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Abstract

Background: Granulocyte colony-stimulating factor (G-CSF) is a pharmacologic agent inducing neutrophil
mobilization and a new candidate for neuroprotection and neuroregeneration in stroke. Its effects when used in
combination with tissue plasminogen activator (tPA) were explored during the acute phase of ischemic stroke.

Methods: We used a middle cerebral artery occlusion (MCAO) model of cerebral ischemia, associated with
treatment with tPA, in male spontaneously hypertensive rats (SHR). Granulocyte colony-stimulating factor

(G-CSF; 60 pg/kg) was injected just before tPA. Neutrophil response in peripheral blood and in the infarct area

was quantified in parallel to the infarct volume. Protease matrix metallopeptidase 9 (MMP-9) release from circulating
neutrophils was analyzed by immunochemistry and zymography. Vascular reactivity and hemorrhagic volume in
the infarct area was also assessed.

Results: Twenty four hours after ischemia and tPA, G-CSF administration induced a significant increase of
neutrophils in peripheral blood (P <0.05). At 72 hours post-ischemia, G-CSF was significantly associated with an
increased risk of hemorrhage in the infarct area (2.5 times more likely; P <0.05) and significant cerebral
endothelium-dependent dysfunction. Ex vivo, an increased MMP-9 release from neutrophils after tPA administration
correlated to the increased hemorrhagic risk (P <0.05). In parallel, G-CSF administration was associated with a
decreased neutrophil infiltration in the infarct area (-50%; P <0.05), with a concomitant significant neuroprotective
effect (infarct volume: -40%; P <0.05).

Conclusions: We demonstrate that G-CSF potentiates the risk of hemorrhage in experimental stroke when used in
combination with tPA by inducing neutrophilia. This effect is concomitant to an increased MMP-9 release from
peripheral neutrophils induced by the tPA treatment. These results highlight the potential hemorrhagic risk of
associating G-CSF to thrombolysis during the acute phase of stroke.
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Introduction

Granulocyte colony stimulating factor (G-CSF) is a hema-
topoietic cytokine initially used in the treatment of
neutropenia for its effects on proliferation and maturation
of the granulocyte cell line.

Recently, G-CSF displayed a neuroprotective effect when
used during experimental stroke by both decreasing the
infarct size and improving motor function recovery [1-3].
Several clinical studies using G-CSF during the acute and
subacute phase of ischemic stroke have now been reported
[4]. At the acute phase of ischemic stroke, the question of
combining G-CSF with tissue plasminogen activator (tPA),
used for thrombolysis, is raised. tPA is currently the only
licensed drug for acute stroke, allowing reperfusion of the
infarct area. However, the tPA-therapeutic window is lim-
ited due to induced-hemorrhages [5]. Given the role played
by polymorphonuclear neutrophils (PMN) in the physio-
pathology of these post-tPA hemorrhagic complications
[6], the objective of this work was to analyze the impact of
G-CSF on the risk of hemorrhage when used in combin-
ation with tPA during the acute phase of an experimental
ischemic stroke.

Methods

All animal experiments were performed in strict accord-
ance with the guidelines published by the International
European Ethical Standards (86/609-EEC) and the French
Department of Agriculture (décret 87/848). Spontaneously
hypertensive rats (SHRs; 10-week-old male, weighing be-
tween 270 and 320 g, from Elevage Janvier Labs, Le
Genest Saint Isle, France) were used in this study. Ex-
perimental data were monitored by using a blinded
investigator for group allocation.

Surgical procedure and design of the study

Cerebral infarction was induced by intraluminal middle
cerebral artery occlusion (MCAO) as previously described
[7]. Briefly, rats were anesthetized by an intraperitoneal
injection of chloral hydrate (300 mg/kg, 1.7 ml). Body
temperature was maintained at 37 + 0.5°C throughout the
surgery. The right carotid arteries were exposed through a
midline cervical incision and the common carotid and
external carotid arteries were ligated with a silk suture. An
aneurysm clip was placed across the internal carotid artery
and an arteriotomy was made in the common carotid
artery stump, allowing the introduction of a monofilament
nylon suture with its tip rounded by flame heating. The
suture was gently advanced into the internal carotid artery
and passed into the intracranial circulatory system as far
as in the narrow lumen at the start of the middle cerebral
artery (MCA). After one hour the suture was carefully re-
moved to allow reperfusion. To reproduce the conditions
of thrombolysis and induced hemorrhages, tPA 10 mg/kg
(6 mL/kg) was administered after its in vitro application
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on a clot (made from 0.2 mL of autologous blood sampled
by jugular vein during the surgery and left in the open air
for five hours, allowing thrombus formation) for 30 mi-
nutes. The resulting solution (mainly contained plasmin)
was collected and infused five hours after restoring
cerebral blood flow [7]. All rats underwent MCAO and
tPA treatment.

