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1 Introduction

In this paper we work out a theory of relativistic superfluid hydrodynamics including

dissipative terms at first order in a gradient expansion, allowing for parity violation and

the presence of triangle anomalies. In other words we work out the most general form of the

equations of 3 + 1 dimensional s-wave superfluid hydrodynamics consistent with Lorentz

invariance, time-reversal invariance and the second law of thermodynamics. While we work

in a relativistic context throughout this paper, our final results admit a straightforward

non relativistic limit, and are easily formulated in a non relativistic context.

The theory of superfluid hydrodynamics has a long history. The equations of ideal

superfluidity (i.e. superfluid dynamics in the absence of dissipative terms) were worked

out over 60 years ago by Landau and Tisza [1, 2] in a non relativistic setting. They were

generalized to a relativistic superfluid in the early 80’s by Israel and Khalatnikov and Lebe-

dev [3–5] and later reformulated by Carter and Khalatnikov [6, 7] and by Son [8]. In most

of this work we will use a formulation of superfluid dynamics close to that of [8]. In a

beautiful recent work, Sonner and Withers [9] (see also [10]) have used the equations of

Einstein gravity to rederive the Landau-Tisza equations for superfluids that admit a dual

gravitational description via the AdS/CFT correspondence of string theory. This develop-

ment yields independent evidence for the correctness and completeness of the Landau-Tisza

theory of ideal superfluidity.

The focus of the current paper is on the one derivative (dissipative) corrections to

the Landau-Tisza equations. Dissipative corrections to relativistic superfluids have been

extensively studied in the literature [10–16] and they generalize (and extend) the textbook

derivation of such corrections in the non-relativistic limit [17–19]. While it is straightfor-

ward to list the most general dissipative corrections to the stress tensor, charged current

and Josephson relations allowed by Lorentz invariance, it turns out that such a listing also

allows for many unphysical possibilities. It is a physical requirement that any hydrody-

namic flow be equipped with an entropy current JµS . The second law of thermodynamics
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requires that the increase in the entropy in any compact, spacelike, region be larger than

the incoming entropy flux through the surface of that region; this requires that at every

point in spacetime and for every conceivable fluid flow

∂µJ
µ
S ≥ 0 . (1.1)

An interesting and important fact about fluid dynamics, whether superfluid or not, is that

the requirement that the divergence of the entropy current always be positive gives rise to

important constraints on dissipative corrections to the equations of motion.

As far as we are aware, all previous studies of dissipative corrections to the equations

of superfluid hydrodynamics assume, on intuitive grounds, that the entropy current of

superfluid hydrodynamics takes a particular canonical form, JµS canon
. These studies then

determine the dissipative corrections to the energy momentum tensor and charged current

(and Josephson condition) consistent with the positivity of the divergence of this canonical

entropy current and with covariance under time reversal. The latter restriction is usually

called the Onsager relations.

In [20], Son and Surówka observed that, in the presence of triangle anomalies, the

entropy current of ordinary fluids (non superfluids) deviates from its canonical form. This

observation makes clear that the intuition that fixes the entropy current to its canonical

form is not infallible. For this reason, the starting point of our analysis in this paper is the

assumption that an entropy current with positive definite divergence exists. However, we

make no assumption about the form of this current beyond the requirements of symmetry.

More formally, we allow the (postulated positive divergence) entropy current to take

the form

JµS = JµS canon
+
∑
i

viV
µ
i (1.2)

where JµS canon
is the canonical entropy current referred to above, V µ

i is a basis of on-shell

inequivalent one derivative vectors and vi are (initially) unconstrained coefficient functions.

We then demand that the divergence of JµS be positive semi-definite for any solution of the

equations of superfluid hydrodynamics on an arbitrary background spacetime and that the

Onsager relations are satisfied.1 These restrictions fix most of the vi’s in (1.2) and also

restrict the possible transport coefficients of the theory.

As we discuss in detail throughout this work, the requirement that the entropy current

be of positive divergence in an arbitrary background spacetime provides powerful constraints

on the form of the entropy current and through it, on the form of the possible dissipative

corrections to the hydrodynamic constitutive relations even in flat space. For instance, the

divergence of the entropy current could contain a term proportional to

∇µJµS ∝ v1Rµνu
µuν + . . . (1.3)

where uµ is the fluid velocity, Rµν is the Ricci tensor, and v1 is one of the coefficient

functions in (1.2). The divergence of the entropy current may also contain many other

1Recall that the second law of thermodynamics must apply in any conceivable consistent situation. In

particular it must apply when the system is formulated on an arbitrary background spacetime provided the

system is free of diffeomorphism anomalies. This condition is true of all experimental superfluids as well as

all superfluids obtained via the AdS/CFT correspondence.
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terms proportional to vi and independent of curvatures. However, for any given fluid flow

these other terms can be held fixed while Rµνu
µuν is made arbitrarily negative by tuning

the curvature tensor.2 It follows that the divergence of the entropy current is positive for

an arbitrary fluid flow on an arbitrary spacetime only if v1 = 0. Thus, we find a constraint

on the entropy current for fluid motion in a flat space background, even though we needed

to move to a curved spacetime in order to obtain this constraint.

The result of our extended analysis is as follows. For superfluids which are parity and

time-reversal invariant we find that (see sections 3 and 4 for details) all the vi’s in (1.2)

should be set to zero — the entropy current agrees with the canonical entropy current.3

This result provides a check of the intuition reviewed in, say, [17], that the entropy current

should take its canonical form. It follows that the most general structure of dissipative

terms in parity and time-reversal preserving superfluids is given by the 14 parameter fam-

ily described in [10] which generalized the 13 parameter construction of Clark and Putter-

man [18, 19]). The generalization of this result to superfluids that preserve parity but not

time-reversal invariance has been worked out in the paper [21] and yields a 17 parameter

set of independent transport coefficients.

Let us now turn to the case of superfluids that do not respect parity symmetry. In

this case we find that the entropy current is not constrained to take the canonical form.

Not only are the vi’s non zero, two of them remain undetermined (meaning that they are

completely free functions of local thermodynamical variables). In additional there are two

physically unimportant ambiguities which we describe in detail in sections 3 and 4.

It turns out that, under the assumption of time-reversal invariance, the most general

equations of parity odd superfluid hydrodynamics, at first order, are parameterized by

14 +4 +2 =20 parameters, which are consistent with the positivity of the divergence of

any given choice of entropy current. 14 of these parameters multiply parity invariant

structures; these are the parameters that parameterize superfluid hydrodynamics in parity

preserving systems. The remaining 6 parameters multiply parity odd structures, and are

completely new. 2 out of these 6 parity odd parameters are the undetermined vis in

the entropy current.4 In the case of superfluids that are allowed to violate time reversal

invariance it turns out that there is an additional three function parity even ambiguity

in the entropy current and transport coefficients [21], leading to a 23 parameter set of

constitutive relations.

At this point it would be useful to clarify some of the terminology we use. We have

stated that the equations of motion of superfluid dynamics require the specification of

twenty unknown functions of the thermodynamic variables. This may be contrasted with

the equations of motion of a normal, charged conformal fluid which requires the specifi-

cation of two parameters, the shear viscosity and conductivity. For the normal charged

2Note that curvature tensors do not contribute to the fluid equations at first order, so it is consistent to

hold fluid flows fixed while taking curvatures to be very large.
3As a warm up for this analysis we show in section 2 that a similar result is true of parity invariant

charged fluid dynamics in the absence of superfluidity
4Note that these two parameters in the entropy current gets related to some of the parity odd transport

coefficients in the constitutive relations, when we demand positivity of the divergence of entropy current.
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conformal fluid, the shear viscosity and conductivity also control the amount of entropy

produced by the fluid and so, these parameters are also called dissipative parameters. In

the case of parity violating superfluids, six of the twenty parameters are not associated

with entropy production so, only fourteen of the twenty parameters are dissipative in the

sense described above. These fourteen parameters are precisely the ones that are present

in parity and time-reversal preserving superfluids. In normal charged conformal fluids the

conductivity controls not only the response of the current to an external electric field, but

also the response of the current to changes in temperature and changes in chemical poten-

tial. The situation in superfluids is similar: the twenty parameters, and in particular the

two undetermined parameters associated with the entropy current, control the response of

the system to various changes in the hydrodynamic variables.

When the superfluid velocity is too large superfluidity breaks down. For this reason,

when considering experimentally accessible superfluids such as liquid Helium it is often

particularly interesting to study dissipative corrections in the limit that the normal and

superfluid velocities are collinear. In this limit the 14 parameter family of dissipative

corrections of parity invariant superfluids reduce to the five parameter family described,

for instance, in the classic text book of Landau and Lifshitz [17].5 When parity is violated,

the twenty parameter family of solutions reduces to seven. The two additional parameters

determine (in an appropriate frame) the response of the charged current to a magnetic field

and to “chiral vorticity”, i.e., changes in ωµ = 1
2ε
µναβuν∂αuβ.

When the superfluid density is set to zero we are in the normal phase. In this limit the

two undetermined parameters of the superfluid theory reduce to an integration constant

and the contributions to the charge current proportional to the magnetic field and chiral

vorticity are completely determined by the triangle anomaly [20] (up to an integration

constant). In such a limit, we recover the results of [20, 22, 23] (see also [24]).

We emphasize that, as opposed to the configuration at zero superfluid density, the 6

new arbitrary parameters that appear in parity non invariant superfluid hydrodynamics

may be non vanishing even in the absence of an anomaly. This difference may be of

significance; practically speaking, anomalies are intrinsically relativistic phenomena and

always vanish in a nonrelativistic setting. Consequently, the results of this paper suggest

that a term in the particle number current proportional to the vorticity could possibly

show up in non relativistic table top experiments involving superfluids or superconductors

which violate parity (e.g. non centro symmetric superconductors).

We were led to the study of dissipative effects in superfluids in order to understand the

results of certain holographic computations using the AdS/CFT correspondence of string

theory. We emphasize, however, that our eventual derivation of the general equations of

superfluid hydrodynamics makes no use of the AdS/CFT correspondence and so, applies

to all superfluids, not just those that admit a dual gravitational description.

In the second part of our paper we test the collinear limit of our general formalism using

the AdS/CFT correspondence. In the case of parity preserving superfluids, the authors

of [10, 16] showed that it is possible to use the fluid gravity map [22, 23, 25–30] to derive

5These reduce further to only three parameters in the case of a conformally invariant theory.
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dissipative corrections to the equations of superfluid dynamics by extending the analytically

tractable superfluid model of [31] which is valid close to the phase transition point. The

constitutive relations so obtained fit within the 14 parameter fluid dynamical framework

spelt out in [10] which generalize the text book predictions of [18, 19]). In particular, it

was explicitly verified that the entropy current obtained by holographic methods matches

the canonical entropy current in agreement with the intuition of [17].

In this paper we consider a generic asymptotically AdS5 gravitational system which

involves a Chern Simons term for a single bulk U(1) field. Such a Chern Simons term

signifies the presence of a U(1)3 triangle anomaly in the dual field theory and so, in partic-

ular, introduces parity violating terms into the effective superfluid dynamical description.

Particular truncations of type IIB supergravity for which our analysis is valid can be found

in [32, 33]. We find that, in the collinear limit, it is possible to obtain integral expres-

sions for all the parity odd transport coefficients in terms of the background solution. Our

results are in perfect agreement with the collinear limit of the modified theory of parity

violating superfluid dynamics which we present in section 4. We regard this agreement as

a nontrivial (though as yet limited) check of the general results of section 4. It should be

possible to use the AdS/CFT correspondence away from the collinear limit to find much

more extensive test our results; we leave this to future work.

Note Added in v1. After the work presented in this paper was completed, we received

a paper [34] that has substantial overlap with section 4 of this paper. While the approach

of [34] is similar to the one adopted in this paper, our final results differ in several qualitative

and quantitative respects. We present a brief comparison with [34] in section 5.

Note Added in v2. The revised version of the paper [34] agrees better with our results.

Our results have also been confirmed and generalized in [35], which also pointed out an

error in the sign of one of the Onsager relations in the first version of this paper. The

results of this paper have also been generalized to the study of superfluids that do not

respect time reversal invariance in [21].

2 The theory of charged fluid dynamics

In this pedagogical section we construct the most general equations of Lorentz invariant

charged fluid dynamics consistent with the second law of thermodynamics. Our goal is to

illustrate our method for determining the most general form of fluid-dynamical equations

of motion in a simple and familiar context before tackling the slightly more complicated

case of superfluids. The final results of this section are well known; the novelty of this

section lies in our method of computation.

The long-wavelength degrees of freedom of a locally equilibrated system with a single

global U(1) charge can be taken to be the velocity field uµ(x) (normalized so that uµuµ =

−1), the temperature field T (x) and a chemical potential field µ(x). Both the energy

momentum tensor and the charged current can be written in terms of these five fields and

their gradients. The equations of motion of charged fluid dynamics are the conservation of

– 5 –
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the stress tensor and charge current

∇µTµν = F νµJµ

∇µJµ = − c
8
εµνρσFµνFρσ

(2.1)

which provides the five equations for the five hydrodynamic fields. In these equations we

have allowed for the possibility that the current in question has a U(1)3 anomaly. We call

the coefficient c the anomaly coefficient. We have also allowed the current to be coupled

to an external source with field strength Fµν . To completely determine the equations of

motion it remains to determine the dependence of Tµν and Jµ on the fields uµ(x), T (x),

µ(x) and their derivatives.

By considering a stationary fluid for which uµ = (1, 0, 0, 0) and using boost invariance

one can argue that the stress tensor and charge current take the form

Tµν = (ρ+ P )uµuν + Pηµν + Tµνdiss

Jµ = quµ + Jµdiss

(2.2)

where Tµνdiss and Jµdiss are the contributions to the stress tensor and charge current that

involve derivatives of µ, T and uµ. The equations that express Tµνdiss and Jµdiss in terms

of fluid dynamical fields and their derivatives are termed constitutive relations. In the

long wavelength fluid dynamical limit it is sensible to expand the constitutive relations in

powers of derivatives of the fluid dynamical fields uµ, T and µ. We will refer to such an

expansion as a derivative expansion and refer to the terms which are linear in gradients as

first order terms. In this paper we work only to first order in the derivative expansion. The

electromagnetic source term Fµν is taken to be of first order in derivatives in this counting.

Field Redefinitions and frame choices: note that the fluid temperature T , chemical

potential µ and velocity uµ are thermodynamical concepts that are well defined in equi-

librium but have no microscopic definitions in dynamical situations. In other words, we

are always free to redefine the thermodynamic variables into primed ones according to the

equations

uµ = u′µ + δuµ

T = T ′ + δT

µ = µ′ + δµ

(2.3)

where δuµ is an arbitrary one derivative vector that obeys δuµuµ = δuµu′µ = 0 and δT and

δµ are arbitrary one derivative scalars. The primed and unprimed fields are each equally

good definitions of the velocity, temperature and chemical potential fields. Physically

meaningful assertions, such as the constitutive relations for Tµνdiss and Jµdiss, must only

involve field redefinition invariant quantities.

Thus, let us determine the field redefinition invariant combinations of Tµνdiss and Jµdiss.

Under the field redefinition (2.3),

δTµνdiss = (uµδuν + uνδuµ)(P + ρ) + uµuνd(P + ρ) + ηµνdP

δJµdiss = qδuµ + dquµ
(2.4)

– 6 –
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where

δTµνdiss = T ′µνdiss − T
µν
diss

δJµdiss = J ′µdiss − J
µ
diss

and df(µ, T ) represents the change in the function f under the first order variable change

(2.3). It useful to decompose Tµνdiss and Jµdiss into SO(3) invariant tensors, vectors and scalars

The SO(3) that we are referring to is the group of rotations orthogonal to uµ. To this end

we introduce the projection matrix

Pµν = ηµν + uµuν . (2.5)

We find that there is one tensor, two vectors and three scalars. The unique tensor

PµαP
ν
βT

αβ
diss −

Pµν

3
PαβT

αβ
diss (2.6)

is automatically field redefinition invariant. The two vectors PµαT
αβ
dissuβ and PµαJα trans-

form under field redefinitions as

δ
(
PµαT

αβ
dissuβ

)
= −(P + ρ)δuµ

δ
(
PµαJ

α
)

= qδuµ
(2.7)

so that the unique invariant combination of vectors is given by

PµαJ
α +

q

P + ρ

(
PµαT

αβ
dissuβ

)
. (2.8)

The three scalars transform under field redefinitions as

δ
(
PαβT

αβ
diss

)
= 3dP

δ
(
uαT

αβ
dissuβ

)
= dρ

δ (uαJ
α) = −dq

(2.9)

so that the unique invariant scalar is given by

1

3

(
PαβT

αβ
diss

)
− ∂P

∂ρ

(
uαT

αβ
dissuβ

)
+
∂P

∂q
(uαJ

α) (2.10)

where ∂P
∂ρ is taken at constant q and ∂P

∂q is taken at constant ρ.

Instead of working in a manifest field redefinition invariant manner, it is sometimes

convenient to ‘fix’ the field redefinition ambiguity by imposing five additional conditions

on the thermodynamic fields so that they are well defined. Different choices of fixing

the ambiguity are referred to as frames. One often used frame is the so called Landau

frame, in which the velocity and temperature fields are defined to obey the conditions

Tµνdissuν = 0 and Jµdissuν = 0. This gives one vector and two scalar conditions, matching the

field redefinition degrees of freedom. Another choice of frame is the Eckart frame which

is defined by the conditions Jµdiss = 0 together with uµT
µν
dissuν = 0. The expressions for

the invariant vector (2.8) and the invariant scalar (2.10) greatly simplify in either of these

frames. In this paper we adopt no such ‘gauge’ choice but work in a fully field redefinition

invariant manner.
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The strategy for the rest of this section: in order to complete our specification of the

equations of charged fluid dynamics, we need to specify Tµνdiss and Jµdiss (or more precisely the

field redefinition invariant parts (2.6), (2.8) and (2.10) of these expressions) as a function

of first derivatives of fluid dynamical fields. Of course, in any particular dynamical system,

the explicit form of the constitutive relations for Tµνdiss and Jµdiss can be determined only by

a detailed dynamical computation. In this paper we will be interested not in computing

the precise form of these quantities in any particular system, but in parameterizing the

most general form that the constitutive relationship can take in any system. As we will see

below, it will prove possible to completely determine the form of the first order constitutive

relations up to three undetermined dissipative parameters, each of which is an arbitrary

function of T and µ.

We proceed as follows. As in any effective field theory, we start by writing down all

possible expressions which may contribute to Tµνdiss and Jµdiss. We then eliminate those that

do not satisfy the symmetries of the theory, Lorentz invariance in this case. In addition,

since we are dealing with a hydrodynamic theory, we must ensure that the second law of

thermodynamics is satisfied. As explained in the introduction, we demand the existence of

an entropy current of positive semi-definite divergence even when the theory is formulated

on a curved background. As alluded to in section 1, the entropy current is defined to be a

four vector JµS satisfying two requirements. The first is that in a configuration where the

fluid is in uniform motion,6

JµS = suµ (for a spacetime independent configuration) (2.11)

with s the entropy density which is related to ρ, P , q, µ and T through

ρ+ P = sT + µq . (2.12)

Our second requirement of the entropy current is that its divergence is positive semi-definite

in an arbitrary curved background,

∇µJµS ≥ 0 (2.13)

implying that the entropy increase in any region is always greater than the entropy inflow

into that region.

For a perfect fluid level (i.e. a fluid in which all gradient terms have been neglected—

Tµνdiss = Jµdiss = 0) the entropy current is given by (2.11). At this order it is not difficult to

verify that ∇µ(suµ) = 0 using (2.12) and dP = sdT + qdµ.

Once the gradients of uµ, T and µ/T are non vanishing the divergence of the entropy

current no longer vanishes. Indeed, the divergence of the entropy current at the one deriva-

tive level will be the focus of much of the rest of this paper. We will demand, on physical

grounds, that it is possible to modify (2.11) by first order corrections so that (2.13) will be

satisfied. This requirement will turn out to constrain the possible forms of Tµνdiss and Jµdiss.

We start our analysis in section 2.1 by considering parity conserving charged fluids. In

section 2.2 we move on to describe parity-violating fluid dynamics.

6Such a configuration is a stationary, dissipation free solution to the equations of fluid dynamics. Indeed

it may be obtained by boosting a uniform fluid at rest (by which we mean a uniform fluid with velocity

field uµ = (1, 0, 0, 0)).
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2.1 Parity invariant charged fluid dynamics

Consider a hydrodynamic theory in the presence of external electromagnetic fields satis-

fying (2.1) with c = 0. Following the general prescription described at the beginning of

this section, we would like to write the most general parity-invariant and Lorentz invariant

contributions to Jµdiss, T
µν
diss and JµS which involves a single derivative of the hydrodynamic

fields uµ, T and µ. This is carried out in section 2.1.1. We then work out the the re-

strictions on these terms by requiring that the entropy current has positive semi-definite

divergence. This is described in section 2.1.2.

2.1.1 Classification of one and two derivative data

We begin our analysis on a technical point. The tangent space about any point in our

spacetime manifold has an SO(3, 1) rotational invariance. However, the fluid velocity vec-

tor, uµ(x), takes a definite value at that point and breaks this rotational group down to

SO(3). It is useful to decompose all derivatives of fluid dynamical fields, at any given

spacetime point, into representations of this residual SO(3) rotational group.

In the first column of table 1 we have classified all expressions formed from a single

derivative of any of uµ(x), T (x) and µ(x) according to their SO(3) and parity transfor-

mation properties. We refer to these expressions as one derivative fluid dynamical data.

