (5.8), or in (5.9).

More explicitly, recalling the constitutive relation (4.2), we conclude that the consti-

tutive relations à la Schrödinger

T∗ µν = − T 2

T T∗
Tµν −

λ

8

f(u)

u
(T T∗ )Tµν , (5.15)

9We further notice that limu→0 f(u) = 0 implies I(u) = o(u). In particular the theory defined by

I(u) = u (or equivalently f(u) = 26

32
) does not reduce to electromagnetism for weak fields.

In general, besides requiring that the theory determined by f(u) reduces to electromagnetism in the weak

field limit we can also require the theory to be analytic in F (the lagrangian to have a power series expansion

in F around F = 0). In this case from (2.40) and inverting relations (2.42), or more explicitly from (2.39),

we see that the Legendre transformed function I(u) must depend on u2 = 4λ2T−2
T−2

. Equivalently f(u)/u

must depend on u2.
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are equivalent to the constitutive relations (deformed twisted self-duality conditions)

T+µν
=

1

2λ
t(f(u))

∂u

∂T−
µν

, (5.16)

where t(f(u)) satisfies the quartic equation (5.14), and we recall that u = 2λ|T−2| =

λ(|T 2|+ |T T∗ |) .
In other words the appearence of the quartic equation (5.14) is a general feature of the

relation between the constitutive relations (5.15) and (5.16), it appears for any self-dual

theory and it is not only a feature of the Born-Infeld theory.
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A Examples of higher derivatives theories

We construct examples of higher derivatives U(1) actions that define self-dual theories.

These examples include the Bossard Nicolai one in [25]; the actions we present are quadratic

in the field strength. Let

S = −1

4

∫
d4x

√
g FOF (A.1)

with O a matrix O ρσ
µν of differential operators independent from F ; explicitly FOF =

Fµν O ρσ
µν Fρσ . We recall that by definition the hermitian conjugate operator O† satisfies∫

(O†K)F =
∫
KOF for all antisymmetric and real tensors K and F . Since

∫
FOF =∫

(O†F )F =
∫
F (O†F ), there is no restriction in considering O hermitian, i.e.,

∫
(OK)F =∫

KOF , or explicitly
∫
d4x

√
g (O µν

ρσ Kµν)F
ρσ =

∫
d4x

√
g KµνO ρσ

µν Fρσ . Let O also satisfy

O ◦ ∗ ◦O = ∗ (A.2)

i.e., O ∗(OF ) = ∗F .

We show that the action (A.1) gives self-dual equations of motion if O satisfies (A.2).

Indeed in this case the self-duality condition (2.23), i.e.,
∫
d4x FF̃ + GG̃ = 0, holds. The

proof is easy. We first calculate

G̃µν = 2
δS

δFµν
= −√

g Oµν ρσFρσ , (A.3)
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i.e., G∗ µν = −(OF )µν . Hence
∫
d4x G̃G =

∫
d4x

√
g ( G∗ )G = −

∫
d4x

√
g ( G∗ ) ∗( G∗ )

= −
∫
d4x

√
g (OF ) ∗(OF ) = −

∫
d4x

√
g FO ∗(OF )

= −
∫
d4x

√
g F F∗ = −

∫
d4xFF̃ , (A.4)

where in the fourth equality we used (A.2).

Examples of differential operators O are given by considering operators ∆ on antisym-

metric tensors Fµν that satisfy the hermiticity condition ∆† = ∆ and that anticommute

with the ∗-Hodge operator,
∗ ◦∆ = −∆ ◦ ∗ . (A.5)

Let’s introduce a coupling constant λ so that λ∆ is adimensional, and let f(λ∆) be an odd

function in ∆ (e.g., a polynomial, or a power series function like λ∆, λ∆3, sin(λ∆)). Then
∗ ◦ f(λ∆) = −f(λ∆) ◦ ∗, and

O =
(
1− f(λ∆)

)−1(
1 + f(λ∆)

)
(A.6)

satisfies (A.2).

In particular, if f(λ∆) = λ∆ and if ∆ ρσ
µν Fρσ = ∇κ

(
T

κλ[σ
[µ ∇λδ

ρ]
ν]Fρσ

)
, where the covari-

ant derivatives are with respect to the Levi-Civita connection, Tµκλσ is the Bel-Robinson

tensor, and the square brackets denote antisymmetrization in the embraced indices, then

we obtain the action of Bossard and Nicolai [25].

B The action functional S[F ] from I[T−, T−]

We here determine the first two nontrivial terms S(1) and S(2) of the action S, see (2.39)

section 2.4.

Since S(0) = −1
4

∫
d4x

√
g F 2 corresponds to I [0] = 0, we have (cf. (2.38)) , T+(0)

= 0,

T−(0)
= 2F− , G−(0)

= iF−, and, for n ≥ 1, T−(n)
= −iG−(n)

, T−(n)
= iG+(n)

. The

following useful formula is then easily derived using the chain rule:

δI [m]| (n)
F∓

δF− = 2
δI [m]

δT−

∣∣∣
(n)

F∓
− 2

n−1∑

p=m

∫
d4x

1√
g

δI [m]

δT−

∣∣∣
(p)

F∓

δ2S(n−p)

δF−δF− +
δI [m]

δT−

∣∣∣
(p)

F∓

δ2S(n−p)

δF−δF+
(B.1)

where we have simplified the notation by setting
∣∣
F∓ =

∣∣
T−[F−,F+]

T−[F−,F+]

and omitting space-

time indices, and where we have assumed that we know the action S[F ] up to order

n − 1 so that, for all p = 1, 2, . . . n − 1, we have ∓iG±(p)
= 2√

g
δ2S(p)

∂F± , and therefore

δT−(p)

δF− = −i δG
−(p)

δF− = − 2√
g

δ2S(p)

∂F−∂F− .

