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Abstract: In a space-time M , a conformal structure is defined by the distribution of
light-cones. Geodesics are traced by freely falling particles, and the collection of all un-
parameterized geodesics determines the projective structure of M . The article contains
a formulation of the necessary and sufficient conditions for these structures to be com-
patible, i.e. to come from a metric tensor which is then unique up to a constant factor.
The theorem applies to all dimensions and signatures.

1. Introduction and Remarks on the History of the Problem

Hermann Weyl, in his early papers on ‘infinitesimal geometry’ [1,2], described the two
structures that underlie the geometry and physics of the four-dimensional space-time.
The propagation of light determines light cones; the collection of all such cones gives
a conformal structure C of Lorentzian signature. Weyl pointed out that gravitation is
described by a linear connection: particles, freely falling in a gravitational field, trace
unparameterised geodesics that define symmetric linear connections, but only up to
‘projective transformations’. The collection of all such projectively related connections
is a projective structure P on a manifold. (Precise definitions are given in the next
section.) A Riemannian metric of Lorentzian signature uniquely determines both these
structures; Weyl has shown that two metrics g and g′ give the same two structures
(conformal and projective) if and only if g′ = const · g; see Satz 1 in [2]. Weyl did
not, however, consider the problem of whether a given pair of conformal and projective
structures come from one metric tensor. Simple examples show that, in general, they do
not.

The problem raised by Weyl has attracted, over the years, a considerable interest
among physicists. Ehlers, Pirani and Schild wrote, on this subject, an influential paper
that was recently reprinted as a ‘Golden Oldie’ [3]. These authors argue in favour of
founding the geometry of space-time on its conformal and projective structures rather
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than on the ‘chronometric’ approach of Synge [4,5]. They formulate a necessary condi-
tion that the pair (C ,P)must satisfy in order to result from one metric tensor. Namely,
according to this EPS condition, as it will be called here, the null geodesics of the con-
formal geometry should be also geodesics, or autoparallels, as defined by the projective
structure. Ehlers, Pirani and Schild formulate further conditions that the structures C
and P should satisfy so as to come from a unique, up to a constant factor, metric tensor.
However, they do not give sufficient conditions for this to be the case. More comments
on that paper and further references can be found in [6].

In this paper we present a theorem giving the necessary and sufficient conditions for
compatibility of conformal and projective structures. The theorem is algorithmic in the
sense that, to determine compatibility of C and P , it suffices to compute a few simple
expressions formed from the components of g ∈ C and Γ ∈ P . Our result is also
effective: if these two structures are compatible, then a simple integration suffices to
find the corresponding metric tensor.

2. Definitions and the Theorem

We consider smooth—of class C∞—manifolds and maps. All geometric objects on an
n-dimensional manifold are referred to local coordinates (xi ), i = 1, . . . , n.

A conformal structure on a manifold M is an equivalence class C of metric tensors
g with respect to the following equivalence relation:

g ∼ g′ ⇐⇒ there is a function ϕ on M such that g′ = g exp 2ϕ.

If g ∈ C , then C can be denoted by [g]. No assumption is made on the signature of the
metric tensors; they can be properly Riemannian.

Two symmetric linear connections Γ = (Γ i
jk) and Γ ′ = (Γ ′i

jk) are said to be projec-
tively equivalent if their geodesics differ only by parametrisation. Projective equivalence
is clearly an equivalence relation on the set of all symmetric linear connections on M .
An equivalence class P with respect to this relation is called a projective structure; it
is denoted by [Γ ] if it contains Γ .

Projective equivalence can be formulated as the condition

Γ ∼ Γ ′ ∈ P ⇐⇒ there is a 1-form ψ so that Γ ′i
jk = Γ i

jk + δi
jψk + δi

kψ j .

In this form it appears in [2], but the essence of this result was given already by Tullio
Levi-Civita in his very first publication [7], written at the age of 23.

Tracy Thomas [8] observed that, given two symmetric linear connections, it is easy
to check whether they are projectively equivalent by computing the traceless quantity
Π(Γ ), which is nowadays called the Thomas symbol,

Π i
jk(Γ ) = Γ i

jk − 1

n + 1
δi

jΓ
p

pk − 1

n + 1
δi

kΓ
p

pj , n = dim M.

Namely, two symmetric linear connections are projectively equivalent, if and only if,
their Thomas symbols coincide,

Π(Γ ) = Π(Γ ′) ⇐⇒ Γ and Γ ′ are projectively equivalent. (1)

Let �(g) be the Levi-Civita connection defined by g. In local coordinates,

�
i
jk(g) = 1

2 gip(∂k gpj + ∂ j gpk − ∂pg jk),
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so that

�
i
jk(g exp 2ϕ) = �

i
jk(g) + δi

j∂kϕ + δi
k∂ jϕ − gipg jk∂pϕ, (2)

where ∂kϕ = ∂ϕ/∂xk , etc. If u = (ui ) is a null vector, gi j ui u j = 0, then

�
i
jk(g exp 2ϕ)u j uk − �

i
jk(g)u

j uk ‖ ui ,

so that (unparameterised) null geodesics are well defined in conformal geometry in the
sense the null geodesics of g are reparametrised null geodesics of g exp(2ϕ).

Definition. The conformal and projective structures C and P are said to be compatible
if there is g ∈ C such that �(g) ∈ P .