We have also classified one derivative expressions constructed out of the background elec-

tromagnetic fields according to their SO(3) and parity transformation properties. We will

refer to these as background data. As fluid and background field data enter our analysis on

an even footing, we have listed these expressions together in the first column of table 1.7

Not all the expressions in the first column of table 1 are independent under the equa-

tions of motion. The equations of motion can be used to solve for some pieces of data in

terms of other data. The classification of the equations of motion according to their SO(3)

and parity transformation properties can be found in the middle column of table 1. Note

that there are no tensor equations of motion.

In the last column of table 1 we have listed a choice of independent data. By this we

mean a choice of independent one derivative fluid dynamical expressions and one derivative

field expressions in terms of which all others can be solved for.

While some of the expressions used in table 1 such as

σµν =
1

2
PµαP νβ

(
∇αuβ +∇βuα − Pαβ

(
∇λuλ

))
(2.14)

and

Pµν = uµuν + ηµν (2.15)

are standard, some of our notation isn’t. The new notation has been introduced in order to

prepare the reader for later sections. In particular V3 is the electric field in the rest frame

of a fluid element. In the conventions of Son and Surówka [20] we have

V3 = Eµ . (2.16)

7Since all curvature invariants built out of the background metric have at least two derivatives, there is

no one derivative data associated with the metric.
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SO(3) and P

classification

All data Equations of motion Independent data

Scalars

uµ∂µT
uµ∇νTµν = 0

∇µJµ = 0
S1 = ∂µu

µuµ∇µ µT
∂µu

µ

Vectors

Pµν∂νT

Pµν∂ρT
ρν = 0

V1 = −Pµν∂ν µT + Fµνuν
T

V2 = uν∇νuµ

V3 = Fµνuν

uν∂νu
µ

Pµν∂ν
µ
T

Fµνuν

Tensors σµν – T1 = σµν

Pseudo vectors
1
2ε
µναβuν∂αuβ

–
ωµ = 1

2ε
µναβuν∂αuβ

1
2ε
µναβuνFαβ Bµ = 1

2ε
µναβuνFαβ

Table 1. One-derivative expressions classified according to their transformation laws under the

SO(3) residual symmetry and parity. The first column lists all one derivative data. The second

column lists the equations of motion. The last column lists a choice of independent data. See (2.14)

and (2.15) for the definition of σµν and Pµν respectively.

We will soon construct an entropy current that includes terms which are first order in

derivatives. The divergence of such an entropy current is of second order in derivatives and

includes terms quadratic in first order fluid (and background field) data plus expressions

built out of two derivatives acting on fluid fields or single derivatives of electromagnetic field

strengths. We refer to the second class of expressions as two derivative scalar data. When

studying the divergence of the entropy current it is useful to have a listing of independent

scalar two derivative data.

In the first column of table 2 we list the most general fluid and background field

(but not curvature related) two derivative data that transforms as an SO(3) scalar. More

explicitly, we list all scalar expressions formed by acting with two derivatives on uµ(x),

T (x) and µ(x) together with all scalars formed from the action of a single derivative on

electromagnetic field strengths.8 In the second column of the same table we list all scalar

two derivative equations of motion. In the last column of the same table we list our choice

of independent two derivative scalar data (in terms of which we have solved for all the

other two derivative scalars).

2.1.2 The general entropy current and its divergence

Armed with the listings in tables 1 and 2 we now proceed with our analysis. Traditional

studies of first order charged fluid dynamics (see, for example, [17]) assume that the entropy

8It is also easy to list two derivative fluid data in the 3, 5 and 7 dimensional representations of SO(3),

but that will not be required in what follows, so we do not present such a listing.
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All data Equations of motion Independent data

uµuν∂µ∂νT

∇µ∇νTµν = 0

P ρν∇ρ∇µTµν = 0

uν∇ν∇µJµ = 0

Pµν∇µ∂ν µT
uµ∇µ∂νuν

∇µ(Fµνuν)

Pµν∂µ∂νT

uµuν∂µ∂ν
( µ
T

)
Pµν∂µ∂ν

( µ
T

)
uµ∂µ∂νu

ν

∂µ(Fµνuν)

Table 2. Parity even two derivative scalar data for charged fluids. The first column lists all six

second order scalars constructed from two derivatives of the hydrodynamic variables and background

field strengths. The second column lists the three scalar two derivative equations of motion. The

last column lists one choice of a 6 − 3 = 3 dimensional basis for the independent two derivative

scalar data.

current takes a canonical form,9

JµS canon
= suµ − 1

T
uµT

µν
diss −

µ

T
Jµdiss . (2.17)

As we explained in the introduction, in this work we will not make any prior assumption

about the form of the entropy current. According to the analysis of section 2.1.1 the most

general parity even first order entropy current is given by

JµS = JµS canon
+ s1 S1u

µ +

3∑
i=1

viV
µ
i (2.18)

where S1 and Vi are defined in the last column of table 1, and s1 and the vi’s are arbitrary

functions of µ
T and T .

We now explore the constraints obtained by enforcing the positivity of the divergence

of the entropy current (2.18). It is easily demonstrated (see, for instance, [10, 17]) that the

divergence of the canonical part of the entropy current is given by

∇µJµS canon
= −∇µ

(uν
T

)
Tµνdiss −

(
∂µ

(µ
T

)
− Fµνu

ν

T

)
Jµdiss. (2.19)

The right hand side of (2.19) is a quadratic form in one derivative fluid and background

electromagnetic field data. The divergence of the non canonical part of the entropy current

in (2.18) is also a two derivative expression but is composed of two kinds of terms. The

first set of terms are linear in independent two derivative and curvature data. Such terms

are always inconsistent with the positivity of the entropy current, and so we must choose

s1 and vi so that these terms vanish. The second set of terms contains products of one

derivative terms. Such terms would modify the quadratic form on the right hand side

of (2.19) and do not necessarily vanish. Schematically, we have

∂µJ
µ
S =

(
independent two

derivative and curvature data

)
+
(

quadratic form in
first order data

)
. (2.20)

9As explained in [10] the expression in (2.17) is frame invariant, i.e. invariant under a first order field

redefinition of T , uµ and µ. Note that the second term on the right hand side vanishes in the Landau frame

while the third term vanishes in the Eckart frame.
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The first term on the right hand side of (2.20) must vanish while the second term must be

tuned to be positive.

2.1.3 Constraints from positivity of the divergence of the entropy current

We will first explore the constraints that follows from the requirement that no two derivative

data appears in the divergence of the entropy current. As explained previously, this implies

that the first set of terms on the right hand side of (2.20) must vanish. We will implement

this condition separately for two derivative and curvature terms.

Constraints from the vanishing of 2 derivative terms: the two derivative part of

the divergence of the entropy is given by

−v1P
µν∇µ∂ν

µ

T
+ (s1 + v2)uµ∇µ∂νuν +

(
v3 +

v1

T

)
∇µ(Fµνuν) .

This expression is a linear combination of the three independent two derivative pieces of

data (see table 2). It follows that the vanishing of two derivative terms requires us to set

the coefficients of each of these terms to zero, i.e. to set v1 = v3 = 0 and v2 = −s1. Thus

the vanishing of two derivative terms in the divergence of the entropy current restricts the

entropy current (2.18) to take the form

JµS = JµS canon
+ s1 (S1u

µ − V µ
2 ) . (2.21)

where s1 is still an arbitrary function of T and µ.

Constraints from vanishing of curvature terms: according to (2.21) the entropy

current has a one parameter ambiguity, s1. Were we to restrict our attention to a flat

space background we would not have been able resolve this ambiguity. Consider a charged

fluid propagating on an arbitrary curved background. The cancellation of two derivative

terms proportional to s1 is now incomplete; it is not difficult to check that there is an

additional, curvature dependent term in the divergence of the entropy current proportional

to s1Rαβu
αuβ with Rαβ the Ricci tensor. This term is inconsistent with positivity of the

divergence of JµS . Thus, we are forced to set s1 = 0.

We conclude that the requirement that the divergence of the entropy current is positive

in an arbitrary curved background forces the entropy current to take its canonical form,

justifying the assumptions of standard treatments of fluid dynamics e.g. [17].

2.1.4 Constraints on dissipative terms

We have demonstrated that the entropy current takes its canonical form and consequently

that its divergence is given by (2.19). It is now not difficult to work out the constraints on

dissipative terms that ensure the positivity of the quadratic form on the right hand side

of (2.19). We outline the calculation here.

Consider the expansion of ∇µ
(
uν
T

)
and −V1 = ∂µ

µ
T −

Eµ
T which appear on the right

hand side of (2.19) into SO(3) invariant tensors vectors and scalars. We find a single tensor,

σµν , two vectors,

V µ
1 , and

(
Pµν

∂νT

T
+ (u.∂)uµ

)
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(see table 1 for a definition of the vector V µ
1 ) and three scalars,

(u·∂)T

T
, (u·∂)ν, and (∇·u) .

While the two vectors are completely distinct off-shell, it turns out that the equations of

motion imply that they are proportional to each other on-shell. Similarly, the equations

of motion imply that the three scalars are also proportional to each other on-shell. As we

demonstrate in appendix B the explicit relations are

(u.∂)T

T
= −

[
∂P

∂ρ

]
q

(∇.u)

(u.∂)ν = − 1

T

[
∂P

∂q

]
ρ

(∇.u)

Pµν
∂νT

T
+ (u.∂)uµ =

qT

ρ+ P
V µ

1 .

(2.22)

Plugging these relations into (2.19), we can rewrite the divergence of the entropy current

in the form

∇µJµS =− (∇µuµ)

T

[
(Tdiss)abP

ab

3
− ∂P

∂ρ
(uµuνT

µν
diss) +

∂P

∂q
(uµJ

µ
diss)

]
+ V1µ

[
Jµdiss +

q

ρ+ P
(uνT

µν
diss)

]
−
Tµνdissσµν

T

(2.23)

where V µ
1 , Bµ and Eµ were defined in table 1 and (2.16). We collect their definitions here

for convenience:

Eµ = Fµνu
ν

Bµ =
1

2
εµναβu

νFαβ

V1µ =
Eµ
T
− P θµ∂θν .

We will now use (2.23) to constrain the constitutive relations of fluid dynamics, i.e.

the expressions for Tµνdiss and Jµdiss as a linear expansion in first order scalars, vectors and

tensors. To first order in gradients there is only one independent scalar data so the scalar

parts of Tµνdiss and Jµdiss are necessarily proportional to ∇·u. The vector parts of Tµνdiss and

Jµdiss must each be expanded as a linear sum of the three independent vectors listed in

table 1. The tensor in table 1 is proportional to σµν since there is only one SO(3) invariant

tensor. It follows from group theory that positivity of the divergence of the entropy current

implies positivity of the scalar, vector and tensor components separately. Thus, we have

PµαP
ν
β T

αβ
diss −

Pµν

3
PαβT

αβ
diss = −ησµν

Pµα

(
Jαdiss +

q

ρ+ P
(uνT

αν
diss)

)
= κV µ

1

(Tdiss)abP
ab

3
− ∂P

∂ρ
(uµuνT

µν
diss) +

∂P

∂q
(uµj

µ
diss) = −β∂αuα

(2.24)
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where

η ≥ 0, κ ≥ 0, β ≥ 0.

These three coefficients are the shear viscosity, η, the heat conductivity, κ, and the bulk

viscosity, β. The bulk viscosity is traditionally denoted by ζ but in this work we reserve ζ

for different use.10

Several aspects of (2.24) deserve comment. First, the requirement of positivity does

not individually constrain the three scalar and two vector pieces in Tµνdiss and Jµdiss, but

only constrains the combinations that appear in (2.10) and (2.8). This is exactly as we

would expect: only field redefinition invariant data can be constrained in a physical way.

The vectors and scalars that are left undetermined are unphysical; they can be changed,

or chosen arbitrarily, by a field redefinition. Despite appearances, (2.24) constitutes a

complete determination of the constitutive relations of our system.

We also note that we could have used the fact that the divergence of the entropy current

is frame invariant (see [10]) to determine the frame invariant scalar, vector and tensor

combinations in (2.6), (2.8) and (2.10); the expression on the right hand side of (2.23)

must arrange itself into such frame invariant combinations.

The third aspect to note is that the constraints of positivity are relatively mild in the

scalar and tensor sector. The expansion of scalars and tensors is the most general one

permitted by symmetry; the requirement of positivity merely imposes inequalities in the

coefficients of this expansion. However, the constraint on vectors is much stronger. Sym-

metry alone would have allowed the expansion of the second line in (2.24) as an arbitrary

linear combination of the 3 vectors V1, V2 and V3. However the requirement of positivity

sets the coefficients V2 and V3 to zero,11 apart from imposing an inequality on the coefficient

of the third. We will see this pattern repeated and magnified in the study of superfluid

dynamics in sections 3 and 4 in the scalar, vector and tensor sector.

2.2 Parity non invariant charged fluid dynamics

Let us now turn to the dynamics of fluids that are not invariant under parity transforma-

tions. According to table 1 we should allow the entropy current to depend on an additional

arbitrary pseudo vector. Thus, the most general entropy current for such a fluid takes the

form

JµS = JµS canon
+ s1 S1u

µ +

3∑
i=1

viV
µ
i + σωω

µ + σBB
µ . (2.25)

In the parity even sector the divergence of this entropy current is identical to the one

discussed in subsection 2.1; the arguments in 2.1 go through unchanged and in particular

the cancellation of two derivative and scalar terms set s1 = vi = 0. In the parity odd sector

10Note that the speed of sound, cs, is related to the variation of the pressure with respect to energy

density through ∂P
∂ρ

= c2s. Using dimensional analysis one can conclude that ∂P
∂q

= 0 in a scale invariant

theory. It then becomes clear that in a conformal theory the left hand side of the last equality in (2.24)

vanishes as it should.
11The origin of this constraint is the observation that the quadratic form ax2 + bxy+ cxz is positive only

when b = c = 0 and a ≥ 0. The role of x is played by the vector V , while the roles of y and z are played

by the other two vectors
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the divergence of the entropy current receives contributions involving the dot product of

the pseudo vectors ωµ and Bµ with ordinary vectors. Positivity of the divergence of the

entropy current implies that such products vanish.12 This restriction was analyzed in detail

by Son and Surówka [20] who found that it leads to

PµαP
ν
β T

αβ
diss −

Pµν

3
PαβT

αβ
diss = −ησµν

Pµα

(
Jαdiss +

q

ρ+ P
(uνT

αν
diss)

)
= κV µ + κ̃ωω

µ + κ̃BB
µ

(Tdiss)abP
ab

3
− ∂P

∂ρ
(uµuνT

µν
diss) +

∂P

∂q
(uµj

µ
diss) = −β∂αuα

(2.26)

where

σω = c
µ3

3T
+ Tµk2 + T 2k1

σB = c
µ2

2T
+
T

2
k2

κ̃ω = c

(
µ2 − 2

3

q

ρ+ P
µ3

)
+ T 2

(
1− 2q

ρ+ P
µ

)
k2 −

2q

ρ+ P
k1

κ̃B = c

(
µ− 1

2

q

ρn + P
µ2

)
− T 2

2

q

ρ+ P
k2

(2.27)

and k1 and k2 are integration constants. We will now argue that the requirement of

CPT invariance forces k2 to vanish.13 The argument goes as follows. Consider the CPT

transformation xµ → −xµ q → −q (and so µ → −µ). Under this transformation Tµνdiss →
Tµνdiss and Jµdiss → −J

µ
diss. Also uµ → uµ so that ωµ → −ωµ and Bµ → Bµ. Thus under

a CPT transformation it must be that κ̃ω → κ̃ω while κ̃B → −κ̃B. Consistency of this

requirement with (2.27) sets k2 = 0. Nothing in our argument requires that k1 vanish

(although it would be interesting to find a specific system with k1 6= 0; k1 vanishes in all

AdS/CFT computations performed so far).

The results (2.26) and (2.27) have several interesting features. First, the presence of

an anomaly forces the entropy current to depart from the canonical form (i.e. σB and σω
are never zero if c is nonzero). Second, it induces new terms in the vector part of the

constitutive relations, proportional to the vorticity and the magnetic field. Third, the new

contributions to both the entropy current and the vector part of the constitutive relations

are completely determined (up to an integration constant that is independent of T and µ)

by the anomaly. In other words, although the constitutive relations take a different form

from the parity even case, this change in form is completely determined by the anomaly,

and we have no new free parameters apart from the integration constant k2.

12We will see later that products of vectors and pseudo vectors do not necessarily need to vanish in the

case of superfluid dynamics. In the current setup vanishing of such bilinear terms follows from the fact that

the divergence has no squares of pseudo vectors and contains only a single squared vector.
13We thank D. Son for pointing this out to us.
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3 Parity invariant superfluid hydrodynamics

By definition, a superfluid is a fluid phase of a system with a spontaneously broken global

symmetry. When discussing superfluids this forces us to consider the gradient of the

Goldstone boson as an extra hydrodynamical degrees of freedom in addition to the standard

variables uµ, T and µ. More precisely, if we denote the Goldstone Boson by ψ (ψ is the phase

of the condensate of the charged scalar operator) and we also wish turn on a background

gauge field Aµ then

ξµ = −∂µψ +Aµ (3.1)

represents the covariant derivative of the Goldstone Boson and is an extra hydrodynamic

degree of freedom.14 According to the Landau-Tisza two fluid model the superfluid should

be thought of as a two component fluid: a condensed component and a non condensed or

normal component. The velocity field of the normal fluid is given by uµ and the velocity of

the condensed phase is proportional to ξµ. It is often convenient to define the component

of ξ orthogonal to u,

ζµ = Pµνξν . (3.2)

The equations of motion of the superfluid are given by

∂µT
µν = F νµJµ

∂µJ
µ = cEµB

µ

∂µξν − ∂νξµ = Fµν

(3.3)

together with the constitutive relations

Tµν = (ρ+ P )uµuν + Pηµν + fξµξν + Tµνdiss

Jµ = quµ − fξµ + Jµdiss

u·ξ = µ+ µdiss

(3.4)

where we have chosen to work in an arbitrary ‘fluid frame’ (see [10] for an explanation of

this terminology and a fuller introduction to dissipative superfluid dynamics).

As was the case for the theory of charged fluids which we described in the previous

section, superfluids also allow for a simple ‘canonical’ entropy current [10]

JµS canon
= suµ − µ

T
Jµdiss −

uνT
µν
diss

T
(3.5)

where s is the thermodynamical entropy density of our fluid and is related to ρ and P

through the Gibbs-Duhem relation

ρ+ P = sT + µq (3.6)

and

dP = sdT + qdµ+
1

2
fdξ2 (3.7)

14In [16, 36] ξ was defined with an opposite sign.
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where

ξ =
√
−ξµξµ . (3.8)

It has been demonstrated in [10] that the entropy current (3.5) is invariant under field

redefinitions. It was also shown in [10] that the divergence of this entropy current is

given by

∂µJ
µ
s = −∂µ

(uν
T

)
Tµνdiss −

(
∂µ

(µ
T

)
− Eµ

T

)
Jµdiss +

µdiss

T
∂µ (fξµ) (3.9)

The rest of this section closely follows section 2. In 3.1 we list the independent first

order data and second order scalar data, in section 3.2 we construct the most general

positive divergence parity conserving entropy current consistent with Lorentz invariance.

We find that up to a certain ambiguous term which is physically trivial, the entropy current

agrees with its canonical form (3.5) and therefore the analysis of [10] follows.

3.1 Onshell inequivalent first order independent data

In the case of superfluid dynamics, the SO(3, 1) tangent space symmetry at any point

is generically broken down to SO(2) by the nonzero velocity fields uµ and ξµ. In the

special case that uµ and ξµ are collinear, SO(2) is enhanced to SO(3). This special case is

physically interesting since it implies that the superfluid component is motionless relative

to the normal component — once the superfluid velocity is too large superfluidity breaks

down. We will find it convenient to decompose all first order fluid dynamical data into

representations of SO(2) and treat the collinear limit as a special point in parameter space.

Representations of SO(2) are all one dimensional. We refer to fluid dynamical data

that is invariant under SO(2) as scalar data. All other fluid data has charge ±m under

SO(2), where m is an integer. There is always as much +m as −m data. We will find it

useful to group together +1 and −1 charge data into a two column which we refer to as

vector data; similarly we group +2 and −2 data together into tensor data.

Now consider a vector Vµ whose m = 1 and m = −1 components are (a, b). The vector

Ṽµ = εµναβuνξαVβ ≡ ∗Vµ (3.10a)

is a pseudo vector. Its components are proportional to (a,−b). Thus, when considering

representations of SO(2), the same data can be packaged into either a vector or into a

pseudo vector. The story is similar for all non-scalar representations. For instance, a

traceless symmetric tensor Tµν , whose m = 2 and m = −2 components are (a, b) is simply

related to a traceless symmetric pseudo tensor

T̃µν = εµαβγu
αξβT γν ≡ ∗Tµν (3.10b)

with components proportional to (a,−b). Hence all tensor data can be packaged into

pseudo tensors.