If m = n then the above formula simply reads
δI[n]| (n)

F∓
δF− = 2 δI[n]

δT−

∣∣∣
(n)

F∓
, and since

I [n]| (n)
F∓ = I [n][2F−, 2F+] (use T−(0)

= 2F−), it simplifies to

δI [n][2F−, 2F+]

δF− = 2
δI [n]

δT−

∣∣∣
(n)

F∓
. (B.2)
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Setting n = 1 and recalling that since I [0] = 0, δI[1]

δT− | (1)
F∓ = δI

δT− | (1)F∓ , we immediately see

that S(1)[F−, F+] = 1
4I [1][2F−, 2F+] satisfies (2.36).

In order to determine S(2) we first calculate (using for example the chain rule in deriving

w.r.t. λ)

I [1]
∣∣ (2)
F∓ =

∫
d4x

δI [1]

δT−

∣∣∣
(1)

F∓
T−(1)

+
δI [1]

δT−

∣∣∣
(1)

F∓
T−(1)

= 2

∫
d4x

δS(1)

δF− (−iG−)(1) +
δS(1)

δF+
(iG+)(1)

= −4

∫
d4x

1√
g

δS(1)

δF−
δS(1)

δF− +
δS(1)

δF+

δS(1)

δF+
(B.3)

where in the second line we used δI[1]

δT− | (1)
F∓ = δI

δT− | (1)F∓ and then (2.36) at order n = 1. In

the third line we used the constitutive relations (2.20), i.e., G− = − 2i√
g

δS
δF− at order n = 1,

that we already know to be implied by the chiral constitutive relations (2.32).

Next for notational simplicity we set
∫
=
∫
d4x 1√

g and we compute

δI
δT−

∣∣∣
(2)

F∓
=

δI [2]

δT−

∣∣∣
(2)

F∓
+

δI [1]

δT−

∣∣∣
(2)

F∓

=
1

2

I [2][2F−, 2F+]

δF− +
1

2

δI [1]| (2)
F∓

δF− +

∫
δI [1]

δT−

∣∣∣
(1)

F∓

δ2S(1)

δF−δF− +
δI [1]

δT−

∣∣∣
(1)

F∓

δ2S(1)

δF−δF+

=
1

2

I [2][2F−, 2F+]

δF− +
1

2

δI [1]| (2)
F∓

δF− +
δ

δF−

∫
δS(1)

δF−
δS(1)

δF− +
δS(1)

δF+

δS(1)

δF+

=
δ

δF−

(
1

2
I [2][2F−, 2F+]−

∫
δS(1)

δF−
δS(1)

δF− +
δS(1)

δF+

δS(1)

δF+

)
(B.4)

where in the second line we have used (B.2) and (B.1), in the third line we have noticed

again that δI[1]

δT− | (1)
F∓ = δI

δT− | (1)F∓ = 2 δS(1)

δF− (cf. (2.36), in the fourth line we have used (B.3).

From the equality (B.4) we see that S(2) = 1
4I [2][2F−, 2F+] − 1

2

∫
δS(1)

δF−
δS(1)

δF− + δS(1)

δF+
δS(1)

δF+

satisfies (2.36) with n = 2.

C The energy momentum tensor and its trace

We first recall that the symmetric energy-momentum tensor θµν of a nonlinear electromag-

netic theory is given by

θµν = −G̃µλF ν
λ + gµν L (C.1)

if the Lagrangian L in the action S[F ] =
∫
d4xL = 1

λ

∫
d4x

√
g L depends on the field

strength Fµν and the metric gµν only via the invariant and dimensionless combinations

α =
λ

4
F 2 , β =

λ

4
F F∗ . (C.2)
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Indeed we compute

∂α

∂gµν
= −2

∂α

∂Fµρ
F ν

ρ ,
∂β

∂gµν
= −2

∂β

∂Fµρ
F ν

ρ , (C.3)

(where the factor 2 is due to our ∂
∂Fµρ

conventions, cf. (2.20) and its footnote); for the

second equation we used
∂
√
g−1

∂gµν
= −√

g−1gµν , and the property F∗ µλFνλ = −1
4δ

µ
ν F∗ ρσFρσ.

Expression (C.1) for the energy momentum tensor θµν = δS
δgµν

is then straightforward.

Now an action in Minkowski spacetime that has no derivatives of the field strength

F , by Lorentz invariance depends on F only via the (pseudo)scalars F 2 and FF̃ . We can

then always minimally couple the action to gravity so that the metric enters only in (C.2),

and hence so that (C.1) holds. Even if the coupling to gravity (for example in order to

preserve symmetry properties) requires terms like RF 2 where R is the scalar curvature,

expression (C.1) still holds in flat spacetime.

From (C.1) it follows that the trace of the energy momentum tensor satisfies

1

4
θµ µ = L − 1

4
G̃F . (C.4)

We therefore have

1

4

∫
d4x gµν

δS

δgµν
=

∫
d4x

1

4
θµ µ = S − 1

4

∫
d4x G̃F = −λ

∂S

∂λ
, (C.5)

the last relation follows observing that the inverse metric gµν appears always with the

factor λ1/2 in the action S[F ] =
∫
d4xL = 1

λ

∫
d4x

√
g L (cf. (C.2)).

Finally if we let S[F ] → Sc[F ] = 1
c2
S[cF ], we see that (C.5) coincides with (2.13).

Indeed λ ∂
∂λ equals c2 ∂

∂c2
because Sc[F ] depends only on the product c2λ.
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