Given g ∈ C and Γ ∈ P , from (1) one obtains

C and P are compatible ⇐⇒ ∃ ϕ such that Π(�(g exp 2ϕ)) = Π(Γ ). (3)

Since the difference of two connection coefficients is a tensor, so is

T i
jk

def= Π i
jk(�(g)− Γ ).

The components of this tensor depend on the components of the metric tensor and their
first derivatives and on the components of the linear connection. Substituting (2) into
(3), one infers that compatibility of C and P is equivalent to the existence of ϕ such
that

T i
jk − g jk gip∂pϕ +

1

n + 1
δi

j∂kϕ +
1

n + 1
δi

k∂ jϕ = 0. (4)

Let

T i = n + 1

(n + 2)(n − 1)
g jk T i

jk and Ti = gi j T
j . (5)

By contraction of (4) with g jk one obtains

∂iϕ = Ti . (6)

Substituting ∂iϕ determined by (6) and (5) into (4), one obtains the following condition
on g and Γ :

T i
jk − g jk T i +

1

n + 1
δi

j Tk +
1

n + 1
δi

k Tj = 0. (7)

Since the second partial derivatives of ϕ commute, from (6) one obtains

∂ j Ti − ∂i Tj = 0. (8)

Theorem. The conditions (7) and (8) are necessary and sufficient for local compatibility
of the conformal and projective structures, defined on M by g and Γ , respectively. If,
moreover, the first cohomology group of M vanishes, then there is global compatibility.

Proof. The conditions are necessary because they were derived under the assumption
of compatibility. Condition (8) implies the existence of a local—in a neighbourhood of
every point—solution ϕ of (6). Replacing now Ti in (7) by ∂iϕ one obtains that condition
(4) holds. If the first cohomology group of M vanishes, then the closed form Ti dxi is
exact and thus ϕ is defined all over M . 
�
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3. A Simple Application

Using the theorem one can confirm the existence of pairs (C ,P) that are incompatible
even though the EPS condition holds. Indeed, let g be a Lorentzian metric on an n-
dimensional manifold M , n � 3, and C = [g]. Given a vector field (Si ) on M , one
considers the projective structure P = [Γ ] such that

Γ i
jk = �

i
jk(g)− Si g jk . (9)

If ui is a null vector, gi j ui u j = 0, then (Γ i
jk − �

i
jk(g))u

j uk = 0 so that a null geodesic
with respect to C is also a geodesic with respect to P and the EPS condition is satisfied.

Computing now T i
jk for Γ given by (9), one obtains T i = Si and that the algebraic

condition (7) is satisfied. Therefore, the pair (C ,P) now under consideration is com-
patible if, and only if, the form gi j S j dxi is closed. In other words, to obtain a manifold
with a pair (C ,P) that satisfies the EPS condition but is incompatible, it suffices to take
C containing a Lorentzian metric g and P = [Γ ] given by (9), where Si is vector field
with a non-integrable distribution of subspaces orthogonal to it.

4. Concluding Remarks

The result presented in this paper, though technically very simple, completes a line
of research initiated by Weyl and continued by physicists. Many mathematical objects
consist of two—or more—structures on one set, connected by a notion of compatibility.
Conformal and projective structures on manifolds have a clear origin in physics and, for
this reason, their compatibility has attracted the interest of theoreticians.

The left-hand sides of (7) and (8) are tensors of the type given by the position of
their indices. Moreover, they are determined by P and C , but do not depend on the
representatives of these equivalence classes. In fact, if g is replaced by g exp 2ϕ, then
the tensor T i

jk is replaced by

T i
jk − g jk gip∂pϕ +

1

n + 1
δi

j∂kϕ +
1

n + 1
δi

k∂ jϕ,

and Ti is replaced by Ti −∂iϕ, but the left-hand sides of (7) and (8) do not change. One can
consider these tensors as a measure of noncompatibility of the projective and conformal
structures. These tensors could be used in the construction and study of those nonmetric
relativistic theories of space-time that use the conformal and projective structures as the
principal building blocks.

It is worth noting here that a conformal structure can be easily reconstructed from the
knowledge of the distribution of light cones. Indeed, if v ∈ Tx M is a null vector, then
gi jv

iv j = 0 is a linear equation for the components of the metric tensor and, by taking
n(n + 1)/2 − 1 generic null vectors at a point, one obtains a system of linear equations
whose solution space is one dimensional and gives the conformal structure at that point.
The somewhat subtler procedure of reconstructing a symmetric linear connection from
the set of all unparametrized geodesics can also be reduced to solving a system of linear
equations; see [9, §2.1] for details.

Closely related to the question considered here—but much more difficult—is the
Roger Liouvelle problem initiated in [10]: given a system of differential equations

ẍ i = Λi (x, ẋ), i = 1, . . . , n, ẋ i = dxi/dt, (10)
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to find the conditions on the functionsΛ so that the solutions of (10) represent geodesics
of a Levi-Civita connection. Recently, the problem has been solved, in two dimensions,
by Robert Bryant, Maciej Dunajski and Michael Eastwood [11].

It is also worth noting that there exist projective structures P such that there is no
metric g satisfying �(g) ∈ P . Indeed, by the results of [12], the existence of such a
metric is equivalent to the existence of covariant constant sections of a non-trivial vector
bundle with connection. For almost all projective structures such parallel sections do not
exist. From general theory there follows the existence of complete systems of differential
invariants, i.e. invariant algebraic expressions in the components of Γ and its derivatives
that determine whether there exists a metric corresponding to the projective structure
[Γ ], see e.g. [13].
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