We now turn to a listing of the one derivative fluid dynamical and field data for

superfluids. In table 3 we explicitly list all one derivative data, one derivative equations

of motion, and then eventually independent one derivative data. The scalar ξ used in this
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Classification All data Equations of motion Independent

data

Scalars (set 1)

∂µu
µ ∂µ(Tξµ) P̃µν∂µuν

ξµξν∂µuν ξµ∂µ

(
ξ
T

)
P̃µν∂µ(Tξν)

ξµ∂µ
(
µ
T

)
ξµ∂µT ∂µJ

µ = cEµBµ ξµξν∂µuν

E ·ξ uµ∂µ
(
µ
T

)
ξµuν (∂µξν − ∂νξµ) = ξ ·E ξµ∂µ

(
µ
T

)
uµ∂µT uµ∂µ

(
ξ
T

)
ξµ∂νT

µν = ξµFµνJ
ν ξµ∂µ

(
µ
T

)
ξµuν∂νuν uµ∂νT

µν =−EµJµ ξµ∂µT

E ·ξ

Scalars (set 2)

∂µu
µ ∂µ(Tξµ) P̃µν∂µuν

ξµξν∂µuν ξµ∂µ

(
ξ
T

)
P̃µν∂µ(Tξν)

ξµ∂µ
(
µ
T

)
ξµ∂µT ∂µJ

µ = cEµBµ uµξν∂µuν

E ·ξ uµ∂µ
(
µ
T

)
ξµuν (∂µξν − ∂νξµ) = ξ ·E uµ∂µ

(
µ
T

)
uµ∂µT uµ∂µ

(
ξ
T

)
ξµ∂νT

µν = ξµFµνJ
ν uµ∂µ

(
µ
T

)
ξµuν∂νuν uµ∂νT

µν =−EµJµ uµ∂µT

E ·ξ

Pseudo scalars

ω ·ξ ω ·ξ
B ·ξ eαβ(∂αξβ − ∂βξα) = eαβFαβ B ·ξ

εµναβuµξν∂αξβ

Vectors

P̃µνuρ∂ρuν

P̃µνξρ∂ρuν P̃µνξρ∂ρξν P̃µν∂βT
β
ν = P̃µνFνβJ

β P̃µνuρ∂ρξν

P̃µνEν P̃µνFνβξ
β P̃αµuν (∂µξν − ∂νξµ) = P̃αµEµ P̃µνξρ∂ρuν

P̃µν∂ν
µ
T P̃µν∂ν

ξ
T P̃αµξν (∂µξν − ∂νξµ) = P̃αµFµνξ

ν P̃µνξρ∂ρξν

P̃µν∂νT P̃µνξα∂νuα P̃µνEν

P̃µνuρ∂ρuν P̃µνuρ∂ρξν P̃µνFνβξ
β

P̃µν∂ν
µ
T

Tensors
σuµν – σuµν
σξµν – σξµν

Table 3. One derivative data for superfluids. The first column lists all quantities formed from

the action of a single derivative on fluid and background fields. The second column lists all one

derivative equations of motion. The last columns lists a choice of independent data. The tensors

σξµν and σuµν are defined in (3.12)–(3.11). We also used eαβ = εµναβuµξν .

table is given by (3.8). We do not list pseudo vectors and pseudo tensors independently

from vectors and tensors as they are isomorphic and contain the same data. In table 4 we

assign labels to our independent data. In the same table we also present a second listing of

a basis for independent scalar data which will be more convenient at places. In appendix A

we demonstrate that both sets of seven scalars and the seven vectors listed are independent

data, i.e. that we can solve for all other scalars and all other vectors in terms of the chosen

basis.

As can be seen from tables 3 and 4, after imposing the equations of motion we have

six first order scalars and one first order pseudo scalar built out of fluid data, one first
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i 1 2 3 4 5 6 7

Sai P̃µν∂µuν P̃µν∂µ(Tξν) ξµξν∂µuν ξµ∂µ

(
ξ
T

)
ξµ∂µ

( µ
T

)
ξµ∂µT E.ξ

Sbi P̃µν∂µuν P̃µν∂µ(Tξν) uµξν∂µuν uµ∂µ

(
ξ
T

)
uµ∂µ

( µ
T

)
uµ∂µT E.ξ

Vai P̃µνuρ∂ρuν P̃µνuρ∂ρξν P̃µνξρ∂ρuν P̃µνξρ∂ρξν P̃µν∂ν
µ
T P̃µν∂νEµ P̃µνFνβξ

β

Table 4. Labels for the two sets of independent one derivative scalars and one set of independent

vectors.

order scalar and one first order pseudo scalar built out of background field strengths, five

first order vectors built out of fluid data, two first order vectors built from background

fields and two independent tensors. The first tensor is simply the usual shear tensor σµν

projected orthogonal to the plane formed by the two fluid velocities.

σuµν = P̃µαP̃ νβ
(
σαβ −

1

2
ηαβP̃γδσ

γδ

)
. (3.11)

The second tensor σξµν is defined by

σξµν =
1

2
P̃µαP̃ νβ

(
∂αξβ + ∂βξα − P̃αβP̃ γδ∂γξδ

)
. (3.12)

The counting of data in the absence of background fields agrees with [10].

As was the case for normal fluids, the divergence of the first order superfluid entropy

current is a sum over quadratic one derivative terms and two derivative pieces of data. In

order to assist the analysis of the positivity of the divergence of the entropy current we list

all the scalar two derivative data, the two derivative equations of motion and a basis for

onshell independent two derivative scalars in table 5. Note that we have nine independent

pieces of two derivative fluid dynamical data (as reported in [10] ) together with four

additional pieces of two derivative data from background field strengths. In appendix A

demonstrate that the scalars listed in the last column of table 5 form a basis of onshell

independent scalars.

3.2 Constructing the entropy current

With the independent data at hand we proceed with our analysis. The most general entropy

current allowed by symmetries takes the form

JµS = JµS canon
+ uµ

7∑
i=1

sai Sai + ξµ
7∑
i=1

sbiSbi +
7∑
i=1

viVaµi , (3.13)

where the coefficients sai , s
b
i , and vi are, at the moment, arbitrary functions of µ

T , T , and

ξ2. Note that we have chosen to expand the terms proportional to uµ in the basis Sai while

terms proportional to ξµ are expanded in the basis Sbi . This choice will prove algebraically

convenient below. In total we start with twenty one free parameters in the entropy current.
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All data

P̃µνuρ∂ρ∂µuν P̃µνξρ∂ρ∂µuµ P̃µνuρ∂ρ∂µ(Tξν) P̃µνξρ∂ρ∂µ(Tξν)

ξµξνuρ∂ρ∂µuν uµξρ∂ρ∂µ
(
ξ
T

)
uµξρ∂ρ∂µ

(
µ
T

)
uµξρ∂ρ∂µT

P̃µν∂µ∂ν
(
µ
T

)
P̃µν∂µ∂ν

(
ξ
T

)
P̃µν∂µ∂νT uµuρ∂ρ∂µ

(
ξ
T

)
ξµξρ∂ρ∂µ

(
ξ
T

)
ξµξρ∂ρ∂µ

(
µ
T

)
ξµξρ∂ρ∂µT uµuρ∂ρ∂µ

(
µ
T

)
uµuρ∂ρ∂µT ξµξνξρ∂ρ∂µuν uµξνuρ∂ρ∂µuν ξν P̃ ρµ∂ρ∂µuν

uµξν∂µEν ξµξν∂µEν P̃µν∂µEν εµνλσξµuλ∂µBσ

Equations of

motion

uβ∂β (∂µJ
µ) = uβ∂β (cEµBµ) ξβ∂β (∂µJ

µ) = ξβ∂β (cEµBµ)

uβ∂β (ξµ∂νT
µν) = uβ∂β (ξµFµνJ

ν) ξβ∂β (ξµ∂νT
µν) = ξβ∂β (ξµFµνJ

ν)

uβ∂β (uµ∂νT
µν) = uβ∂β (−EµJµ) ξβ∂β (uµ∂νT

µν) = ξβ∂β (−EµJµ)

uβ∂β (ξµuν (∂µξν − ∂νξµ)) = uβ∂β (ξµEµ) ξβ∂β (ξµuν (∂µξν − ∂νξµ)) = ξβ∂β (ξµEµ)

∂α
(
P̃αµuν (∂µξν − ∂νξµ)

)
= ∂α

(
P̃αµEµ

)
∂µ

(
P̃µν∂βT

β
ν

)
= ∂µ

(
P̃µνFνβJ

β
)

∂α
(
P̃αµξν (∂µξν − ∂νξµ)

)
= ∂α

(
P̃αµFµνξ

ν
)

Independent

data

P̃µνuρ∂ρ∂µuν P̃µνξρ∂ρ∂µuµ P̃µνuρ∂ρ∂µ(Tξν) P̃µνξρ∂ρ∂µ(Tξν)

ξµξνuρ∂ρ∂µuν uµξρ∂ρ∂µ
(
ξ
T

)
uµξρ∂ρ∂µ

(
µ
T

)
uµξρ∂ρ∂µT

P̃µν∂µ∂ν
(
µ
T

)
uµξν∂µEν ξµξν∂µEν P̃µν∂µEν

P̃µν (∂µFνβ) ξβ

Table 5. Two derivative scalar data. The first row gives all two derivative scalar data, the second

row lists all the equations of motion. The third row represents a particular choice of independent

second order data.

The two derivative terms in the divergence of the entropy current (3.13) are given by

∂µJ
µ
S = (sa1 + v1) P̃µνuρ∂ρ∂µuν + (sa2 + v2) P̃µνuρ∂ρ∂µ(Tξν) +

(
sb1 + v3

)
P̃µνξρ∂ρ∂µuν

+
(
sb2 + v4

)
P̃µνξρ∂ρ∂µ(Tξν) +

(
sa3 + sb3

)
ξµξνuρ∂ρ∂µuν

+
(
sa3 + sb3

)
uµξρ∂ρ∂µ

(
ξ

T

)
+
(
sa3 + sb3

)
uµξρ∂ρ∂µ

(µ
T

)
+
(
sa3 + sb3

)
uµξρ∂ρ∂µT + v5 P̃

µν∂µ∂ν

(µ
T

)
+ sa7 u

µξν∂µEν

+ sb7 ξ
µξν∂µEν + v6 P̃

µν∂µEν + v7 P̃
µν (∂µFνβ) ξβ + . . . .

(3.14)

Following the algorithm of the previous section, we first set the coefficient of each of the

thirteen independent two derivative terms listed in table 5, which appear in the divergence

of the entropy current, to zero. The vanishing of the nine fluid dynamical two derivative

terms yields the following nine relations between the sa’s sb’s and v’s

v1 = −sa1 v2 = −sa2 v3 = −sb1 v4 = −sb2 sb3 = −sa3 (3.15)

sb4 = −sa4 sb5 = −sa5 sb6 = −sa6 v5 = 0 .

The vanishing of the four electromagnetic field related two derivative scalars yields the

additional four relations

sa7 = sb7 = v6 = v7 = 0 . (3.16)
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Apart from the two derivative fluid dynamical and background electromagnetic field

data, there are four nontrivial curvature invariants one can form out of the contractions

of uµ, ξµ and gµν with the the Reimann tensor Rαβµν .15 After plugging in the constraints

in (3.15) and (3.16) into the expression for the entropy current (3.13) we find

∂µJ
µ
S = sa1P̃

αβuµuλRλβαµ + sb2P̃
αβξµξλRλβαµ

+
(
Tsa2 + sb1

)
ξµuλRλβαµ + sa3u

αξβuγξδRαβγδ + . . . .
(3.17)

Each of the terms in (3.17) is of indefinite sign. Thus, the coefficients of these four terms

must vanish. This implies

sa1 = 0 , sb1 = −Tsa2 , sb2 = 0 , s3 = 0. (3.18)

To summarize, by setting the two derivative and curvature terms that appear in the

divergence of the entropy current to zero we have eliminated 9 + 4 + 4 = 17 of the original

21 coefficients and are left with an entropy current with four undetermined coefficients,

JµS = JµS canon
+ sa2

(
uµP̃αβ∂α(Tξβ)− P̃µβuν∂ν(Tξβ)− TξµP̃αβ∂αuβ + T P̃µβξν∂νuβ

)
+ sa4

(
uµξν∂ν

ξ

T
− ξµuν∂ν

ξ

T

)
+ sa5

(
uµξν∂ν

µ

T
− ξµuν∂ν

µ

T

)
+ sa6 (uµξν∂νT − ξµuµ∂νT ) .

(3.19)

The entropy current (3.19) can be rewritten in a simpler form by introducing the

antisymmetric tensor

Qµν = T (ξµuν − ξνuµ) , (3.20)

introducing a unified notation for the three thermodynamical scalar fields

Σi =

{
µ

T
,
ξ

T
, T

}
i = 1, 2, 3 ,

and also redefining our coefficient functions

c0 = sa2 c1 = s5 −
Tµ

µ2 − ξ2
c2 = s4 +

Tξ

µ2 − ξ2
c3 = s6 −

2

T
.

Then (3.19) takes the form

JµS = JµS canon
+ c0∂νQνµ +

3∑
i=1

ciQµν∂νΣi . (3.21)

The one parameter subclass of this parameter set of entropy currents

ci = −∂Σic0 . (3.22)

15We omit the curvature scalar R in this listing since it is a pure gravitational term and therefore never

appears in the divergence of fluid dynamical entropy current.
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is trivial as (inserting (3.22) into (3.21)) it yields

JµS = JµS canon
+ ∂ν (c0Qνµ) (3.23)

i.e an entropy current whose divergence vanishes identically.16 The remaining three param-

eters are nontrivial, and in general lead to physical effects (see [21] for a thorough analysis).

In the current paper, however, we focus attention on superfluids that preserve invariance

under time reversal, (or, equivalently, by the CPT theorem, CP invariance). The terms

multiplying c0 and ci (i = 1 . . . 3) are all odd under this symmetry (this is a consequence of

the fact that ξi is odd under time reversal) and so must vanish in a time reversal invariant

theory.17 It follows that the entropy current is forced to take the canonical form.

It follows that the constraints on the dissipative terms Tµνdiss, J
µ
diss and µdiss from de-

manding the positivity of the divergence of JS are identical to the constraints from the

positivity of the divergence of the canonical entropy current JµS canon
. Such an analysis has

been carried out in [10] and we will be carried out in more generality in the next section.

Note also that the fluid dynamical analysis for the most general form of the superfluid

constitutive relations presented in [10] applies only under the assumption that the super-

fluid preserves both parity as well as time-reversal invariance. The agreement between the

fluid dynamical analysis and gravitational results in [10] is explained by the fact that the

gravitation theory analyzed in this preserve both these symmetries.

4 Superfluid dynamics without parity invariance

The main goal of this work is to determine the most general expression for the constitutive

relations for a Lorentz invariant but parity breaking superfluid. We tackle this problem

using the same algorithm which has been spelt out in the previous sections: we determine

the most general entropy current which is compatible with the symmetries. The restrictions

on the constitutive relations are then determined by demanding positivity of the entropy

current.

4.1 Onshell inequivalent data

As we’ve discussed in section 3.1, the listing of one derivative pseudo vectors and pseudo-

tensors of SO(2) can be constructed from the tensors of SO(2) using the ε tensor. If Vµ
16The parameter c0 is essentially trivial and is related to a pullback ambiguity as we explain in appendix C.
17The divergence of the entropy current (3.21) is given by

∂µJ
µ
S =− ∂µ

(uν
T

)
Tµνdiss + V1µJ

µ
diss +

µdiss

T
∂µ (fξν)

+ (∂Σic0) (∂µΣi) ∂νQνµ + ci∂µQµν∂νΣi +
(
∂Σj ci

)
(∂µΣj)Qµν (∂νΣi) .

(3.24)

In an earlier version of this paper we had used (3.24) together with the assumption that the six vectors

P̃ανξµσµν , P̃αµ∂νQµν , P̃αµV
µ
1 , P̃αν (∂νΣi) (i = 1, . . . , 3) .

are linearly independent to conclude that positivity of the (3.24) forces the entropy current to take the

form (3.23), independent of the assumption of time-reversal invariance. This result is incorrect as the six

vectors above are not linearly independent as may be seen using the equation (D.3). We thank the authors

of [21] for pointing this out to us.
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i 1 2 3 4 5 6 7

Ṽc µi ∗V1µ ∗ (ζασαβ) ∗∇σT ∗∇σ
(
µ
T

)
∗∇σ

(
ζ2

T 2

)
P̃µνων P̃µσB

σ

Vc µi P̃µσV1σ P̃µβ (ζασαβ) P̃µσ∇σT P̃µσ∇σ
(
µ
T

)
P̃µσ∇σ

(
ζ2

T 2

)
Vc µ2 −P̃

µαζν∂αuν
ζ2 −P

µνFναζ
α

ζ2

Sc ζµV
µ
1 u·∂T u·∂ µT u·∂ ζ

2

T 2 ζµPµα∂αT ζµEµ ζµPµα∂α
ζ2

T 2

T̃i µν ∗σuµν ∗σξµν – – – – –

S̃i ω ·ξ B ·ξ – – – – –

Table 6. Parity odd independent one derivative data which we use in this section. The ∗ operation

that takes us from vectors V and tensors T to pseudovectors Ṽ and pseudotensors, T̃ is given

in (4.1). We list a basis for pseudovectors, and a new basis for scalars and vectors which we will

work with in this section. Note that Ṽci = ∗Vci .

and Tµν are vectors and tensors of SO(2) then we define the associated pseudo vectors Ṽµ

and pseudo-tensors T̃ µν through:

Ṽµ = ∗Vµ = εµναβuνξαVβ
T̃ µν = ∗Tµν = εµραβuρξαT ν

β + ενραβuρξαT µ
β .

(4.1)

We introduce the following terminology: ∗Vµ is said to be the star of Vµ, and similarly

∗Tµν is said to be the star of Tµν .

Note that ∗Vµ is an SO(2) pseudovector for any vector Vµ since the ∗ operation projects

onto the subspace orthogonal to both uµ and ζµ where ζµ was defined in (3.2),

ζµ = Pµνξν .

In table 6 we list the independent one derivative pseudo-scalars, vectors and tensors which

we will use in this section. It proves convenient to choose our on-shell independent scalars

Sci to differ from both the choices made in section 3. The linear independence of this choice

of scalars is demonstrated in appendix D. Our choice of on-shell independent vectors is also

different from the one is made in table 4 of section 3. We have used the superscript c for

the pseudo vectors and vectors to flag this difference. We have demonstrated the linear

independence of this choice of vectors in appendix D.

In table 7 we list all two derivative pseudo scalars. The format we use is identical to

that of previous sections. We list all possible two derivative pseudo scalars that can be

constructed out of fluid and field data in the left column. The equations of motion appear

in the second column. For technical reasons we find it convenient to formally treat Eµ and

Bµ as independent fields in the full list of two derivative data (the left column in table 7)

and to impose the Bianchi identity (which relates some of the derivatives of these fields

to others) at the same stage that we impose the equations of motion. In other words, in

our listings below we will pretend that Eµ and Bµ are independent fields constrained by

“equations of motion” which are given by the Bianchi identities. In the last column we list

a basis of independent two derivative pseudo scalars. In appendix D we have demonstrated

that the two derivative pseudo scalars presented in table 7 are independent.
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All data equations of motion Two derivative data

ζµuν∇νBµ
ζµζν∇νBµ eλσ(ζ.∇)Cλσ = 0

P̃µν∇νBµ eλσ(∇θT θσ − Fσθjθ) = 0 eλσ∇λEσ
eλσ∇λEσ eλσuθ∇λCθσ = 0 eλσ(ζ ·∇)∇λuσ

eλσ(u·∇)∇λuσ εµνλσζµ∇νFλσ = 0 ζµζν∇µBν
eλσ(ζ ·∇)∇λuσ εµνλσuµ∇νFλσ = 0

eλσ(u·∇)∇λζσ
eλσ(ζ ·∇)∇λζσ

Table 7. Parity odd two derivative scalar data. The first column lists all possible independent two

derivative scalars with Bµ and Eµ treated as independent, the second column lists the equations of

motion (first three rows) and Bianchi identities (last two rows) and the last column the independent

data. We have used the shorthand notation eλσ = εµνλσuµζν and Cµν ≡ ∇µξν −∇νξµ − Fµν .

4.2 Constraints from vanishing of two derivative and curvature terms

We denote the total entropy current by

JµS = JµS canon
+ JµS new

+ ∂ν (c0Qµν) , (4.2)

where JµS new
is a parity odd contribution to the entropy current and ∂ν (c0Qµν) is a residual

ambiguity in the definition of the entropy current in the parity preserving sector described

in section 3. The most general contribution to JµS new
is given by

JµS new
=

7∑
i=1

ṽiṼc µi + uµ
2∑
i=1

s̃ai S̃i + ζµ
2∑
i=1

s̃bi S̃i . (4.3)

This entropy current has eleven new coefficients, each of which is an arbitrary function of

T , µ and ξ. In what follows we will swap the variables µ, and ξ with

ν =
µ

T
and χ =

ζ2

T 2
. (4.4)

As in previous sections, the eleven parameter set of currents is significantly constrained by

the requirement that two derivative and curvature terms in its divergence vanish. It will

prove convenient to rewrite the entropy current in the form

JµS new
= εµνρσ∂ν (σ1Tuρζσ) + σ3Ṽc µ3 + Tσ4Ṽc µ4 + Tσ5Ṽc µ5

+
σ8

2
εµνρσξνFρσ + T 2σ9ω

µ + Tσ10B
µ

+ α1Ṽc µ1 + α2Ṽc µ2 + ζµ [α3(ω ·ζ) + α4(B ·ζ)] (4.5)

The coefficient functions σi in (4.9) are linearly related to the coefficient functions in (4.3).

Although we will never need these relations, for the sake of completeness we present them

in appendix D.
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The first term in (4.9) is the divergent-less combination

1

2
εµνλσ∇ν (σ1Tuλζσ) (4.6)

with σ1 an undetermined function of T, ν and χ. This expression contributes to the entropy

current but does not contribute to its divergence. We’ve observed a similar expression in

the parity even sector of the entropy current in equation (3.23). As was the case in the

previous section, this term is physically irrelevant (it does not contribute in any way to the

constraints on dissipative terms) and can be ignored in what follows.

We now proceed to compute the correction to the entropy current (4.5). It is not

difficult to verify that the two derivative and curvature contribution to the divergence of

the entropy current is given by

∇µJµnew = α1

[
εµνλσuµζν

]
∇λEσ +

(α2 + ζα3)

2

[
εµνλσuµζν

]
(ζ.∇)∇λuσ

+ α4ζ
µζν∇µBν +

α2

2
εµνλσζµuνu

ρζθ
[
Rρσλθ −

Rρθσλ
2

]
+ . . .