Two groups were randomly formed before surgery
(n=20 per group divided into evaluation of infarct, he-
morrhage, and neutrophil infiltration (n=13) and vasor-
eactivity analysis (n=7)) and received G-CSF (60 pg/kg;
30 uL, Amgen, Neuilly, France) or vehicle (0.9% saline,
30 pL), subcutaneously administered just before adminis-
tration of the tPA solution, five hours after the reperfu-
sion. Sham-operated animals were treated identically,
except that the MCA was not occluded (n =4 for vehicle
and n =4 for G-CSF). Blood samples were collected before
surgery, 24 and 72 hours later, to count leucocytes and
PMNs (Machine XE 2100, Sysmex, Mississauga, Canada).

Evaluation of infarct and hemorrhage

Seventy-two hours after restoring blood flow, rats were
perfused with 60 mL of fresh saline just before sacrifice.
The brains were rapidly removed and frozen. Coronal,
20 pm-thick slices were taken from 12 levels, according
to Paxinos and Watson's stereotaxic atlas. Infarct volume
(in mm® and corrected for edema) was quantified by
digital integration of the respective ischaemic areas on all
sections in a given animal. Hemorrhages were assessed by
blind histological evaluation on three defined sections
(+0.48, -0.92, and -3.30 mm relative to the bregma). The
incidence of hemorrhagic transformation (HT) was scaled
according to a previously described method [8]: 0 =no
hemorrhage; 1 = multiple, macroscopically visible hemor-
rhages seen as petechiae; and 2 = hematoma. The severity
of the HT was deemed to correspond to the number of
petechial hemorrhages or hematoma per infarct area. In
vivo magnetic resonance imaging was performed to docu-
ment hemorrhages and infarct in a set of animals (n=6
per group) just before sacrifice in a 7-Tesla, narrow-bore
small animal imaging system (Biospec 70/20 USR, Bruker
Biospin, Wissembourg, France). We acquired two-dimen-
sional, T2-weighted images using a rapid acquisition with
refocused echoes pulse sequence (turboRARE; relaxation
time: 2500 ms; echo time: 65 ms; field of view: 4 x 4 cm;
matrix: 256 x 256, RARE factor: 8).

Myeloperoxidase immunohistochemistry

Neutrophil infiltration was quantified after 72 hours
of blood flow restoration by assaying myeloperoxidase
(MPO), an enzyme expressed by neutrophil cells, using a
rabbit polyclonal anti-MPO primary antibody (DAKO, Les
Ulis, Franceand revealed by treatment with an avidin:
biotinylated enzyme complex (PK-6100, ABC kit, Vector
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Labs, Burlingame, United States), as previously described
[9]. Neutrophil infiltration was assayed in a coronal slice
(+0.48 mm relative to the bregma) that featured positive
cells on six adjacent 1 mm? fields in the ischaemic zone
(representative of 70 to 90% of the ischaemic tissue in the
slice, located in cortical, subcortical, and striatal structures).
We used brain sections from sham rats as a control.

Vasoreactivity analysis

Endothelium-dependent relaxation was assessed after
72 hours of blood flow restoration in a Halpern arte-
riograph (Living Systems Instrumentation, Burlington,
Vermont, United States) [10]. We used a proximal seg-
ment of the right MCA perfused with oxygenated Krebs
solution and maintained at 37°C and pH 7.4. The experi-
ment itself was performed under no-flow conditions.
The lumen diameter was measured using image analysis.
The relaxant dose-response curve for acetylcholine (Ach)
was determined by stepwise, cumulative addition (from
0.001 to 10 uM Ach). Control groups (n = 4 for vehicle and
n=4 for G-CSF) were normotensive Wistar-Kyoto male
rats, which served as a control group under physiological
conditions [11]. Neutrophil depletion was induced by the
intravenous administration of vinblastine (0.5 mg/kg EG
labo, Boulogne-Billancourt, France) four days before the
vasoreactivity analysis (n = 4). Relaxant responses were ex-
pressed as the percent increase in the pre-constricted
artery diameter.