(4.7)

where the dots denote the derivative squared terms. The expression on the right hand

side of (4.7) is a sum over a set of linearly independent two derivative data and curvature

terms (see table 7). Positivity of the divergence of the entropy current requires that the

coefficients of the two derivative data and curvature terms vanish. Thus,

α1 = α2 = α3 = α4 = 0. (4.8)

Had we not demanded the vanishing of curvature terms above, we would have erroneously

concluded that α2 is non zero. Inserting (4.8) into (4.5) we conclude that the most general

parity odd addition to the entropy current whose divergence has no two derivative data or

curvature terms is given by

JµS new
= εµνρσ∂ν (σ1Tuρζσ) + σ3Ṽc µ3 + Tσ4Ṽc µ4 + Tσ5Ṽc µ5

+
σ8

2
εµνρσξνFρσ + T 2σ9ω

µ + Tσ10B
µ . (4.9)

Expression (4.9) is the final result of this subsection.

Note that positivity of the divergence of the entropy current implies a correction to

the entropy density of the form

− uµJµS = s+ σ8S̃2 + σ1T S̃1 + ∂µ (c0Tζ
µ)− c0Tζ

µu·∂uµ . (4.10)

Equation (4.10) implies that in a parity violating system the entropy density, as defined

via the Gibbs Duhem relation (i.e., the log of the partition function in equilibrium), would

receive gradient corrections if c0, σ1 or σ8 are non zero.

4.3 Constraints from positivity of the quadratic form

The divergence of the sum of the canonical entropy current and the the new piece (4.9) has

no two derivative or curvature terms, and so is a quadratic form in one derivative data. In
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this subsection we will determine the corresponding quadratic form. The requirement that

this quadratic form is positive will enable us to deduce the restrictions on the σi’s in (4.9)

and on the parameters describing the equations of motion of the theory.

From (3.9) and taking into account the anomaly, we find that

∂µJ
µ
S = −∂µ

(uν
T

)
Tµνdiss +

(
Eµ
T
− ∂µ

(µ
T

))
Jµdiss +

µdiss

T
∂µ (fξµ)+∂µJ

µ
S new
−cνE·B . (4.11)

On general grounds the divergence of the non canonical part of the entropy current, together

with the contribution from the anomaly, takes the form:18

∂µJ
µ
S new

− cνE ·B =
7∑
i=1

7∑
j=1

Ṽci ·Bv
ijVcj +

7∑
i=1

2∑
j=1

S̃ciBs
ijSj . (4.12)

Recall that Ṽc µ = ∗Vcµ so that Bv
ij is an antisymmetric 7× 7 matrix.

The expressions for Bv
ij and Bs

ij are straightforward but rather tedious to compute. We

provide some details relevant to the computation in appendix D. We will not completely

list these matrices here, but will unveil relevant aspects of their explicit form as we go

along.

To complete our analysis, we need to re-express the divergence of the canonical entropy

current (3.9) in terms of on-shell independent data. We carry out this computation in a

frame invariant manner, similar to that of section 2.1.

We find it convenient to decompose the explicit fluid first derivative data that appears

in (3.9), namely ∇µ
(
uν
T

)
and Eµ/T −∂µν into SO(2) invariant scalars, vectors, and tensors

as follows

∇µ
(uν
T

)
=

(
1

3T
∇·u− 1

2ζ2T
ζ ·σ ·ζ

)
P̃µν +

1

ζ2

(
1

3T
∇·u+

1

ζ2T
ζ ·σ ·ζ

)
ζµζν

+
u·∂T
T 2

uµuν −
1

ζ2T

(
ζαu·∇uα +

ζα∂αT

T

)
u(µζν)

− 1

T

(
u·∇uα +

∂αT

T

)
u(µP̃

α
ν) +

2

ζ2T
ζ(µV2 ν) +

1

T
T1µν

Eµ
T
− ∂µν = V1µ + uµu·∂ν + ζµ

ζ ·V1

ζ2
.

(4.13)

We will find it convenient to organize the 7 scalars and three vectors above into two columns

sd and vd,

sd =



1
3T∇·u−

1
2ζ2T

ζ ·σ ·ζ
1

3T∇·u+ 1
ζ2T

ζ ·σ ·ζ
u·∂T
T 2

− 1
ζ2T

(
ζαu·∂uα + ζα∂αT

T

)
−u·∇ν
− ζ·V1

ζ2

∂µ(fξµ)
T


vd =

−
1
T

(
u·∇uα + ∂αT

T

)
P̃αν

2
ζ2T
Vc2 ν

−Vc1 ν

 . (4.14)

18This follows from the observation that the final result is a pseudo scalar. The absence of a tensor times

pseudo tensor term in this expression is not completely obvious but may be checked.
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The pieces of scalar and vector data in (4.14) multiply particular scalar and vector

components of Tµνdiss and Jµdiss. It is convenient to classify the scalar, vector and tensor

combinations as

s1 = TµνdissP̃µν ζ2s2 = ζ ·Tdiss ·ζ (4.15)

s3 = u·Tdiss ·u s4 = u·Tdiss ·ζ
s5 = u·Jdiss s6 = ζ ·Jdiss

s7 = −µdiss

vν1 = uµT
µα
dissP̃

ν
α vν2 = ζµT

µα
dissP̃

ν
α

vν3 = P̃ ναJ
α

t = P̃ α
µ P̃ β

ν Tdiss αβ −
1

2
P̃µνP̃αβTdiss,αβ ,

and to group these into row vectors

s =
(
s1 s2 s3 s4 s5 s6 s7

)
v =

(
v1 v2 v3

)
.

(4.16)

These definitions permit a very simple formal expression for the divergence of the canonical

entropy current:

∂µJ
µ
S canon

= −s sd − vµ vd
µ − 1

T
tµνT µν1 . (4.17)

In presenting (4.17) we have used matrix notation: the expressions on the right hand side

of (4.17) are each the product of a row and a column.

Equation (4.17) is not our final expression for the divergence of the canonical entropy

current for an important reason; the entries in the columns sd and vd are not independent

on-shell. In fact, on-shell, each of the 7 sd is a linear combination of only four independent

scalar terms. Similarly, on-shell, each of the three entries in vd is a linear sum over two

on-shell vectors. Specifically

sd = AsS, vd = AvV (4.18)

where

S =


Sc1
Sc2
Sc3
Sc4

 V =

(
Vc1 ν
Vc2 ν

)
(4.19)

and

As =



Rs
2qnTχ

B3
3T −

A3
2Tχ

B2
3T −

A2
2Tχ

B1
3T −

A1
2Tχ

− Rs
qnχT

B3
3T + A3

Tχ
B2
3T + A2

Tχ
B1
3T + A1

Tχ

0 1
T 2 0 0

− R
T 2χ

K3
T

K2
T

K1
T

0 0 −1 0

− 1
T 2χ

0 0 0

0 (ρ+P )K3

T
(ρ+P )K2

T
(ρ+P )K1

T


, Av =

−R 0

0 2
T 3χ

−1 0



(4.20)
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with

R =
q

ρ+ P
. (4.21)

Note that S is a column composed of 4 of the 7 on-shell independent scalars listed in

table 6, while V is a column composed of 2 of the 6 on-shell independent vectors listed

in the same table. Note also that As is a 7 × 4 matrix while Av is a 3 × 2 matrix. The

computation of the entries of the matrix As and Av is outlined in appendix D where we

also provide expressions for Ai, Bi and Ki. It follows that when re-expressed in terms of

on-shell independent data, the divergence of the canonical part of the entropy current takes

the form

∂µJ
µ
S canon

= −sAsS − vµA
vVµ − 1

T
tµνT µν1 . (4.22)

Equation (4.22) depends only on those 4 linear combinations of the 7 scalars si that

appear in the 4 columns of sAs. Similarly (4.22) depends on only the 2 linear combinations

of the three vectors vi that appear in the 2 columns of vAv. These numbers could have been

anticipated on general grounds. As in the case of ordinary fluid dynamics (see section 2)

the equations of superfluid dynamics suffer from a field redefinition ambiguity. The field

redefinitions in question are uµ, T and µ, and may be decomposed into 3 SO(2) scalars

and one SO(2) vector. All of the seven scalars si described above transform under the

scalar field redefinitions. As these redefinitions depend on three parameters, 7 − 3 = 4

independent linear combinations of the scalars are field redefinition invariant. Similarly

we expect to find 3− 1 = 2 field redefinition independent linear combinations of the three

vectors vi. Since the canonical entropy current is field redefinition invariant, the expression

for its divergence is necessarily also frame invariant. It follows that siA
s
ij and viA

v
ij must

be linear combinations of the four frame invariant scalars and the two frame invariant

vectors respectively. We have explicitly checked (see appendix D) that the the four linear

combinations sAs and the 2 linear combinations vAv are indeed field redefinition invariant.

Putting together (4.12) and (4.22), positivity of the entropy current implies that

− 1

T
tµνT µν1 ≥ 0 (4.23a)

−vµi A
v
ijVcj + Ṽci ·Bv

ijVcj ≥ 0 (4.23b)

−siA
s
ijScj + S̃ciBs

ijScj ≥ 0 . (4.23c)

In the rest of this section we will deduce the constraints imposed by (4.23) on the one

derivative constitutive relations for the tensor tµν , the frame invariant vectors vµA
v and

the frame invariant scalars sAs.

4.3.1 Positivity in the tensor sector

The most general one derivative constitutive relation for the frame invariant tensor t (on

symmetry grounds) is given by

tµν = P̃ α
µ P̃ β

ν Tdissαβ −
1

2
P̃µνP̃αβTdiss,αβ = −ηiTi µν − η̃iT̃i µν (4.24)

– 28 –



J
H
E
P
0
5
(
2
0
1
4
)
1
4
7

where T1 = σu, T2 = σξ and T̃i = ∗Ti and the η’s and η̃’s are four possible coefficients.

Positivity of the entropy current requires that

η1 > 0 η̃1 ∈ R η2 = η̃2 = 0 . (4.25)

In other words, the tensor part of Tµνdiss has no term proportional to T2 and to ∗T2. The latter

result could have been anticipated. The divergence of the entropy current does not have a

piece proportional to T2. Therefore terms in the divergence of the entropy current which are

linear in T2 must vanish. On the other hand tµν does, in general, have a term proportional

to T1; the coefficient of this term is the shear viscosity of the fluid and is constrained to be

positive. Positivity also allows a term proportional to ∗T1. The coefficient of this term, η̃1,

is a new parity odd coefficient (it is of course an arbitrary function of the thermodynamical

scalars). Note that η̃1 drops out of the formula for entropy production. This is because the

contraction of any tensor with its own star vanishes. Consequently, η̃1 is non dissipative;

its coefficient is unconstrained by the requirement of positivity of entropy production.

4.3.2 Positivity in the vector sector

The most general constitutive relations allowed by symmetries for the two frame invariant

vectors takes the form

vµi A
v
ij = −Viκij − Ṽiκ̃ij . (4.26)

The matrix of possible transport coefficients κ is a 7 × 2 matrix. The same is true for κ̃.

The first index runs over a basis of on-shell inequivalent vectors, while the second index

runs over a basis of field redefinition invariant combinations of vectors in Tµνdiss and Jµdiss.

A useful observation is that the quadratic form in the vector sector contains no terms

proportional to the square of Vci for i = 3 . . . 7. The first expression in (4.23b) has an explicit

factor of either Vc1 or Vc2. Since Bv
ij is antisymmetric, the second expression in (4.23b) has

no terms proportional to the square of any of the on-shell independent vectors. Positivity

thus demands that the quadratic form in the vector sector be completely independent of

Vci for i = 3 . . . 7. This implies that

Bv
ij = 0 i = 3, . . . , 7, j = 3, . . . , 7 (4.27a)

κ̃ij = −Bv
ij i = 3, . . . , 7, j = 1, 2 (4.27b)

κij = 0 i = 3, . . . , 7, j = 1, 2 (4.27c)

We now proceed to investigate the implications of (4.27).

Let us first focus on (4.27a). A priori, this equality gives us a set of 5 × 4/2 = 10

partial differential equations that constrain the six independent σi coefficients in (4.9).
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One of these equations is a tautology. The remaining nine equations are as follows

Bv
34 = 0⇒ ∂(σ4 − σ8)

∂T
− 1

T

∂σ3

∂ν
= 0 Bv

35 = 0⇒ ∂σ5

∂T
− 1

T

∂σ3

∂χ
= 0

Bv
45 = 0⇒ ∂(σ4 − σ8)

∂χ
− ∂σ5

∂ν
= 0 Bv

37 = 0⇒ ∂(σ10 − νσ8)

∂T
+
σ3

T
= 0

Bv
57 = 0⇒ ∂(σ10 − νσ8)

∂χ
+ σ5 = 0 Bv

46 = 0⇒ ∂σ9

∂ν
− 2σ10 + 2νσ4 = 0

Bv
36 = 0⇒ ∂σ9

∂T
+ 2ν

σ3

T
= 0 Bv

56 = 0⇒ ∂σ9

∂χ
+ 2νσ5 = 0

Bv
47 = 0⇒ ∂(σ10 − νσ8)

∂ν
+ (σ4 − σ8) = cν . (4.28)

Equations (4.28) are far from independent. They admit the following two parameter set of

solutions

σ3 = −T ∂(σ10 − νσ8)

∂T

σ4 = σ8 + cν − ∂(σ10 − νσ8)

∂ν

σ5 = −∂(σ10 − νσ8)

∂χ

σ9 = s9 −
2

3
cν3 + 2ν(σ10 − νσ8)

(4.29)

In (4.29) we have chosen σ8 and σ10 as our free parameters. The term s9 in the last line

of (4.29) is an integration constant. It turns out that the requirement of CPT invariance

forces

s9 = 0.

The argument for this conclusion is very similar to that given below (2.27). While we

present all formulae below at nonzero s9, the reader should keep in mind that s9 actually

vanishes in any superfluid that enjoys invariance under CPT invariance, i.e. any superfluid

that arises from a quantum field theory (and so presumably for any superfluid in the real

world, or obtained via the AdS/CFT correspondence).

Equation (4.29) is the most general solution to (4.28). As an aside we note that (4.29)

also implies that Bv
ij = 0 for i, j = 1, 2. We will use this information shortly.

We now turn to the implications of (4.27b). In this case, the coefficients κ̃ whose

second index lies between 3 and 7 are completely determined in terms of Bij , which is, in

turn, a function of the two free parameters σ8 and σ10. We find that Bi2 = 0 for i = 3 . . . 7.

Thus,

κ̃i2 = 0 i = 3, . . . , 7 .
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However κ̃i1 are in general nonzero. They are given by

κ̃31 = −Bv
31 = −RTσ3 − T∂Tσ8

κ̃41 = −Bv
41 = −RT 2σ4 − T∂νσ8

κ̃51 = −Bv
51 = −RT 2σ5 − T∂χσ8

κ̃61 = −Bv
61 = −2RT 3σ9 + 2T 2σ10

κ̃71 = −Bv
71 = −RT 2σ10 + 2Tσ8 + cTν .

(4.30)

To be clear we reiterate (4.27c)

κij = 0 i = 3, . . . , 7, j = 1, 2 . (4.31)

Once we have implemented all these conditions, the quadratic form in the vector sector

takes the form Vci ·κijVcj + Ṽci ·κ̃ijVcj where i, j = 1, 2. Positivity of the divergence of entropy

current implies ∑
i=1,2

∑
j=1,2

(
Vci ·κijVcj + Ṽci ·κ̃ijVcj

)
≥ 0. (4.32)

The Onsager relations (see [17]) imply that κ12 = κ21 and κ̃12 = κ̃21.19 We are left with 6

independent transport coefficients κ11, κ22, κ12 = κ21, κ̃11, κ̃22 and κ̃12 = κ̃21, each of which

is an arbitrary function of µ, T and ξ. Curiously, on imposing the condition κ̃12 = κ̃21,

the second term on the right hand side of (4.32), vanishes. This removes any dependence

on κ̃ij , j = 1, 2 from the condition of positivity of the divergence of entropy current. Thus

given the Onsager relations, only the coefficients κ11, κ22, κ12 = κ21 are constrained by the

inequality that the matrix

K =

(
κ11 κ12

κ12 κ22

)
(4.33)

is a positive semi-definite matrix. This condition simply reads

κ11κ22 ≥ κ2
12. (4.34)

Note that the 3 κ transport coefficients occur even in parity preserving superfluids, while

the 3 κ̃ coefficients violate parity and are new. Note also that all of the three new parity

violating transport coefficients, κ̃11, κ̃22, and κ̃12 = κ̃21 do not appear in the expression for

entropy production, and so are non dissipative.20

19In an earlier version of this paper we had claimed the relation κ̃12 = −κ̃21. Our sign error was pointed

out in [35]. Together with N. Banerjee, S. Jain and T. Sharma we have verified that the sign claimed in [35]

is indeed correct by checking that the stress tensor and current two point functions obey the relations

required by time reversal invariance only when the Onsager relations are given by κ̃12 = κ̃21. We thank Y.

Oz, N. Banerjee, S. Jain and T. Sharma for very useful discussions on this point.
20In an earlier version of this paper we had reported κ̃12 to be dissipative and our erroneous conclusion

was based on the incorrect additional sign, that we had in the relation between κ̃12 and κ̃21. We again

thank the authors of [35] for pointing this to us.
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4.3.3 Positivity in the scalar sector

The most general expansion of the constitutive relations in the scalar sector takes the form

siA
s
ij = −

7∑
i=1

Sci βij −
2∑
i=1

S̃iβ̃ij , (4.35)

implying the inequality

7∑
i=1

4∑
j=1

Sci βijScj +

2∑
i=1

4∑
j=1

S̃iβ̃ijScj +

2∑
i=1

7∑
j=1

S̃ciBs
ijSj ≥ 0 . (4.36)

Terms in (4.36) involving products of scalars and pseudo-scalars must vanish since they

can not be positive definite for an arbitrary flow. Thus, focusing on the parity odd sector

we must impose
2∑
i=1

4∑
j=1

S̃iβ̃ijScj +

2∑
i=1

7∑
j=1

S̃ciBs
ijScj = 0 . (4.37)

Only the second piece on the right hand side of (4.37) involves Scj with j = 4 . . . 7. We

immediately deduce the equation

Bs
ij = 0 = 1, 2 , j = 4, . . . , 7. (4.38)

Equations (4.38) are automatically satisfied once we impose the solution (4.29); we have

no further restrictions on the free parameters σ8 and σ10. For j = 1, . . . , 4, equation (4.37)

implies

β̃ij = −Bs
ij . (4.39)

It follows that there are no undetermined parity odd transport coefficients in the scalar
sector; all parity odd contributions to frame invariant scalar combinations of Tµνdiss, J

µ
diss and

µdiss are completely determined in terms of σ8 and σ10 by (4.39) and the explicit listing

Bsij =

(
2RTσ9

χ − 2σ10

χ −2σ3 − 2T 2K3σ9 −2Tσ4 − 2T 2K2σ9 −2Tσ5 − 2K1T
2σ9

− cν
Tχ −

2σ8

Tχ + Rσ10

χ ∂Tσ8 −K3Tσ10 ∂νσ8 −K2Tσ10 ∂χσ10 −K1Tσ10

)
.

(4.40)

Note that Bs
11 = −κ̃61/ζ

2 and Bs
21 = −κ̃71/ζ

2 with κ̃i1 defined in (4.30).

The remaining undetermined constitutive relations in the scalar sector are associated

with the parity even coefficients. These are parameterized by βij where i and j both range

between 1 and 4. The Onsager relations imply that the antisymmetric part of βij is zero.

So we have a total of 10 parity even dissipative coefficients in the scalar sector. These 10

coefficients parameterize a symmetric matrix that is constrained to be positive

4∑
i=1

4∑
j=1

Sci βijScj ≥ 0 . (4.41)
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5 Summary of results and special limits

In sections 3 and 4 we have built up a complete theory of relativistic superfluid hydrody-

namics that may or may not enjoy a parity invariance. Our work generalizes the recent

work of [10] (see also [16]) for parity conserving superfluids, and the work of [20] for charged

gauge-theory fluids with triangle anomalies (see also [22, 23]).

The computations presented in sections 3 and 4 are lengthy and algebraically rather

intensive. In this section we present the final results of our calculations in a manner that

is self contained and makes no reference to the method of derivation.

5.1 The problem addressed

As discussed in section 3, the energy momentum tensor Tµν and charged current Jµ of an

s wave superfluid are given by

Tµν = (ρ+ P )uµuν + Pηµν + fξµξν + Tµνdiss

Jµ = qnu
µ − fξµ + Jµdiss

µ·ξ = µ+ µdiss

(5.1)

where ξµ is related to the background gauge potential Aµ and Goldstone Boson ψ through

ξµ = −∂µψ +Aµ . (5.2)

(ψ is the phase of the charged scalar condensate.) We often use the projected variable

ζµ = (ηµν + uµuν)ξν ≡ Pµνξν . (5.3)

in what follows. The equations of motion of superfluidity are given by

∂µT
µν = F νµJµ

∂µJ
µ = cEµB

µ

∂µξν − ∂νξµ = Fµν

(5.4)

where we have allowed for the presence of triangle anomalies via the non conservation

of the charged current. In writing (5.1) we have not specified a frame — a particular

definition of the temperature T , chemical potential µ and four-velocity uµ once we deviate

from thermodynamic equilibrium. The thermodynamic functions ρ, P and f are functions

of the variables

T , ν =
µ

T
, χ =

µ2 − ξ2

T 2
. (5.5)

The equations (5.4) and (5.1) together specify a complete set of equations for the 9 fluid

dynamical fields uµ(x), T (x), µ(x), ξµ(x) once Tµνdiss, J
µ
diss and µdiss are specified as func-

tions of the fluid dynamical fields and their derivatives. The equations that determine

Tµνdiss, J
µ
diss and µdiss in terms of derivatives of fluid dynamical fields are called constitutive

relations. The main result of this paper is the determination of the most general form

of the constitutive relations consistent with Lorentz invariance, time-reversal invariance,

positivity of the divergence of the entropy current and the Onsager relations.
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The most general allowed constitutive relations turn out to depend on 20 unspecified

functions of T , ν and χ which we will refer to as free parameters. In this section we will

present our final results for the constitutive relations in terms of these 20 parameters.

Superfluid flows are also accompanied by an entropy current. The requirement that

this entropy current be of positive divergence for every fluid flow played a key role in our

derivation of the allowed form of the constitutive relations. At first order in the derivative

expansion the entropy current takes the form

JS = JµS canon
+ JµS new

. (5.6)

where JµS canon
is the so called canonical entropy current (in a fluid frame)

JµS canon
= suµ − µ

T
Jµdiss −

uνT
µν
diss

T
(5.7)

and JµS new
is a correction proportional to a sum of single derivatives of fluid fields. In this

section we also present our results for the correction JµS new
to the entropy current.

After summarizing our results we proceed to explain the specialization of these results

to the case of conformal or Weyl invariant superfluids, and certain simplified but often

used limit where the superfluid velocity is relatively small — in liquid Helium once the

superfluid velocity is too large superfluidity breaks down.

5.2 Listing our main result

The most general correction to the entropy current assuming time-reversal invariance is

given by

JµS new
= ∂ν (c0Qνµ) + εµνρσ∂ν (σ1Tuρζσ) + σ3Ṽc µ3 + Tσ4Ṽc µ4 + Tσ5Ṽc µ5

+
σ8

2
εµνρσξνFρσ + T 2σ9ω

µ + Tσ10B
µ . (5.8)

where

Qµν = T (ξµuν − ξνuµ) , (5.9)

and σ3, σ4, σ5 and σ9 are determined in terms of σ8 and σ10 by

σ3 = −T ∂

∂T
(σ10 − νσ8)

σ4 = σ8 + cν − ∂

∂ν
(σ10 − νσ8)

σ5 = − ∂

∂χ
(σ10 − νσ8)

σ9 = s9 −
2

3
cν3 + 2ν(σ10 − νσ8)

(5.10)

In the above relations ω and B were defined in (5.24), c is the anomaly coefficient and s9

is an integration constant. In any CPT invariant theory

s9 = 0.
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The terms in the entropy current proportional to c0 and σ1 are divergence free and so are

physically irrelevant (they have no effect on the equations of motion). Therefore, we ignore

these terms and do not consider them in to be a part of the 20 parameters, required to

describe time-reversal invariant superfluid dynamics (as mentioned in section 1). The final

result for the entropy current is expressed in terms of σ8 and σ10 which are undetermined

functions of T , ν and χ. As we will see below, σ8 and σ10 enter the constitutive relations,

and so are free parameters.21

We now turn to our results for the constitutive relations. We express our results

in a field redefinition invariant manner. Since the expressions Tµνdiss, J
µ
diss and µdiss are

not separately field redefinition invariant, we first list field redefinition invariant linear

combinations of these quantities. Let

s1 = TµνdissP̃µν ζ2s2 = ζ ·Tdiss ·ζ (5.11)

s3 = u·Tdiss ·u s4 = u·Tdiss ·ζ
s5 = u·Jdiss s6 = ζ ·Jdiss

s7 = −µdiss

vν1 = uµT
µα
dissP̃

ν
α vν2 = ζµT

µα
dissP̃

ν
α

vν3 = P̃ ναJ
α

t = P̃ α
µ P̃ β

ν Tdissαβ −
1

2
P̃µνP̃αβTdiss,αβ ,

where

Pµν = ηµν + uµuν P̃µν = Pµν +
ζµζν

ζ2
. (5.12)

We define the row vectors

s =
(
s1 s2 s3 s4 s5 s6 s7

)
v =

(
v1 v2 v3

)
.

(5.13)

We also define the matrices

As =



Rs
2qnTχ

B3
3T −

A3
2Tχ

B2
3T −

A2
2Tχ

B1
3T −

A1
2Tχ

− Rs
qnχT

B3
3T + A3

Tχ
B2
3T + A2

Tχ
B1
3T + A1

Tχ

0 1
T 2 0 0

− R
T 2χ

K3
T

K2
T

K1
T

0 0 −1 0

− 1
T 2χ

0 0 0

0 (ρ+P )K3

T
(ρ+P )K2

T
(ρ+P )K1

T


, Av =

−R 0

0 2
T 3χ

−1 0



(5.14)

where

R =
q

ρ+ P
V µ

1 =
Eµ

T
− Pµν∂νν

21Assuming parity invariance in addition to time reversal invariance forces the entropy current to take

its canonical form.
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i 1 2 3 4 5 6 7

V µi P̃µσV1σ P̃µβ (ζασαβ) P̃µσ∇σT P̃µσ∇σ
(
µ
T

)
P̃µσ∇σ

(
ζ2

T 2

)
Vc µ2 −P̃

µαζν∂αuν
ζ2 −P

µνFναζ
α

ζ2

S ζµV
µ
1 u·∂T u·∂ µT u·∂ ζ

2

T 2 ζµPµα∂αT ζµEµ ζµPµα∂α
ζ2

T 2

Ti µν ∗σuµν ∗σξµν – – – – –

S̃i ω ·ξ B ·ξ – – – – –

Table 8. The basis in which we present our main results. The pseudo vectors and pseudo tensors

Ṽ and T̃ are given through Ṽµ = εµναβuνξαVβ and T̃ µν = εµραβuρξαT νβ + ενραβuρξαT µβ Here

P̃µν = ηµν + uµuν − ζµζν/ζ2.

and the Ai’s Bi’s, Ci’s and Ki’s defined in appendix 4.

In terms of (5.11)–(5.14), the frame invariant scalar, vector and tensor combinations

of Tµνdiss, J
µ
diss and µdiss are given by the row vectors

sAs, vµA
v, tµν . (5.15)

By scalars, vectors and tensors we mean expressions which transform as spin 0, ±1 and ±2

representations of the SO(2) symmetry that is left invariant by the two vectors uµ and ξµ

at each point in spacetime.

We have 4 frame invariant scalars, 2 frame invariant vectors and one frame invariant

tensor. The constitutive relations determine these quantities as functions of first derivative

fluid expressions through the equations

tµν = −ηT µν1 − η̃T̃ µν1

vµi A
v
ij = −

2∑
i=1

Viκij −
2∑
i=1

Ṽiκ̃ij − δj1

(
7∑
i=3

Ṽiκ̃i1

)

siA
s
ij = −

4∑
i=1

4∑
j=1

Siβij −

 2∑
i=1

4∑
j=1

S̃iβ̃ij


(5.16)

with T , T̃ , V, Ṽ, S and S̃ a basis of onshell independent SO(2) invariant tensors, vectors

and scalars given in table 8. In equation (5.16) κ and β are symmetric matrices and

κ̃12 = κ̃21. Those coefficients that occur in the big brackets on the right hand side of that

equation, namely κ̃1i for i = 3 . . . 7 and β̃ij for i = 1, 2 and j = 1 . . . 4, are not free but are

determined in terms of σ8 and σ10 through the equations

κ̃31 = −RTσ3 − T∂Tσ8

κ̃41 = −RT 2σ4 − T∂νσ8

κ̃51 = −RT 2σ5 − T∂χσ8

κ̃61 = −2RT 3σ9 + 2T 2σ10

κ̃71 = −RT 2σ10 + 2Tσ8 + cTν

(5.17)
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− β̃ij =

(
2RTσ9

χ − 2σ10

χ −2σ3 − 2T 2K3σ9 −2Tσ4 − 2T 2K2σ9 −2Tσ5 − 2K1T
2σ9

− cν
Tχ −

2σ8

Tχ + Rσ10

χ ∂Tσ8 −K3Tσ10 ∂νσ8 −K2Tσ10 ∂χσ10 −K1Tσ10

)
.

(5.18)

where σ3, σ4, σ5 and σ9 are related to σ8 and σ10 through the relations (5.10).

The remaining coefficients in (5.16), those that occur outside the big brackets on the

right hand side of (5.16), are free parameters. The symmetric 2× 2 matrix κ, 4× 4 matrix

β, and η are constrained to obey

η > 0

κ11κ22 ≥ κ2
12

βij is symmetric positive semi-definite .

(5.19)

The remaining parameters

κ̃11 κ̃22 κ̃12 = κ̃21 η̃ σ8 σ10 (5.20)

are unconstrained.

In section 1 we counted twenty free parameters. Let us enumerate them explicitly.

The parity even parameters consist of a 4 × 4 symmetric matrix βij in the scalar sector

(10 parameters), a 2× 2 symmetric matrix κij in the vector sector (3 parameters) and the

shear viscosity η in the tensor sector (1 parameter) yielding a total of 14 parity even free

parameters. These are the only parameters in a theory that conserves parity. The parity

odd parameters consist of the three parameters κ̃11, κ̃22, κ̃21 = κ̃12, in the vector sector

and the one parameter η̃ in the tensor sector, amounting to a total of 4 free parameters.

The two undetermined functions σ8 and σ10 are two additional free parameters.

None of the six parity free parameters, namely κ̃11, κ̃22, η̃, σ8 and σ10, and κ̃21 = κ̃12

result in entropy production. On the other hand σ8 and σ10 multiply expressions that

do not vanish in equilibrium and are referred to non-dissipative in [21]. The remaining

four parity odd parameters multiply expressions that vanish in equilibrium. These terms

are unconstrained by the analysis of [21] and are referred to as dissipative in that paper.

It appears slightly non-intuitive to refer to a parameter that does not appear in entropy

production as dissipative and this suggests a need for modified nomenclature.

The remaining 14 parity even constitutive parameters are non-dissipative in every

sense. They multiply expressions that vanish in equilibrium. Moreover these parameters

also appear in the formula for entropy production and so are forced to obey appropriate

inequalities listed in (5.19).

5.3 Weyl invariant superfluid dynamics

The equations of superfluidity simplify somewhat in conformal field theories, i.e. theories

that enjoy invariance under Weyl transformations. The source of the simplification is

twofold: first the stress tensor of a CFT is always traceless. Second, the dependence of

all thermodynamic functions on temperature can be deduced by dimensional analysis if

we take the remaining variables to be the dimensionless quantities ν and χ. In the rest

of this subsection we briefly outline the special simplifications in Weyl invariant superfluid

hydrodynamics.
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Let us first consider the entropy current. The coefficient σ3 in the expression (5.8)

for the entropy current of a Weyl invariant theory must vanish. This follows because Ṽ3

does not transform homogeneously under Weyl transformations. Since σ8 and σ10 are

dimensionless and therefore independent of T , equation (5.10) does not pose an extra

restriction on these two parameters.

Let us now turn to the consequences of Weyl invariance on constitutive relations. It

turns out that (beside implying that all constitutive parameters are independent of T )

Weyl invariance implies no special simplifications for constitutive relations in the tensor

sector. In the vector sector we expect that κ̃13 = 0 since, like σ3, it multiplies Ṽ3 which

does not transform homogeneously under Weyl transformations. Since σ3 vanishes and σ8

is independent of the temperature, this condition is automatic from equation (5.17), i.e. it

does not pose an extra restriction on σ8. The remaining terms in the vector sector remain

unchanged.

In the scalar sector dimensional analysis implies that

A3 = K3 = 0 B3 = − 3

T
. (5.21)

The fact that the scalar S2 does not transform homogeneously under Weyl transformations

implies that both indices of β in the third equation in (5.16) run only over the indices

1, 3, 4. Consequently β is effectively a 3× 3 symmetric matrix (with 6 parameters) in the

Weyl invariant case. More importantly, the tracelessness of the stress tensor implies that

the number of scalar terms in Tµνdiss, J
µ
diss and µdiss is six rather than seven. In other words,

the seven terms si listed in (5.11) are restricted by the linear relation

s1 + s2 − s3 = 0 . (5.22)

Since there are still three field redefinitions in the scalar sector, this implies that we have

three rather than four field redefinition invariant scalar terms which can be constructed

out of Tµνdiss, J
µ
diss and µdiss. Accordingly we find that

siA
s
i2 = 0

β̃i2 = 0
(5.23)

so that the row vector siA
s
ij has three rather than four independent entries. Equation (5.23)

follows from (5.21), (5.22) and σ3 = 0.

It follows that Weyl invariant superfluid hydrodynamics is governed by 10 constitutive

parameters (when it preserves parity) and 16 constitutive parameters (when it violates

parity).

5.4 The ζ → 0 limit

In liquid Helium, superfluidity breaks down once the velocity of the superfluid component

is too large relative to the velocity of the normal component. The projected superfluid

velocity ζµ = Pµνξν can be thought of as a control parameter for that limit. Once ζ = 0

one can locally boost a fluid element to a frame where neither its normal component nor

its superfluid component are in motion.
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When ζ is non zero, the velocity of the normal component uµ together with ζµ break

the SO(3, 1) symmetry to SO(2). In the ζ → 0 limit (the collinear limit) this symmetry

is enhanced to SO(3). The number of possible expressions for SO(3) invariant scalars,

tensors, vectors and their parity odd counterparts is significantly smaller than that of the

SO(2) symmetric case. As discussed in [10, 16] there are two possible scalars, ∂ ·u and

∂µ (fξµ) (which we can swap with u·∂T and u·∂ν via the equations of motion), one vector

V µ
1 = −Pµν∂νν +Eµ/T and two tensors in the parity even sector, σµν and the symmetric

traceless projection of ∂µζν onto the space orthogonal to uµ. In the parity odd sector we

have two pseudo vectors

ωµ =
1

2
εµνρσuν∂ρuσ and Bµ =

1

2
εµνρσuνFρσ . (5.24)

Thus, in the collinear limit the transport coefficients of the theory reduce to a 2 × 2

symmetric matrix βij (in the parity even scalar sector), a diffusion coefficient κ (in the

parity even vector sector), a shear viscosity η (in the parity even tensor sector), and two

parity odd terms κ̃ω and κ̃B. These enter the constitutive relations through

−∂ ·u
3T

TµνdissPµν −
u·∂T
T 2

u·Tdiss ·u+ u·∂ν u·Jdiss +
µdiss

T
∂µ (fξµ) = SiβijSj(

RPµαT
αν
dissuν + PµαJ

α
)

= κV µ
1 − κ̃BB

µ − κ̃ωωµ

PµαP
ν
βT

αβ
diss −

1

3
PµνPαβT

αβ
diss = −ησµν .

(5.25)

It must also be true that

JµS new = σωω
µ + σBB

µ + . . . (5.26)

where we have written only the odd part of the entropy current, omitting the total derivative

term in the parity even sector (the second term on the right hand side of (5.8)). This

omission is represented by the . . . in (5.26).

As we have explained, we expect (5.25) and (5.26) to hold on general grounds. We

should, therefore, be able to verify these equations — and read off the values of κ̃B, κ̃ω
—by studying the ζ → 0 limit of our general results. We now describe how to take this

limit.

Let us first consider the entropy current. The third, fourth and fifth terms in (5.8)

each have an explicit factor of ζ and so simply vanish in the ζ → 0 limit. (We assume that

all physical quantities like the entropy current — and therefore all all coefficient functions

that appear in the entropy current — are analytic functions of ζ.) The last two terms

in (5.8) are already proportional to ωµ and Bµ respectively. The sixth term in (5.8) is

proportional to Bµ as ζ → 0, while the first term has a piece proportional to ωµ and a

piece proportional to Bµ. Putting it all together we recover the form (5.26) with

σω = T 2

(
s9 −

2

3
cν3 + 2ν

(
σ10 − νσ8 −

1

2
σ1

))
σB = T

(
σ10 − νσ8 −

1

2
σ1

)
.

(5.27)

where all functions are evaluated, of course, at ζ2 = 0.
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Let us now turn to the constitutive relations. Notice that −(vAv)1 is simply the SO(2)

vector part of the SO(3) frame invariant vector presented on the left hand side of the second

equation in (5.25). Note also that at leading order in small ζ

2T (sAs)2

A3
∼ 2T (sAs)2

A2
∼ 2T (sAs)1

A1
∼ 2s2 − s1

χ
.

Since the constitutive relations (5.16) equate this combination to an analytic function of

ζ, it follows that in the ζ → 0 limit 2s2 − s1 is frame invariant and, in fact, vanishes at

ζ = 0.22 Using this fact it follows that −(sAs)1 is proportional to the scalar part of the

vector on the left hand side of the second equation in (5.25). Thus,

κ ≥ 0

η ≥ 0

βij is positive semi-definite

κ̃ω = −κ̃61 = −ζ2β11 = 2RT 3s9 −
4

3
cRT 3ν3 − 4RT 3ν2σ8 + 2T 2(2RTν − 1)σ10

κ̃B = −κ̃62 = −ζ2β21 = RT 2σ10 − 2Tσ8 − cTν .

(5.28)

It was necessary that −κ̃61 = −ζ2β11 and that κ̃62 = −ζ2β21 in order that our results

group into an SO(3) vector in the ζ → 0 limit. This gives us a mild consistency check on

our results.

Let us summarize. The parity odd contributions to the entropy current and constitu-

tive relations are much simpler in the collinear limit than in the general case. The only

constitutive relation that receives corrections in this limit is the expression for the frame

invariant vector listed in the left hand side of the second equation of (5.25) (equal to the

dissipative part of the charge current in a Landau like frame). The corrections to both

this vector and the entropy current are linear combinations of Bµ and ωµ. These linear

combinations are specified in terms of 3 free functions, σ8, σ10 and σ1 and one integration

constant (which vanishes on assuming CPT symmetry). As 4 coefficient parameters are

determined in terms of 3 parameters, the coefficients obey a single linear identity. This

identity is given by
1

2
σω − µσB = − µ

3

3T
c+

1

2
s9T

2 (5.29)

Under the eminently reasonably assumption of CPT invariance s9 = 0 and

1

2
σω − µσB = − µ

3

3T
c (5.30)

The relation (5.30) is the only real prediction in the SO(3) invariant sector. Note that it

constrains coefficients in the entropy current alone. In the next section we will use the

AdS/CFT correspondence to test this relationship (of course s9 = 0 in the holographic

context).

22This could have been anticipated on general grounds, as this combination is proportional to the SO(2)

scalar in the SO(3) stress tensor, i.e. it is proportional to ζ ·σ ·ζ.
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The ζ → 0 limit for Weyl invariant superfluids: as we have seen above, Weyl

invariance removes one of scalar field redefinition invariant combinations of one derivative

corrections to the constitutive relations (because the trace of the stress tensor is set to

zero) and also removes one of the scalars in terms of which the parity even part of these

constitutive relations is expressed (because u·∂T and ∂·u do not transform homogeneously

under Weyl rescaling). In more detail, since in a conformal field theory, qn
(
∂
∂ν ln qn

s

)
u·∂ν =

∂µ (fξµ), there is only one permissible on-shell scalar. In the ζ → 0 limit the 2× 2 matrix

β described above collapses to a 1 × 1 matrix. Thus Weyl invariant superfluid dynamics

is characterized by 3 constitutive parameters in the ζ → 0 limit, one in the tensor sector

(the shear viscosity), one in the vector sector (conductivity) and one in the scalar sector

(a new coefficient).

Apart from determining the dependence of κ̃ω, κ̃B, σω and σB on the temperature

(using dimensional analysis), Weyl invariance does not impact the discussion presented

above for parity odd corrections to constitutive relations and the entropy current. In

particular (5.25)–(5.30) continue to hold, and do not significantly simplify in a theory that

enjoys Weyl invariance.

6 A holographic computation

The AdS/CFT correspondence [37–39] can be used to study the superfluid phase of ap-

propriate large N gauge theories in the limit of infinite t’ Hooft coupling [36, 40–43].

We will refer to such phases of gauge theories as holographic superfluids. Various fea-

tures of holographic superfluids have been studied in the literature. These include sound

modes [16, 43–46], critical superfluid velocities [36, 47] and vortex structure [48–50]. Holo-

graphic superfluids with a non uniform temperature, chemical potential and velocity fields

have been recently constructed in [10, 16] (see also [9]). These dynamical superfluids were

constructed for a certain specialized bulk action which, following the work of [31], allows

for an analytic treatment.

In this subsection we will demonstrate that the prediction (5.30), that follows from

our general analysis, is indeed true for superfluids that admit a dual description via the

AdS/CFT correspondence. Our demonstration uses the technology of the so called fluid

gravity correspondence [22, 23, 25–30] but allows for the implementation of this map in an

abstract manner that does not require us to know the explicit form of the solutions dual even

to stationary fluid flows. In this respect our analysis is reminiscent of the thermodynamical

analysis of Sonner and Withers [9] (see [51] for related work).

Our starting point for the analysis is the bulk action

S = SEH + Smatter + SCS (6.1)

where

SEH =
1

2κ2

∫ √
−g (R+ 12)

Smatter =
1

2κ2

∫ √
−g
(
−1

4
VF (|ψ|)FmnFmn − Vψ(|ψ|)|∂mψ − iqAmψ|2 − V (|ψ|)

)
SCS =

c

24

∫ √
−gεmnpqrAmFnpFqr

(6.2)
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with ε01234 = 1/
√
−g, F = dA, VF (0) = 1, Vψ(0) = 1 and V (0) = 0. We will often use

Dmψ = ∂mψ − iqAmψ. Roman indices run from 0 to 3 and 5. Later we will use Greek

indices to denote the boundary coordinates µ = 0, . . . , 3 and i, j = 1, . . . , 3 will denote the

spatial coordinates along the boundary. We have chosen the action (6.1) for several reasons.

As has been discussed in detail in [36, 40–42], to construct a holographic superfluid one

needs to spontaneously break a gauge symmetry in an asymptotically AdS geometry. The

minimal required fields for such a construction involve a gauge field Aµ, a charged scalar

ψ and a metric gµν . The parity conserving part of the action (6.1), i.e., SEH + Smatter, is

the most general action one can write down which involves the fields described above. The

parity violating sector consists of a Chern-Simons term, SCS , which naturally appears in

consistent truncations of type IIB supergravity. For example, the actions of the consistent

supergravity truncations described in [32, 33] can be described by the action (6.1).

The equations of motion which follow from (6.1) are

1√
−g
(
(∂m − iqAm)Vψ

√
−gDmψ

)
=

1

4

∂VF
∂ψ∗

F 2 +
∂Vψ
∂ψ∗
|Dψ|2 +

∂V

∂ψ∗

1√
−g

∂m
(√
−gVFFmn

)
= iqVψ (ψ∗(Dnψ)− ψ(Dnψ)∗)− cκ2

4
εnmpqsFmpFqs

Rmn −
1

2
Rgmn − 6gmn = Tmn

(6.3)

with

Tmn =
1

2
VFFmpF

np − 1

8
gmnFpqF

pq − 1

2
gmnV −

1

2
gmnVψ|Dψ|2

+
1

2
Vψ ((Dmψ)(Dnψ)∗ + (Dnψ)(Dmψ)∗) . (6.4)

Our strategy for computing the parity odd corrections to the entropy current and

the parity odd transport coefficients closely follows that of [10, 16, 22, 23, 25, 27]. We

first construct a stationary solution to the equations of motion (6.3) in which neither the

superfluid not the normal component are in motion. Being interested in the limit of small

relative superfluid velocity, we then allow for the gauge field to have a small non vanishing

spatial component. By boosting and rotating the latter solution, we find a generic bulk

configuration involving six free parameters which are associated with the temperature,

chemical potential, velocity of the normal component and the expectation value of the

goldstone boson of the dual superfluid. We then promote these six parameters to be

spacetime dependent fields. Once we do so the equations of motion (6.3) will no longer be

satisfied. Therefore, we add corrections to the our previous solution so that the equations

of motion (6.3) will be satisfied at least up to second order gradients of the six parameters.

We can then compute the one point functions of the energy momentum tensor, charged

current and gradient of the Goldstone boson in the boundary theory and from them read

off the transport coefficients associated with the first order terms in a gradient expansion.23

23The authors of [52] recently argued that the transport coefficients associated with the parity odd sector

can also be computed using a Kubo formula.
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6.1 A stationary solution

The ansatz for a stationary solution to the equations of motion (6.3)—corresponding to a

configuration in which the normal fluid and superfluid are both at rest — is

ds2 = −r2f(r)dt2 + r2dx2 + σ(r)dtdr (6.5)

ψ = ρ(r)eiqϕ(r) (6.6)

Am = (A0(r), 0, 0, 0, A5(r)) . (6.7)

In this ansatz we have not completely fixed a gauge. In what follows we will present our

analysis in the gauge invariant variables

Gm = Am − ∂mϕ . (6.8)

In this section we will not attempt to find an explicit solution for the unknown functions

in (6.5), such a solution will not be needed in what follows below. We will instead note

certain abstract aspects of this solution that can be obtained without explicitly solving the

equations.

• The equation for G5 is algebraic and is given by

G5 = −G0σ

r2f
. (6.9)

• The remaining equations of motion can be chosen to be a set of 4 linear differential

equations in the variables f , σ, ρ and G0. The equations have the property that

they involve only first derivatives (in the variable r) of f and σ and second order

derivatives (in the variable r) of ρ and G0.

• Assuming that the solution is a black hole, the fields σ and ρ are non vanishing at

rh, the black hole horizon, while f and G0 have a simple zero at rh. The fact that

G0 vanishes at rh follows from regularity of G5 (defined in (6.9)) near the horizon.

The temperature, T , and entropy density s of the black hole are given by

T =
r2
hf
′(rh)

4πσ(rh)
s =

πr3
h

κ2
. (6.10)

• One linear combination of the 4 equations can be shown to express the constancy (in

the radial direction) of the ‘Noether’ charge Q1 [53],

2κ2Q1 =
r5f ′

σ
− r3VFGG

′

σ
. (6.11)

The equation in question asserts that

Q′1 = 0

where a prime denotes a derivative in the r direction. Using (6.10) we find that

Q1 = sT . (6.12)
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• It is not difficult to work out a Graham Fefferman style solution of the equations of

motion at large r. Putting in the physical constraint that the non normalizable mode

dual to the scalar is turned off (i.e. that the operator dual to the scalar field is not

sourced in the dual boundary theory), we can use (6.11) and the equations of motion

for f , σ, ρ and G0 to show that near the asymptotically AdS boundary (r →∞)

f = 1 +
1

b4r4
+O(r−5)

σ = 1− 1

6
C∆|〈Oψ〉|2∆r−2∆ +O(r−2∆−2)

ρ = r−∆
(
C∆|〈Oψ〉|+O(r−2)

)
G0 = µ− κ2qtr

−2 +O(r−3)

(6.13)

where C∆ is a real number, Oψ is the operator dual to ψ, and qt represents the total

charge density as seen in the rest frame of the normal component; using the standard

AdS/CFT prescription [37, 38] to convert bulk to boundary quantities we find that

qt = −uµJµ

with Jµ the boundary theory charged current. Using (6.11) together with (6.12) we

find

sT + µqt =
2

b4κ4
≡ 4P (6.14)

which is the Gibbs Duhem relation for a conformal superfluid (see (3.6)).

6.2 Adding in a small uniform superfluid velocity

As we have explained above, in this section we focus on the collinear limit, i.e. the limit

in which the normal and superfluid velocities are equal. Following a long tradition we

do, however, wish to allow the derivatives of the normal and superfluid velocities to be

independent variables. Thus while we can set the normal and superfluid velocities equal at

a given point, it would be inconsistent to do the same in the neighborhood of that point.

In order to implement the fluid gravity map, even in our limited context, we need more

general stationary background solutions than the ones described in the previous paragraph.

In particular, since we are interested only in first derivative corrections, we need control

over background solutions in which the fluid is at rest and the superfluid in motion to

linear order in the superfluid velocity. In this section we describe the relevant solutions.

A constant superfluid velocity is an SO(3) vector. The solution that describes infinites-

imal superfluid motion (at first order) is a regular, normalizable, translationally invariant

fluctuation about the static background described in the previous subsection. A vector

fluctuation involves linear fluctuations of the vector modes gti and Gi. We find it more

convenient to work in terms of the variables g and γ defined by

Gi = −g∂iφ gti = −r2γ∂iφ

where ∂iφ is the expectation value of the spatial component of the Goldstone boson in

the dual field theory (i.e. ∂µφ is a function of the four boundary rather than the 5 bulk

dimensions).
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From the Einstein equations we obtain the following equation of motion for γ at linear

order (
γ′r5 +G′0gr

3VF
σ

)′
= 0 . (6.15)

Integrating (6.15) we obtain

2κ2Q2 =
γ′r5 +G′0gr

3VF
σ

(6.16)

with Q2 an integration constant. The asymptotic behavior of γ can be related to thermo-

dynamic quantities in the solution via

γ =
1

2
(qt − q)r−4 +O(r−5) . (6.17)

Integrating (6.16) near the boundary, it is not difficult to verify the form (6.17) and to

check that

Q2 = q . (6.18)

The equation of motion for g is obtained from the spatial components of the Maxwell

equation and can also be written as a total derivative,(
fr3(gG′0 − g′G0)VF

σ
+ 2κ2γQ1

)′
= 2κ2f ′Q2 . (6.19)

Integrating it once we get

fr3(gG′0 − g′G0)VF
σ

+ 2κ2γQ1 = Q3 + 2κ2fQ2 (6.20)

with Q3 an integration constant. We will now argue that Q3 vanishes. The argument

follows by demanding regularity at the event horizon. The fact that rh is an event horizon

(and so that dr is a null one-form at r = rh) implies that

γ(rh) = 0 . (6.21)

Every term in (6.20) vanishes at r = rh except Q3, so we conclude that Q3 = 0 for T > 0.

The near boundary expansion of g then takes the form

g = 1− (qt − q)κ2

µ
r−2 +O(r−3) . (6.22)

The second order linearized equations (6.15) and (6.19) have four linearly independent

solutions. One of these is

g = 0 γ = constant (6.23)

which corresponds to a deformation of the dual field theory metric. Another solution is

g = G0 γ =
Q2

Q1
f (6.24)

which corresponds to a boost of the stationary solution. Of the remaining two linearly

independent solutions only one can be chosen to be regular at the horizon. In terms of the

two first order integrated equations (6.16) and (6.20), imposing Q2 6= 0 precludes (6.23)

and imposing Q3 = 0 removes the solution which diverges at the horizon.
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6.3 Boosting

So far we have worked in a frame where uµ = (1, 0, 0, 0). As explained in [16] we can always

boost to a frame where the metric and gauge field take the form

ds2 = −r2f(r)uµuνdx
µdxν + r2Pµνdx

µdxν − 2σuµdx
µdr + 2r2γu(µζ̄ν)dx

µdxν

Aµ = Guµdx
µ + gζ̄µdx

µ +G5dr ,
(6.25)

with

G = G0

lim
r→∞

Aβ = aβ

ζ̄α = Pαβ(∂βφ− aβ) ,

(6.26)

aβ the external gauge field and φ the Goldstone boson. Our conventions here slightly differ

from the main text where we’ve defined ζ̄ = −ζ, see equations (3.1), (3.2).

In our current holographic formulation, it is convenient to use a frame where the energy

momentum tensor, charged current and Josephson condition are given by

Tµν = (ρ+ P + fµ2)uµuν + ηµνP + 2fµζ̄(µuν) + f ζ̄µζ̄ν + T̄µνdiss

Jµ = qtu
µ + f ζ̄µ + J̄µdiss

uµ (∂µφ− aµ) = −µ+ µ̄diss ≡ −µT

(6.27)

where

qt = q + fµ , (6.28)

and our frame choice is uµT̄
µν
diss = 0 and uµJ̄

µ
diss = 0.24 One can check that expanding (6.27)

to linear order in ζ̄µ and neglecting T̄µνdiss, J̄
µ
diss and µ̄diss, the boundary theory energy mo-

mentum tensor, charged current and chemical potential associated with the solution (6.25)

are obtained.

6.4 The gradient expansion

We now have in hand all stationary solutions that will be needed for our analysis. As

explained at the beginning of this section, the next step in our analysis is to allow the

thermodynamic variables to depend on the spacetime coordinates and look for corrections

to the metric, δgmn, gauge field, δAm and scalar δψ, so that the equations of motion (6.3)

24Actually, in our computation we are using a frame where

Tµν = (ρ+ P + fµ2)uµuν + ηµνP + 2fµζ̄(µuν) +
fµ

µT
ζ̄µζ̄ν + T̄µνdiss

Jµ = qtu
µ +

fµ

µT
ζ̄µ + J̄µdiss

uµ (∂µφ− aµ) = −µ+ µ̄diss ≡ −µT .

The dissipative corrections J̄diss, T̄diss and µ̄diss in this frame are different from Jdiss, Tdiss and µdiss used

throughout this work. Since in this section we will only be computing the transport coefficients in the

vector sector, the difference between the two frames is immaterial. The reader is referred to [10, 16] for an

extensive discussion.
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are satisfied. Since we will be interested in the collinear limit, we will set ζ̄ = 0 but keep

its derivatives non zero. In this limit, the equations of motion for the corrections to the

metric, gauge field and scalar naturally decompose themselves into scalar, vector and tensor

equations under the SO(3) ⊂ SO(3, 1) symmetry retained by the background. We write

the corrections to the metric in the form

δgmn dx
mdxn = −2uµdx

µr

(
uα∂αuν +

1

3
∂αu

αuν

)
dxν − 2δσ uµdx

µdr

− r2δf uµdx
µuνdx

ν + 2r2δVµ uνdx
µdxν + r2δπµν dx

µdxν , (6.29)

the corrections to the gauge invariant combination Gm in the form

δAmdx
m = −δGuµdxµ + δgµdx

µ + δG5dr , (6.30)

and corrections to the magnitude of the scalar as δρ.

The equation of motion for δG5 turns out to be an algebraic equation which can be

solved. The remaining kinematic equations for δG, δρ, δf and δσ are coupled. The vector

sector contains two coupled equations involving δVµ and δgµ and the equation of motion for

the tensor mode δπµν can be solved for since it is decoupled from the rest of the equations.

We have verified that the five constraint equations imply energy momentum conservation

and current conservation in the dual field theory. We have also checked that the ratio of

the shear viscosity to entropy density retains its universal value as has been alluded to

in [16, 54, 55].

Since we are interested only in the parity odd sector, and since in the collinear limit

this sector receives contributions only from the vector modes, we can focus entirely on the

equations of motion for δVµ and δgµ which read(
r5δV ′µ
σ
− G′δgµr

3VF
σ

)′
= SδVµ (6.31a)(

VF fr
3(δgµG

′ − δg′µG)

σ
− 2κ2Q1δVµ

)′
= Sδgµ . (6.31b)

(Recall that G = G0 from (6.26).) Note that the homogeneous parts of these equations

agree exactly with (6.15) as expected.

After integrating these once we can eliminate δV in place of δg and write the resulting

differential equation in Sturm-Liouville form,(
r3fVF
σ

δg′µ

)′
−
(
rV 2

FG
′ 2

σ
+ 2q2rσVψρ

2

)
δgµ = −Sδgµ

G
+

2κ2Q1σ

r5g

∫ ∞
r

SδVµ (x)dx ≡ Stotal .

(6.32)

In order to simplify the term linear in δgµ we used the equation of motion for G. The limits

of integration on the right hand side of (6.32) have been determined by the boundary values

of δgµ and δVµ and the requirement that we are in the frame described in (6.27).

Since (6.32) is a linear second order differential equation we can use the method of

Green’s functions to solve it. Consider first the homogeneous version of (6.32). We denote
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the two linearly independent solutions of the homogeneous equation by a and â such that

a = 1 +O(r−2) a(rh) = ah (6.33)

â = r−2 + . . . â(rh) =∞ . (6.34)

We find that

a =
Q1g +Q2G

Q1 +Q2µ
. (6.35)

The solution (6.35) corresponds to a shift in the superfluid velocity described in the previous

subsection. (One can use the method of variation of parameters to find â in integral form

though we will not be needing it in our analysis.) The solution to

d

dr

(
r3fVF
σ

dG(r, r̃)

dr

)
−
(
rV 2

FG
′ 2

σ
+ 2q2rσVψρ

2

)
G(r, r̃) = δ(r − r̃) (6.36)

which vanishes at the asymptotically AdS boundary and also at the horizon is given by

G(r, r̃) =

{
−1

2a(r̃)â(r) r > r̃

−1
2a(r)â(r̃) r < r̃ .

(6.37)

Thus, if Stotal(∞) = 0, a near boundary series expansion of δgµ is given by

δgµ = − 1

2r2

∫ ∞
rh

aStotal
µ dx+

1

2r2
lim
x→∞

(
x2 d

dx
Stotal
µ (x)

)
+ . . . . (6.38)

Then, according to the standard AdS/CFT prescription, the dissipative corrections to the

charged current in the boundary theory take the form

J̄diss µ = − 1

2κ2

(∫ ∞
rh

aStotal
µ dx− lim

x→∞

(
x2 d

dx
Stotal
µ (x)

))
. (6.39)

Let us focus on parity odd contributions to Stotal. we find that

Stotal
µ = 4cκ2(G− µg)G′ωµ − 2cκ2gG′Bµ +

(
parity even

terms

)
(6.40)

where ωµ and Bµ were defined in table 1. We reproduce their expression here for conve-

nience

ωµ ≡ 1

2
εµνρσuν∂ρuσ Bµ ≡ 1

2
εµνρσuνFρσ . (6.41)

Hence

J̄µdiss =
c

Q1 +Q2µ

(∫ ∞
rh

(Q1g +Q2G)gG′drBµ +

∫ ∞
rh

2(µg −G)(Q1g +Q2G)G′drωµ
)

+
(

parity even
terms

)
. (6.42)

Following the work of [27], the contribution of the parity odd terms to the entropy

current come from the horizon value of δVµ, i.e., if we denote the entropy current by JµS
then

JµS = sδV µ(rh) +
(

parity even
terms

)
. (6.43)
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It remains to evaluate the parity odd contributions to δV µ at the horizon. Integrat-

ing (6.31b) once we find that

VF fr
3(δgµG

′ − δg′µG)

σ
− 2κ2Q1δVµ =

∫ r

rh

Sδgµ + δQ (6.44)

with δQ an integration constant. Evaluating (6.44) at the horizon and at the boundary,

we find that

δV µ(rh) = −
µJ̄µdiss

Q1
+

∫∞
rh

Sδgdr

2Q1κ2
+
(

parity even
terms

)
= −µ

T
J̄µdiss +

c

T

(∫ ∞
rh

2(µg −G)GG′drωµ +

∫ ∞
rh

gGG′drBµ

)
+
(

parity even
terms

)
.

(6.45)

Restricting ourselves to parity odd contributions, the first term on the right hand side

of the first line of (6.45) represents the contribution of the canonical part of the entropy

current JµS canon
. The second term on the right hand side of the first line of (6.45) will give

us the corrections to JµS canon
.

Following the notation in (4.21), we denote

R =
q

ρ+ P
(6.46)

and write the parity odd transport coefficients and the corrections to the entropy current

as in (5.25)

J̄µdiss = −κ̃ωωµ − κ̃BBµ +
(

parity even
terms

)
JµS = −µ

T
J̄µdiss + σBω

µ + σωω
µ +

(
parity even

terms

)
.

(6.47)

Then, (6.45) and (6.42) imply

κ̃B = −c
∫ ∞
rh

g2G′ +R(G− gµ)gG′dr (6.48a)

κ̃B = 2c

∫ ∞
rh

(G− µg)gG′ +R(G− µg)2G′dr (6.48b)

σω =
2c

T

∫ ∞
rh

(G− µg)GG′dr (6.48c)

σB =
c

T

∫ ∞
rh

gGG′dr . (6.48d)

While we can not solve the integrals in (6.48) explicitly, we find that the following

relations are satisfied:

1

2
σω − µσB = −cµ

3

3T
(6.49a)

1

2
κ̃ω − µκ̃B + T (1− µR)σB = −cRµ

3

3
. (6.49b)
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(To obtain (6.49) from (6.48) we usedG(∞) = µ andG(rh) = 0.) The first of these relations

is precisely the universal prediction (5.27) between entropy current coefficients predicted

in the last section. Using (5.28) and (5.27) we can also obtain holographic expressions for

s9, σ1, σ8 and σ10

s9 = 0 (6.50a)

σ1 =
c

T 2

(
µ2 −

∫ ∞
rh

g(4G− µg)G′dr

)
(6.50b)

σ8 =
c

2T

(
−µ+

∫ ∞
rh

g2G′dr

)
(6.50c)

σ10 = − c

T 2

∫
g(G− µg)G′dr . (6.50d)

To study the values of κ̃ω, κ̃B, σω and σB at the phase transition we set g = 1.

Then, all the integrals in (6.48) can be carried out explicitly. We find that the resulting

expressions exactly match the zero superfluid density values of κ̃ω, κ̃B, σω and σB studied

in [20, 22, 23], implying that these coefficients are continuous across the phase transition.

7 Discussion

In this paper we have described a framework for describing superfluid hydrodynamics at

first order in the derivative expansion. We have determined the most general form of

the hydrodynamical equations that are consistent with Lorentz invariance, the Onsager

principle, and the requirement that the second law of thermodynamics apply in every

conceivable situation. We begin this section by summarizing our results, and then turn to

a discussion of possible applications and extensions.

We have found that the most general equations of Lorentz and time-reversal invari-

ant but non-parity conserving superfluids requires the specification of twenty parameters.

Fourteen of these are associated with the parity even sector and were described already

in [10], generalizing an earlier 13 parameter framework spelt out in [18, 19]). In this work

we have found that six more parameters need to be specified in the parity odd sector of the

theory. All six of these parameters are non dissipative; they drop off from the expression of

the divergence of the entropy current, and are unconstrained by inequalities. Four of these

six parameters (η̃, κ̃11, κ̃22 and κ̃12 = κ̃21 in the language of the main text) are relatively

simple. η̃ is the transport coefficients which is associated with the pseudo-tensor mode

T̃ µα = εµνρσuνζνσ
u α
σ + εανρσuνζνσ

u µ
σ (7.1a)

while κ̃11, κ̃22 and κ̃12 = κ̃21 are the coefficient of the pseudo vector modes

Ṽ1 = εµνρσuνζρ

(
∂σ
µ

T
− Eσ

T

)
(7.1b)

Ṽ2 = εµνρσuνζρζ
ασασ . (7.1c)

that appear in the two field redefinition invariant combinations of vectors, in the corrections

to the stress tensor and charge current.
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Note that η̃ closely resembles the hall viscosity in 2 + 1 dimensional theories [56, 57].

There, when parity is violated it is possible to have a transport coefficient ηH associated

with the tensor mode

εµνρuνσ
α
ρ + εανρuνσ

µ
ρ . (7.2)

The hall viscosity is known to be associated with the ground state’s intrinsic angular mo-

mentum. It would be interesting to see whether η̃ is also associated with similar quantities.

The remaining two non dissipative constitutive parameters, σ8 and σ10, multiply rel-

atively complicated expressions in the constitutive relations. These two parameters deter-

mine the eight transport coefficients associated with the pseudo scalars ω·ξ and B·ξ which

appear in the constitutive relations, and the transport coefficients of the pseudo vectors

∗∂µT , ∗∂µ µT , ?∂µ
ζ2

T 2 , ωµ and Bµ. It is possible that these expressions admit significant sim-

plifications when expressed in terms of variables that might turn out to be more natural

than those adopted in this paper. σ8 and σ10 also parameterize deviations of the entropy

current away from its canonical form.

The triangle anomaly, if it exists, enters the expression for the pseudo scalar and pseudo

vector coefficients whose value depends on σ8 and σ10. It is interesting to compare this

result with that of [20] which studied (non-superfluid) hydrodynamics in the presence of

triangle anomalies. There, the only addition to the parity-odd sector are the two pseudo

vectors ωµ and Bµ whose transport coefficients are completely fixed in terms of the anomaly

and a single integration constants. When considering superfluids the functional dependence

of the transport coefficients of ωµ and Bµ on T , µ and ζ is completely arbitrary. This novel

feature opens the possibility for interesting physical phenomenon in a parity violating

theory, even in the absence of an anomaly which is an intrinsically relativistic effect.

The most immediate application of our work would be to the modeling of the long

distance behaviors of real world superfluids (or superconductors) whose hydrodynamics

violates parity. We do not yet know of any candidate experimental systems of this sort.

We do note, however, that non centro symmetric superconductors live on parity violating

lattices. It would be exciting to investigate whether parity violation in these (or analogous

systems) could lead to experimentally observable nonzero values for any of the 6 parameters

described above.

In this paper we have worked out the general theory of superfluidity in 4 dimensions.

Several aspects of our analysis depended on the existence of an ε tensor with 4 indices.

It seems likely that the theory of superfluidity in 5 and higher dimensions will differ in

qualitative aspects from the theory we have worked out. It would be interesting to flesh

this out.

We have already verified certain aspects of our general construction of the equations

of superfluid hydrodynamics using explicit computations within the AdS/CFT framework.

However all the computations reported in this paper work in the collinear limit of vanishing

superfluid velocity. It would be instructive to demonstrate that all the numerous other

relations, implied by our work, between transport coefficients that do not preserve SO(3)

invariance, are also borne out by AdS/CFT computations. In this context we point out

that the generality of the expected results suggests that their derivation may also be carried
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out for a generic holographic superfluid (perhaps along the lines of section 6) and should

not involve the details of the corresponding dynamical systems.

An interesting feature of our AdS/CFT analysis is that in the collinear limit all the

transport coefficients in the parity odd sector of the theory are continuous at the phase

transition (i.e., they match their value in the uncondensed phase where f = 0). This is

similar to the behavior of the shear viscosity η and diffusion coefficient κ of the parity even

sector, but differs from the divergent behavior of the transport coefficient associated with

the scalar ∂µ(fξµ) [16]. It would be interesting to understand this result in terms of the

theory of dynamical critical exponents [58].

It would also be interesting to work out the properties of stationary superfluid flows

(like rotating superfluids on an S3) and to investigate how the properties of such configu-

rations are affected by the parity odd non dissipative terms that can be ‘turned on’ in such

configurations. Such configurations would be dual, under the AdS/CFT correspondence,

to rotating hairy black holes in global AdS space.

To end this paper let us highlight a structural aspect of our analysis that we find

quite remarkable. For this purpose it is sufficient to focus on the case of parity and time-

reversal invariant superfluids. The total number of constitutive coefficients allowed, merely

on symmetry grounds, is 50. In this paper we have shown that the requirement that

the equations that follow from these constitutive relations are consistent with positivity of

divergence of any entropy current (plus time-reversal invariance and the Onsager relations)

cuts down the number of constitutive coefficients from 50 to 14. In other words, the second

law of thermodynamics gives very powerful and precise constraints on dynamical equations.

Given the duality between fluid dynamics and gravity, it is natural to wonder whether

similar results may also be true for extensions of the theory of gravity. We leave detailed

investigation of this exciting possibility to future work.
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A The linear independence of data for the parity even superfluid

A.1 The linear independence of first order terms

A.1.1 The vector sector

The equations of motion in the vector sector are

P̃µβ∂νT
νβ = P̃µβF

βνJν

P̃µβuν (∂βξν − ∂νξβ) = P̃µβEβ

P̃µβξν (∂βξν − ∂νξβ) = P̃µβFβνξ
ν .

(A.1)

A basis of ten one derivative vectors (before using the equations of motion) was listed in

table 3. It is given by

P̃µβ(u·∂)uβ, P̃µβ(u·∂)ξβ, P̃µβ(ξ ·∂)uβ, P̃µβ(ξ ·∂)ξβ, P̃µβ∂β

(µ
T

)
,

P̃µβ∂βT, P̃µβ∂β

(
ξ

T

)
, P̃µβξν∂βuν , P̃µβEβ, P̃µβFβνξ

ν .
(A.2)

The quantities in (A.2) are not all on-shell inequivalent as they are constrained by the rela-

tions (A.1). In this subsection we will argue that it is consistent to choose the seven vectors

listed in the third column of table 3 as independent vector data. That is, we will show that

it is possible to use the equations (A.1) to solve for P̃µβ∂βT, P̃
µβ∂β

(
ξ
T

)
, P̃µβξν∂βuν in

terms of

P̃µβ(u·∂)uβ, P̃µβ(u·∂)ξβ, P̃µβ(ξ ·∂)uβ, P̃µβ(ξ ·∂)ξβ, P̃µβ∂β

(µ
T

)
,

P̃µβEβ, P̃µβFβνξ
ν

(A.3)

If we rewrite the equations of motion in (A.1) in terms of the quantities in (A.2) we

find

P̃µβ
(

(P + ρ)(u·∂)uβ + ∂TP∂βT + ∂ µ
T
∂β
µ

T
+ ∂ ξ

T
∂β
ξ

T
+ f(ξ.∂)ξβ

)
= P̃µβ (qEµ − fFµνξν)

P̃µβ
(

(u·∂)ξβ − T∂β
µ

T
− µ

T
∂βT + ξν∂βuν

)
= P̃µβEβ

P̃µβ
(

(ξ.∂)ξβ + Tξ∂β
ξ

T
+
ξ

T
∂βT

)
= P̃µβFβνξ

ν .

(A.4)

It is possible to use (A.4) to solve for the scalars listed in (A.3) if and only if the 3 × 3

matrix of the three vectors P̃µβ∂βT, P̃
µβ∂β

(
ξ
T

)
, P̃µβξν∂βuν in the three equations (A.4)

has nonzero determinant. This 3× 3 matrix is given by

M(v) =

 ∂TP ∂ξ/TP 0

−µ/T 0 1

ξ2/T Tξ 0

 (A.5)
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and its determinant is given by

Det
(
M(v)

)
= ξ

(
ξ

T
∂ ξ
T
P − T∂TP

)
. (A.6)

It is nonzero for a generic functional form for P (T, µ, ξ). We conclude that the vectors (A.3)

form a basis for onshell independent one derivative vectors.

A.1.2 The scalar sector

The equations of motion in the scalar sector are given by

ξν∂µT
µν = qE ·ξ

uν∂µT
µν = fE ·ξ

∂µJ
µ = cE ·B

uνξµ (∂µξν − ∂νξµ) = E ·ξ .

(A.7)

A basis of 11 one derivative vectors (before using the equations of motion) was listed in

table 3. We denote them by {L(a)
j , S

(a)
i } for the first set of on shell independent scalars

and {L(b)
j , S

(b)
i } for the second set. Here j runs from 1 to 4 and i runs from 1 to 7. We

have used the notation in table 4. The new quantities L(b)
j ,L(b)

j are defined as follows

L(a)
1 = u·∂Σ1, L(b)

i = ξ ·∂Σ1, (A.8)

L(a)
2 = u·∂Σ2, L(b)

i = ξ ·∂Σ2,

L(a)
3 = u·∂Σ3, L(b)

i = ξ ·∂Σ3,

L(a)
4 = ξµu·∂uµ, L(b)

i = ξµξ ·∂uµ .

The quantities defined in (A.8) are the dependent data for the two choices of bases among

the on-shell inequivalent quantities. These quantities are to be determined by the equation

of motion (A.7) in terms of the dependent quantities Si. Note that the sets {L(a)
i , S

(a)
i }

and {L(b)
i , S

(b)
i } are different partitioning of the same set of quantities.

The equation of motion in (A.7) expressed in terms of the quantities in (A.8) has the

form

7∑
i=1

(e
(a)
i )p S

(a)
i +

4∑
j=1

(`
(a)
j )p Laj = 0.

7∑
i=1

(e
(b)
i )p S

(b)
i +

4∑
j=1

(`
(b)
j )p Lbj = 0.

(A.9)

In the equations above the index p runs from 1 to 4 denoting the 4 equations in (A.7).

Again note that both the equations in (A.9) refer to the same set of equations. We find it

convenient to define the new set of quantities

A = − χ2

T 2(ν2 − χ2)
; B = − 1

T 2(µ2 − ξ2)
; C = − ν

T (ν2 − ξ2)
. (A.10)
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so that the projector

P̃µν = ηµν +Auµuν +Bξµξν + C (ξµuν + uµξν) . (A.11)

The coefficients in (A.9) are given by

(e
(a)
1 )1 = −(P + ρ), (e

(a)
2 )1 = fν, (A.12)

(e
(a)
3 )1 = B(P + ρ) + Cfµ− f, (e

(a)
4 )1 = BξTfµ+ µ∂χf,

(e
(a)
5 )1 = µ∂νf − CTfµ+ fT, (e

(a)
6 )1 = µ∂T f + 2fν,

(e
(a)
7 )1 = −f

(e
(a)
1 )2 = (P + ρ)µ, (e

(a)
2 )2 = −fχ2T,

(e
(a)
3 )1 = −(µB(ρ+ P ) + CTfξ2), (e

(a)
4 )2 = ∂χP − ξ2∂χf − ξfT −Bξ3Tf,

(e
(a)
5 )2 = ∂νP − ξ2∂νf + CTfξ2, (e

(a)
6 )2 = ∂TP − ξ2∂T f − 2fχ2T,

(e
(a)
7 )2 = −q,

(e
(a)
1 )3 = q, (e

(a)
2 )3 =

f

T

(e
(a)
3 )3 = −(Bq + Cf), (e

(a)
4 )3 = −∂χf −BξfT

(e
(a)
5 )3 = ∂νf + CTf, (e

(a)
6 )3 = −∂T f −

f

T

(e
(a)
7 )3 = 0,

(e
(a)
1 )4 = 0, (e

(a)
2 )4 = 0,

(e
(a)
3 )4 = −1, (e

(a)
4 )4 = 0

(e
(a)
5 )4 = T, (e

(a)
5 )6 = ν,

(e
(a)
7 )4 = −1.

and

(`
(a)
1 )1 = CfµξT − ∂χρ, (`

(a)
2 )1 = −(AfµT + ∂νρ), (A.13)

(`
(a)
3 )1 = −∂Tρ, (`

(a)
4 )1 = Afµ+ C(P + ρ),

(`
(a)
1 )2 = µ∂χ(P + ρ)− Cfξ3T, (`

(a)
2 )2 = µ∂ν(P + ρ) + TAξ2f,

(`
(a)
3 )2 = µ∂T (P + ρ), (`

(a)
1 )2 = (P + ρ)− Cµ(P + ρ)−Afξ2

(`
(a)
1 )3 = ∂χq − CξfT, (`

(a)
2 )3 = ∂νq +ATf,

(`
(a)
3 )3 = ∂T q, (`

(a)
4 )3 = −(Cq +Af)

(`
(a)
1 )4 = ξT, (`

(a)
2 )4 = 0,

(`
(a)
3 )4 = χ2T, (`

(a)
4 )4 = 0.
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The other set of coefficients, with index (b), can be read from (A.12) and (A.13) using

(`
(b)
1 )i =(e

(a)
4 )i; (`

(b)
2 )i = (e

(a)
5 )i; (`

(b)
3 )i = (e

(a)
6 )i; (`

(b)
4 )i = (e

(a)
3 )i;

(e
(b)
4 )i =(`

(a)
1 )i; (e

(b)
5 )i = (`

(a)
2 )i; (e

(b)
6 )i = (`

(a)
3 )i; (e

(b)
3 )i = (`

(a)
4 )i;

(A.14)

We can express all the derivatives in (A.12) and (A.13) as derivatives of a single function,

say, the pressure. Thermodynamic relations that enable us to do so are

q =
1

T
∂µ/TP ; f =

1

Tξ
∂ξ/TP ; ρ = −P + T∂TP −

ξ

T
∂ ξ
T
P. (A.15)

We make the following observations:

a) We can use the equations of motion (A.9) to solve for the 4 scalars ξµu·∇uµ, u·∂Σi

(i = 1, . . . , 3) in terms of the 7 independent scalars in the 3rd column of the first

row of table 3. This is possible if and only if the 4 × 4 matrix of coefficients of the

four quantities in the first equation in (A.9) has nonzero determinant. This matrix

is given by

M
(a)
ij = (`

(a)
i )j ; (A.16)

b) We can use the equations of motion (A.9) to solve for the quantities ξµξ ·∂uµ, ξ ·∂Σi

in terms of the 7 independent scalars in the 3rd column of the second row of table 3.

This is possible if and only if the 4 × 4 matrix of coefficients of the 4 quantities in

the second equation in (A.9) has nonzero determinant. This matrix is given

M
(b)
ij = (`

(b)
i )j ; (A.17)

The relations (A.15) allow us to express the matrices (A.16) and (A.17) in terms of the

pressure. Using several reasonable equations of state we have used Mathematica to verify

that the determinant of the matrices in (A.16) and (A.17) is generically non-zero.

A.2 The linear independence of the second order terms

A list of second order scalar data, the second order equations of motion and a choice of

second order independent scalar data can be found in table 5. The second order scalar

equations that follows from the first order vector equations are

∇α
(
P̃αµuν (∂µξν − ∂µξν)

)
= ∇α

(
P̃αµEµ

)
,

∇µ
(
P̃µν∇βT βν

)
= ∇µ

(
P̃µνFνβJ

β
)

∇α
(
P̃αµξν (∂µξν − ∂µξν)

)
= ∇α

(
P̃αµFµνξ

ν
) (A.18)

The two derivative terms in these equations take the form

P̃µν
(

(P + ρ)uβ∇µ∇βuν + ∂Tρ∇µ∂ν
µ

T
+ ∂ξ/T∇µ∂ν

ξ

T
+ fξβ∇µ∇βξν

)
= . . . (A.19)

P̃µν
(
uβ∇µ∇βξν − T∇µ∂ν

µ

T
− µ

T
∇µ∂νT + ξβ∇µ∇νuβ

)
= . . . (A.20)

P̃µν
(
ξβ∇µ∇βξν + Tξ∇µ∂ν

ξ

T
+
ξ2

T
∇µ∂νT

)
= . . . . (A.21)
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The quantities P̃µν∇µ∂νT, P̃µν∇µ∂ν ξT , P̃
µνξβ∇µ∇νuβ can be solved for using equations

(A.19), (A.20), and (A.21). Note that these two derivative scalar quantities do not appear

in any other equations of motion. We can then use the remaining 8 equations of motion to

solve for the other 8 dependent data,

uµuν∇µ∂νΣi, uµuνξβ∇µ∇νuβ, ξµξνξβ∇µ∇νuβ, ξµξν∇µ∂νΣi (A.22)

where i runs from 1 to 3. The reaming 8 two derivative scalar equation of motion are

uβ∇β (uµ∇νTµν) = uβ∇β (−EµJµ) , (A.23a)

uβ∇β (ξµ∇νTµν) = uβ∇β (ξµFµνJ
ν) , (A.23b)

uβ∇β (∇µJµ) = uβ∇β (cEµBµ) , (A.23c)

uβ∇β (ξµuν (∂µξν − ∂νξµ)) = uβ∇β (ξµEµ) (A.23d)

ξβ∇β (uµ∇νTµν) = ξβ∇β (−EµJµ) , (A.23e)

ξβ∇β (ξµ∇νTµν) = ξβ∇β (ξµFµνJ
ν) , (A.23f)

ξβ∇β (∇µJµ) = ξβ∇β (cEµBµ) , (A.23g)

ξβ∇β (ξµuν (∂µξν − ∂νξµ)) = ξβ∇β (ξµEµ) (A.23h)

The matrix of coefficients of the terms in (A.22) as they appear in the equation of mo-

tion (A.23) may be expressed as

Nij =

(
M

(a)
ij 0

0 M
(b)
ij

)
(A.24)

where the rows represent the ordered equations in (A.23) and the columns represent the

ordered quantities in (A.22). It follows that

Det[Nij ] = Det[M
(a)
ij ]Det[M

(b)
ij ]. (A.25)

In the previous section we concluded that both Det[M
(b)
ij ] and Det[M

(b)
ij ] are generically

non-zero. Therefore we can infer that Det[Nij ] is also generically non-zero.

In order to understand the structure of the matrix N we note that the first four

equations in (A.23) are generated by the action of u ·∂ on the first equation in (A.9).

We then find that u·∂ acting on S
(a)
i generates all the independent second order data as

presented in table 5. Likewise, the action of u ·∂ on the L(a)
i generates the four terms

uµuνξβ∇µ∇νuβ, uµuν∇µ∂νΣi (i = 1, . . . , 3). In fact these dependent two derivative terms

appear only in equations (A.23a), (A.23c), (A.23d), (A.23e) and is not there in the rest of

the four equations in (A.23).

Similarly, we can think of the equations (A.23f), (A.23g), (A.23h), (A.23h) as being

obtained by the action of ξ · ∂ on the second equation in (A.9). Also here the terms

ξµξνξβ∇µ∇νuβ, ξµξν∇µ∂νΣi (which constitutes the 4 remaining second order quantities

which are determined by the equation of motion) are generated by ξ ·∂ acting on the

L(b)
i terms. These dependent four second order quantities do not appear in the first four

equations in (A.23). This structure justifies the block diagonal form of the coefficient

matrix in (A.24).
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B Derivation of thermodynamic identities for normal fluids

In this appendix we present a derivation of the equations of motion (2.22). Our starting

point is the observation that the scalar components of the equations of conservation of the

stress tensor and current reduce, at first order to

uν∇µTµν = uνF
µνJν = 0

⇒ (u∂)ρ+ (ρ+ P )Θ = 0 (B.1)

∇µJµ = 0⇒ (u·∂)q + qΘ = 0 (B.2)

where Θ = (∇·u)

Derivation of the first equation in (2.22): subtracting [ ∂q
∂ν× eq.(B.2)] from [ ∂ρ∂ν×

eq.(B.1)] we find the following relations:

∂q

∂ν
(u·∂)ρ− ∂ρ

∂ν
(u·∂)q = −

[
(ρ+ P )

∂q

∂ν
− q ∂ρ

∂ν

]
Θ

⇒
[
∂q

∂ν

∂ρ

∂T
− ∂ρ

∂ν

∂q

∂T

]
(u·∂)T = −

[
(ρ+ P )

∂q

∂ν
− q ∂ρ

∂ν

]
Θ

⇒
[
∂q

∂ν

∂P

∂T
− ∂P

∂ν

∂q

∂T

]
(u·∂)T = −

[
∂P

∂ρ

]
q

[
(ρ+ P )

∂q

∂ν
− q ∂ρ

∂ν

]
Θ

⇒
[(

ρ+ P

T

)
∂q

∂ν
− Tq ∂q

∂T

]
(u·∂)T = −

[
∂P

∂ρ

]
q

[
(ρ+ P )

∂q

∂ν
− q ∂ρ

∂ν

]
Θ

⇒(u·∂)T

T
= −

[
∂P

∂ρ

]
q

Θ

(B.3)

In the third line we have used two identities:[
∂P

∂ρ

]
q

[
∂ρ

∂T

]
ν

=

[
∂P

∂T

]
ν

−
[
∂P

∂q

]
ρ

[
∂q

∂T

]
ν[

∂P

∂ρ

]
q

[
∂ρ

∂ν

]
ν

=

[
∂P

∂ν

]
ν

−
[
∂P

∂q

]
ρ

[
∂q

∂ν

]
ν

(B.4)

In the last line of (B.3) we have used the following three thermodynamic identities.

[
∂P

∂T

]
ν

=
ρ+ P

T[
∂P

∂ν

]
T

= Tq[
∂ρ

∂ν

]
T

= T
∂2P

∂T∂ν
− ∂P

∂ν
= T 2 ∂

∂T

[
1

T

∂P

∂ν

]
= T 2

[
∂q

∂T

]
ν

(B.5)
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Derivation of the second equation in (2.22): adding [∂P∂q × eq.(B.2)] and [∂P∂ρ× eq.(B.1)]

we find

∂P

∂ρ
(u·∂)ρ+

∂P

∂q
(u·∂)q = −

[
(ρ+ P )

∂P

∂ρ
+ q

∂P

∂q

]
Θ

⇒(u·∂)P = −
[
(ρ+ P )

∂P

∂ρ
+ q

∂P

∂q

]
Θ

⇒
[
(ρ+ P )

(u·∂)T

T
+ Tq(u·∂)ν

]
= −

[
(ρ+ P )

∂P

∂ρ
+ q

∂P

∂q

]
Θ

⇒(u·∂)ν = − 1

T

[
∂P

∂q

]
ρ

Θ

(B.6)

In the third line of (B.6) we have used the first law

dP = (S + νq) dT + Tqdν = (ρ+ P )
dT

T
+ Tqdν

ρ+ P = T (S + νq)
(B.7)

and in the last line of (B.6) we have used the first equation in (2.22).

Derivation of the third equation in (2.22): the third equation in (2.22) follows from

the vector component of the stress tensor conservation equation.

Pµθ∇νT νθ = PµθF
θαJα = qEµ

⇒P θµ∂θP + (ρ+ P )(u.∇)uµ = qEµ

⇒P θµ
∂θT

T
+ (u.∇)uµ =

q

ρ+ P
V1µ

(B.8)

In the last line of (B.8) we have used the first law as written in (B.7).

C Pullback ambiguity

The parameter c0 is essentially trivial and is related to a pullback ambiguity as we now

explain. It was pointed out in [27] that the following set of operations maps one positive

divergence entropy current JµS to another

1. Dualize Jµ to a three-form.

2. Shift this three-form by its Lie derivative with respect to any vector field V µ

3. Dualize the resultant form back to a current.

The end result of this operation is a shift in the entropy current given by (see eq. 6.6 in [27])

δJµS = ∇ν(JνSV
µ − V νJµS ) + V µ∇νJνS . (C.1)

In the current setup we are interested in first order corrections to the entropy current.

The right hand side of (C.1) has an explicit derivative. Therefore, the entropy current on
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the right hand side should be replaced by the perfect fluid entropy current JµS = suµ. This

implies that the second term on the right hand side of (C.1) is zero (recall that the perfect

fluid entropy current is divergence free). Moreover V µ must be a derivative free vector

field.

In ordinary (non superfluid) fluid dynamics there is a unique vector at the zero deriva-

tive order — the fluid velocity uµ. Since Jµ ∝ uµ then V µ ∝ uµ implies that the first term

on the right hand side of (C.1) also vanishes, and so (C.1) leads to no ambiguity in the

entropy current at the first derivative order.

In superfluid dynamics there exist two zero derivative vectors, uµ and ξµ. Conse-

quently (C.1) can be used to generate a shift in the current proportional to ∂ν (c0Qνµ) .

We conclude that the freedom to add the total derivative term ∂ν (c0Qνµ) is precisely the

‘pullback ambiguity’ freedom described in [27].

D Details relating to parity violating superfluids

In this appendix we provide several computational details relating to section 4.

D.1 All equations of motion for ideal superfluid

The equations of motion for a superfluid are listed in table 3. There are four scalar

equations, one pseudo scalar equation and 3 vector equations. In this subsection, using

thermodynamics, we simplify these equations so that they can be easily used to solve for

the dependent fluid data in terms of the independent data.

First we note the identity

∇µξν −∇νξµ = Fµν

⇒− ξ∇µξ − (ξ ·∇)ξµ = Fµνξ
ν .

(D.1)

In the second line we have contracted both sides of the equation with ξν . Using (D.1)

and the first law we can simplify the stress tensor conservation equation projected in the

direction perpendicular to uµ:

Pµθ ∇νT
νθ − PµθFθνJν = 0

⇒Pµθ ∇ν
[
(ρ+ P )uνuθ + Pηνθ + fξνξθ

]
− Pµθ F

θν (quν − fξν) = 0

⇒Pµθ [∇θP + f(ξ ·∇)ξθ + fFθνξ
ν ] + (ρ+ P )(u·∇)uµ + ζµ∇θ

(
fξθ
)

= qEµ

⇒Pµθ [∇θP − fξ∇θξ] + (ρ+ P )(u·∇)uµ + ζµ∇θ
(
fξθ
)

= qEµ

⇒Pµθ
[
(ρ+ P )

∇θT
T

+ Tq∇θν
]

+ (ρ+ P )(u·∇)uµ + ζµ∇µ (fξµ) = qEµ

⇒P σµ
(
∇σT
T

)
+ (u·∇)uµ =

[
qT

ρ+ P

](
Eµ

T
− Pµθ∇θν

)
− ζµ

[
∇θ
(
fξθ
)

ρ+ P

]
(D.2)

In the second step of (D.2) we have used the identity (D.1) and in the third step of (D.2)

we used the first law in the form:

dP = (ρ+ P )
dT

T
+ Tq dν + fξ dξ .
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Next, using (D.2) we can simplify the equation relating the curl of the phase velocity

ξµ to the field strength (ie. Cµν ≡ ∇µξν −∇νξµ − Fµν = 0). Consider the case where one

of the two free indices of this equation is projected in the direction of uµ.

uβ (∇µξβ −∇βξµ − Fµβ) = 0

⇒uβ [∇µ(−µ uβ + ζβ)−∇β(−µ uµ + ζµ)] = Eµ

⇒ [∇µµ+ uµ(u·∇)µ] + µ(u·∇)uµ − (u·∇)ζµ − ζθ∇µuθ = Eµ

⇒
[
P θµ∇θµ+ µ(u·∇)uµ

]
− (u·∇)ζµ − ζθ∇µuθ = Eµ

⇒P θµ∇θν + ν
[
P θµ∇θT + T (u·∇)uµ

]
− (u·∇)ζµ − ζθ∇µuθ = Eµ

⇒(u·∇)ζµ = −T
(

1− µq

ρ+ P

)(
Eµ
T
− P θµ∇θν

)
− ζθ∇µuθ

(D.3)

In the last step we have used (D.2).

Next consider the case where both the indices of Cµν are projected in the direction

perpendicular to uµ. This can be simply analyzed by contracting the two free indices of

Cµν with εµνλσuν

εµνλσuν (∇λξσ −∇σξλ − Fλσ) = 0

⇒2εµνλσuν∇λξσ − εµνλσuνFλσ = 0

⇒− 2µεµνλσuν∇λuσ + 2εµνλσuν∇λζσ − εµνλσuνFλσ = 0

⇒ Ωµ =
Bµ

2
+ µωµ .

(D.4)

where Ωµ, ωµ and Bµ are defined as

Ωµ =
1

2
εµνλσuν∇λζσ, ωµ =

1

2
εµνλσuν∇λuσ, Bµ =

1

2
εµνλσuνFλσ

If we project (D.2), (D.3) and (D.4) in the direction perpendicular to ζµ , it will be a

rewriting of the three vector equations as listed in table 3. Contracting the free index

with ζµ we get two of the scalar equations and one pseudo scalar equation from table 3,

rewritten in our basis.25

Next we rewrite the two remaining scalar equations of table 3. First, using these

two remaining scalar equations, we will show that the entropy current is conserved in

25The relevant equations are

1. ζµ∇νTµν − ζµFµνJν = 0

2. uµζνCµν = 0

3. εµνλσζµuνCλσ = 0
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equilibrium. It is most useful to use the basis in table 6

uν∇µTµν − uνF νµJµ = 0

⇒uν∇µ
[
(ρ+ P )uµuν + Pηµν + fξµξν

]
+ fuνF

νµξµ = 0

⇒− (u·∇)ρ− (ρ+ P )(∇·u) + µ∇θ(fξθ) + fuν [(ξ ·∇)ξν + F νµξµ] = 0

⇒− [(u·∇)ρ+ fξ(u·∇)ξ]− (ρ+ P )(∇·u) + µ∇θ(fξθ) = 0

⇒− [T (u·∇)s+ µ(u·∇)q]− (Ts+ µq)(∇·u) + µ∇θ(fξθ) = 0

⇒− T∇µ(suµ)− µ∇µ(quµ − fξµ) = 0

⇒∇µ(suµ) = 0 .

(D.5)

In the fourth line we have used the identity (D.1). In fifth line we have used

dρ = T ds+ µ dq − fξ dξ

and

ρ+ P = Ts+ µq

In the last line we have used the fact that

∇µJµ = ∇µ(quµ − fξµ) = O(Two derivatives) ∼ 0

Using ∇µ(suµ) = 0 and ∇µ(quµ − fξµ) = 0 we find

∇µ[fξµ] = s(u·∇)
[q
s

]
. (D.6)

To summarize, we list all the equations in simplified form. The four scalar and one

pseudo scalar equation are given by

(∇·u) ≡ Θ = −(u·∂)s

s
= [B1(u·∂)χ+B2(u·∂)ν +B3(u·∂)T ]

∇θ(fξθ)
(ρ+ P )

≡ K =
s(u·∂)

( q
s

)
(ρ+ P )

= [K1(u·∂)χ+K2(u·∂)ν +K3(u·∂)T ]

(ζ ·∇)T

T
+ ζθ(u·∇)uθ = RT (V1 ·ζ)− ζ2K

ζµζνσµν = T 2 [A1(u·∂)χ+A2(u·∂)ν +A3(u·∂)T ]− T (1− µR)(V1 ·ζ)

Ω·ζ =
B ·ζ

2
+ µ(ω ·ζ)

(D.7)

The three vector equations are given by

P̃ σµ
[
∇σT
T

+ (u·∇)uσ

]
= RTP̃µσ V

σ
1

P̃ σµΩσ = P̃ σµ
[
Bσ
2

+ µωσ

]
P̃ σµ(u·∇)ζσ = P̃µσ [−T (1− µR)V σ

1 − ζν∇σuν ]

(D.8)
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where we have defined

ν =
µ

T
, χ =

ζ2

T 2
, K =

∇θ[fξθ]
ρ+ P

, R =
q

ρ+ P

B1 = − ∂

∂χ
[log(s)], B2 = − ∂

∂ν
[log(s)], B3 = − ∂

∂T
[log(s)]

K1 =
s

ρ+ P

∂

∂χ

[q
s

]
, K2 =

s

ρ+ P

∂

∂ν

[q
s

]
, K3 =

s

ρ+ P

∂

∂T

[q
s

]
A1 = −1

2
− νχ(1− µR)

[
∂

∂χ

(q
s

)]
+
χ

3s

∂s

∂χ

A2 = −νχ(1− µR)

[
∂

∂ν

(q
s

)]
+
χ

3s

∂s

∂ν

A3 = −νχ(1− µR)

[
∂

∂T

(q
s

)]
+
χ

3s

(
∂s

∂T
− 3s

T

)
Vµ =

Eµ
T
− P σµ∇σ

[µ
T

]
Ωµ =

1

2
εµνλσuν∇λζσ, ωµ =

1

2
εµνλσuν∇λuσ, Bµ =

1

2
εµνλσuνFλσ .

(D.9)

D.2 Showing the linear independence, of the first derivative scalar data

Using the scalar equations we can solve for four dependent scalars and one dependent

pseudo scalar in terms of the independent ones as they appear in the list of Sci in table 6.

We choose the five dependent scalars to be:

Θ, K, ζ ·σ ·ζ, ζν(u·∇)uν , Ω·ζ . (D.10)

Note that the last term is the pseudo scalar. The dependence of the scalars in (D.10) on

the Sci ’s from table 6 takes the following form

Θ = B3Sc2 +B2Sc3 +B1Sc4
K = K3Sc2 +K2Sc3 +K1Sc4

ζ ·σ ·ζ = A3Sc2 +A2Sc3 +A1Sc4 − T (1− µR)Sc1

ζν(u·∇)uν = RTSc1 + ζ2 [K3Sc2 +K2Sc3 +K1Sc4]− 1

T
Sc5

Ω.ζ = µ(ω.ζ) +
(B.ζ)

2

(D.11)

where Bi, Ki and Ai are defined in equation (D.9). Using the first three of the above

equations one can form the As matrix in (4.20).

D.3 Showing the linear independence, of the first derivative vector data

We wish to argue that the vectors Vc form a set of independent vectors. To do so we solve

for the three vectors that do not appear in the list of Vcµi in terms of Vcµi using the three

vector equations of motion. The three vectors that are not part of the set {Vci } are

P̃ θµ(u·∇)uθ P̃ θµ(u·∇)ζθ P̃ θµ(ζ ·∇)ζθ (D.12)
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From the first vector equation (D.2) we can solve for P̃ θµ(u·∇)uθ,

P̃ θµ(u·∇)uθ = P̃ θµ
(
−∇θT

T
+RTV1θ

)
= RT Vcµ1 −

Vcµ3

T
.

(D.13)

This equation has been used to form the matrix Av in (4.20).

Taking the star of the second vector equation (D.4) we can solve for P̃ θµ(ζ.∇)ζθ

P̃ θµ(ζ ·∇)ζθ = P̃ θµ
[
µζα(∂αuθ − ∂θuα) +

T 2

2
∂θχ+ Tχ∂θT − Fθλζλ

]
= TχVcµ3 +

T 2

2
Vcµ5 + µζ2Vcµ6 + ζ2Vcµ7 .

(D.14)

From the last vector equation (D.3) we can solve for P̃ θµ(u·∇)ζθ

P̃ θµ(u·∇)ζθ = P̃ θµ
[
−T (1− µR)V1θ − ζασαθ −

ζα

2
(∂θuα − ∂αuθ)

]
= −T (1− µR)Vcµ1 − V

cµ
2 − ζ

2Vcµ6 .

(D.15)

D.4 Showing the linear independence of the two derivative parity odd scalar

data

Here we solve for the five two derivative parity odd scalars using the five parity odd two

derivative equations of motion as listed in table 7. The solution will be presented in terms

of the three independent two derivative pseudo scalars as listed in the last column of table 7

and squares of single derivative terms. The two derivative pseudo scalars that we shall solve

for, are the following

eλσ(u·∇)∇λuσ ζµuν∇νBµ P̃µν∇µBν
eλσ(u·∇)∇λζσ eλσ(ζ ·∇)∇λζσ .

In the solution below we shall write the dependence on the two derivative terms explicitly

but will not write the terms which are squares of a single derivative.

E1 ≡
[
εµνλσuµζν

]
∇λ(∇θT θσ − Fσθjθ) = 0

⇒∇λ
[(
εµνλσuµζν

)
(∇θT θσ − Fσθjθ)

]
= Products of one derivatives

⇒∇λ
(
εµνλσuµζν

[
(u·∇)uσ +

∂σT

T
−R(Eσ − T∂σν)

])
= Products of one derivatives

⇒
[
εµνλσuµζν

]
(uθ∇θ∇λuσ −R∇λEσ) = Products of one derivatives

(D.16)
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Using E1 we can solve eλσ(u·∇)∇λuσ in terms of eλσ∇λEσ.

E2 ≡
[
εµνλσζµ

]
∇νFλσ = 0

⇒
[
εµνλσζµuν

]
(u·∇)Fλσ + 2

[
εµνλσζµuλ

]
uθ∇νFθσ = 0

⇒ζµ(u·∇)
[
εµνλσuνFλσ

]
+ 2

[
εµνλσζµuλ

]
∇ν
(
uθFθσ

)
= Products of one derivatives

⇒
[
εµνλσuµζνuλ

]
∇λEσ − ζµuν∇νBµ = Products of one derivatives

(D.17)

Using E2 we can solve ζµuν∇νBµ in terms of eλσ∇λEσ.

E3 ≡
[
εµνλσuµ

]
∇νFλσ = 0

⇒∇µ
[
εµνλσuνFλσ

]
= Products of one derivatives

⇒∇µBµ = Products of one derivatives

⇒P̃µν∇µBν +
ζµζν

ζ2
∇µBν = Product of one derivatives

(D.18)

Using E3 we can solve P̃µν∇µBν in terms of ζµζν

ζ2 ∇µBν .

E4 ≡
[
εµνλσuµζν

]
uθ∇λCθσ = 0

⇒∇λ
([

εµνλσuµζν

] [
(u·∇)ζσ + T (1− µR)Vσ + ζθ∇σuθ

])
= Product of one derivatives[

εµνλσuµζν

] [
(u·∇)∇λζσ + (1− µR)∇λEσ +

ζθ

2
[∇λ,∇σ]uθ

]
= Product of one derivatives

(D.19)

Using E4 we can solve eλσ(u·∇)∇λζσ in terms of eλσ∇λEσ.

E5 ≡
[
εµνλσuµζν

]
(ζ.∇)Cλσ = 0

⇒
[
εµνλσuµζν

] [
(ζ.∇)∇λζσ − µ(ζ.∇)∇λuσ

]
+

1

2
ζµζν∇µBν

= Product of one derivatives

(D.20)

Using E5 we can solve eλσ(ζ.∇)∇λζσ in terms of eλσ(ζ.∇)∇λuσ and ζµζν∇µBν . Thus, we

can choose eλσ∇λEσ, eλσ(ζ.∇)∇λuσ and ζµζν∇µBν as the three independent two derivative

parity odd scalar data.26

26Here

Cµν ≡ ∇µξν −∇νξµ − Fµν
and

eλσ = εµνλσuµζν
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D.5 Relating the two different entropy current

The relation between the variables in (4.3) and (4.9) can be obtained by using

1

2
εµνλσξνFλσ = −µBµ + (B ·ζ)uµ − T Ṽcµ1 − T Ṽ

cµ
4

1

2
εµνλσ∇ν [Tuλζσ] = T

[
uµ(ω ·ζ) +

RT

2
Ṽcµ1

]
− T

(
µωµ +

Bµ

2

) (D.21)

Explicitly, we find

s̃a1 = Tσ1 (D.22)

s̃a2 = Tσ8 (D.23)

s̃b1 = α3 −
Tµ

ζ2
σ1 +

T 2

ζ2
σ9 (D.24)

s̃b2 = α4 −
T

2ζ2
σ1 −

µ

ζ2
σ8 +

T

ζ2
σ10 (D.25)

ṽ1 = α1 + σ1
RT 2

2
− Tσ8 (D.26)

ṽ2 = α2 (D.27)

ṽ3 = Tσ3 + T∂Tσ1 (D.28)

ṽ4 = Tσ4 + T∂νσ1 − Tσ8 (D.29)

ṽ5 = Tσ5 + T∂χσ1 (D.30)

ṽ6 = −Tµσ1 + T 2σ9 (D.31)

ṽ7 = −T
2
σ1 − µσ8 + Tσ10 (D.32)

D.6 Computation of the divergence of entropy current

∇µJµS new
can be calculated term by term.

∇µ
(
εµνλσ∇ν [Tσ1uλζσ]

)
= 0 (D.33)

∇µ[T 2σ9ω
µ] = −2T 2σ9(ω ·ζ)K + 2RT 3σ9(ω ·V )

+ T 2

[
∂σ9

∂T
(ω ·∇T ) +

∂σ9

∂ν
(ω ·∇ν) +

∂σ9

∂χ
(ω ·∇χ)

]
(D.34)

∇µ[Tσ10B
µ] = −Tσ10(B.ζ)K +RT 3σ10(B ·V )− 2T 2σ10(ω ·V )

− 2T 2σ10(ω ·∇ν) + T

[
∂σ10

∂T
(B.∇T ) +

∂σ10

∂ν
(B.∇ν) +

∂σ10

∂χ
(B.∇χ)

]
(D.35)

∇µ(σ3Vcµ3 ) = −2σ3(ω ·ζ)(u·∇)T − ∂σ3

∂ν
(Vcµ4 .∇T )− ∂σ3

∂χ
(Vcµ5 .∇T )

+ σ3 [RT (V ·Vcµ3 ) + 2µ(ω ·∇T ) + (B.∇T )] (D.36)
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∇µ(Tσ4Vcµ4 ) = −2Tσ4(ω ·ζ)(u·∇)ν + T

[
∂σ4

∂T
(Vcµ4 .∇T ) +

∂σ4

∂χ
(Vcµ4 .∇χ)

]
+ Tσ4 [RT (V ·Vcµ4 ) + 2µ(ω ·∇ν) + (B.∇ν)] (D.37)

∇µ(Tσ5Vcµ5 ) = −2Tσ5(ω ·ζ)(u·∇)χ+ T

[
∂σ5

∂T
(Vcµ5 .∇T )− ∂σ5

∂χ
(Vcµ4 .∇χ)

]
+ Tσ5 [RT (V ·Vcµ5 ) + 2µ(ω ·∇χ) + (B.∇χ)] (D.38)

∇µ
(σ8

2
εµνλσξνFλσ

)
= (B ·ζ)(u·∇)σ8 − µ(B ·∇)σ8 − 2Tσ8[(B ·V ) +B ·∇ν)]

+ T

[
∂σ8

∂T
(V ·Vcµ3 ) +

∂σ8

∂ν
(V ·Vcµ4 ) +

∂σ8

∂χ
(V ·Vcµ5 )

]
− T

[
∂σ8

∂T
(Vcµ4 ·∇T ) +

∂σ8

∂χ
(Vcµ4 ·∇χ)

]
(D.39)

In deriving these expressions we have used the following identities.

1

2
εµνλσξνFλσ = −µBµ + (B ·ζ)uµ − Vcµ1 − V

cµ
4

1

2
εµνλσ∇ν [Tuλζσ] = T

[
uµ(ω ·ζ) +

RT

2
Vcµ1

]
− T

(
µωµ +

Bµ

2

) (D.40)

D.7 Frame transformation formula

Under the frame transformation

u′µ = uµ − δuµ
T ′ = T − δT
ν ′ = ν − δν

(D.41)

the stress tensor, current and µdiss transform in the following way.

T ′µνdiss − T
µν
diss = δTµνdiss = δ(ρ+ P ) uµuν + δP ηµν + δf ξµξν + (ρ+ P )(uµδuν + uνδuµ)

J ′µdiss − J
µ
diss = δJµdiss = δq uµ − δf ξµ + qδuµ

µ′diss − µdiss = δµdiss = δµ− ξ ·δu
(D.42)

where δA for any scalar function A denotes

δA =
∂A

∂T
δT +

∂A

∂ν
δν

Using these expressions one can deduce how si transform under a change of frame

δs1 = 2δP

δs2 = δP + ζ2δf

δs3 = δρ+ µ2δf

δs4 = µζ2δf − (ρ+ P )(δu·ζ)

δs5 = −δq − µδf
δs6 = −ζ2δf + q(δu·ζ)

δs7 = −δµ+ (δu·ζ)

(D.43)
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and also how the vi transform under a change of frame.

δvµ1 = −(ρ+ P )(P̃µνδuν)

δvµ2 = 0

δvµ3 = q(P̃µνδuν)

(D.44)

where ‘δ’ denotes a change under field redefinition.

Using these formula one can easily form the frame invariant combinations in the vec-

tor sector. It turns out that vµ2 is frame invariant by itself .The other frame invariant

combination is proportional to(
q

ρ+ P

)
vµ1 + vµ3 = R vµ1 + vµ3

These are exactly the combinations that appear in the left hand side of equation (4.26).

Checking the frame invariance of the combinations appearing in the scalar sector is

more involved and require many thermodynamic identities. Here we have used Mathe-

matica (version 7) to impose all these identities by expressing ρ, q and f in terms of a

single function P (T, ν, ξ) and its derivatives. Then we explicitly checked that the four

combinations appearing in the left hand side of equation (4.35) are invariant under the

transformations given by (D.43).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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