Matrix metallopeptidase 9 (MMP-9) release from
neutrophil degranulation

Peripheral neutrophil degranulation and MMP-9 release
was investigated after ex vivo tPA administration, accor-
ding to a previously described method [12]. Shortly after,
neutrophils were isolated from the blood of rats submitted
to MCAO alone or MCAO and G-CSF administration
after 24 or 72 hours reperfusion (n=10 in each group)
versus control groups (n=10) using a standard protocol
[13]. After isolation, purified neutrophils were resuspen-
ded at a density of 1.10° cells/mL and 400 mL of the cell
suspension was seeded per well into 24-well plates. Neu-
trophils were allowed to rest for 90 minutes at 37°C, 5%
CO,. The cells were then washed twice with phosphate
buffer saline (PBS, Gibco BRL, Invitrogen, Cergy-Pontoise,
France) and cultured in Roswell Park Memorial Institute
(RPMI)-1640 medium with L-glutamine and sodium py-
ruvate (Gibco BRL) for another 30 minutes with PBS
(control condition) or tPA (6.5 pmol/L). After stimulation,
neutrophil-conditioned medium was collected, centri-
fuged (12 minutes at 14000 rpm), and the supernatant
was stored at -80°C until analysis. The MMP-9 enzyme
secreted by rat neutrophils was analyzed on gelatin zy-
mography. Samples were mixed with an equal volume of
2 x sample buffer (which consisted of 10% sodium dodecyl
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sulfate (SDS), 10% glycerol, 0.5 M Tris-Hydrochloride
(Tris-HCL), and 0.1% bromophenol blue at pH 6.8) and
then added to 10% SDS-polyacrylamide gels (SDS-PAGE)
co-polymerized with gelatin (1%) as the substrate for two
hours. Following electrophoresis, gels were renatured in
2.5% Triton X-100 (Sigma-Aldrich, Saint Quentin, France)
for 45 minutes at room temperature. The gels were then
incubated at 37°C overnight in developing buffer (which
consisted of 50 mM Tris-HCl, 0.2 M NaCl, and 5 mM
CaCl,). Gels were stained with Coomassie Brilliant Blue
R-250 (Bio-Rad, Marne la Coquette, France). Gelatinase
activities were visualized as white bands on the blue back-
ground of the gels.

Direct MMP-9 release in the brains was assessed by
immunochemistry [3]. MMP-9 positive signals were ob-
served on 20-um thick frozen coronal sections of brains
from rats submitted to MCAO and tPA treatment and
receiving vehicle or G-CSF alone at 24 and 72 hours ver-
sus control (n=5 in each group). Diluted rabbit anti-rat
MMP-9 antibody was used at a ratio of 1:400 (ab7299;
Abcam; Cambridge, Massachusetts, United States) and
incubated overnight at 4°C after the tissues were blocked
for one hour in blocking solution containing PBS, 0.3%
Triton X-100, 1% bovine serum albumin (BSA, Sigma-
Aldrich, Saint Quentin, France), and 5% normal donkey
serum (Clinisciences, Nanterre, France). The primary
antibody was diluted in PBS containing 0.3% Triton X-
100, 1% BSA, and 2% normal donkey serum. Sections
were subsequently incubated with donkey anti-rabbit
secondary antibody diluted at a ratio of 1:500 (Alexa Fluor
488 Dye, molecular probes, Invitrogen, Cergy-Pontoise,
France) in PBS containing 0.3% Triton X-100, and 1%
BSA for one hour, then washed with PBS and mounted
with Vectashield mounting media for fluorescence (Vector
labs, Burlingame, United States). Immunostaining was
visualized with a fluorescent microscope (confocal Laser
Scanning Microscopy 7 live, Zeiss, Fougeres, France).
Negative control sections were used without the primary
antibody.

Statistical analysis

All values were expressed as the mean + standard error
of the mean (SEM). We performed one-way analysis of
variance (ANOVA) or Student’s ¢-test followed by post
hoc protected Fisher’s least significant difference test
when data were normally distributed (Kolmogorov-
Smirnov test, P >0.05) and non-parametric tests, with
Kruskal-Wallis and Mann-Whitney tests for compari-
sons of three (or more) non-related and two non-related
groups, respectively. For comparisons of two related
samples (such as repeated measurements on a single
sample) we used the Wilcoxon signed-rank test. Results
expressed as frequencies were compared using a Pear-
son’s chi-squared test. All statistical analyses were
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performed with SAS software (version 9.3, SAS Institute
Inc., Cary, North Carolina, United States). P <0.05 was
considered to indicate statistical significance.

Results

Physiological parameters

The mortality rate before 72 hours of reperfusion was
the same between groups (n=3 in vehicle group com-
pared to n = 4 in G-CSF group). There were no differences
in physiologic parameters (weight, blood pressure, tempe-
rature, pH, PaCO2, and PaO2) between the control and
G-CSF administered groups before, during, and after the
surgical procedure (data not shown). The blood parame-
ters (prothrombin time and platelets) were not signifi-
cantly different between the groups at baseline and at the
end of the protocol.

Neutrophil response to G-CSF treatment

The neutrophil count in the peripheral blood showed a
significant increase in neutrophils after MCAO and tPA
at 24 hours of reperfusion (P <0.05) and was significantly
higher when G-CSF was administered (P <0.0001). This
increase is still present but no more significant at 72 hours
post-ischemia (Table 1).

Effect of G-CSF treatment on the risk of hemorrhage
G-CSF was associated with a worsened risk of hemorrhage
(Figure 1). Hemorrhages were more frequent (P <0.05)
and more severe (P <0.05) in the G-CSF group compared
to the vehicle group (Table 2).

Effect of G-CSF treatment on endothelial function of
cerebral vessels

In control animals, G-CSF induced a significant alteration
of the MCA endothelial function in response to an increa-
sing dose of Ach (Figure 2a; P <0.05). Treatment with vin-
blastine (a non-specific neutrophil-depleting agent) four
days before G-CSF administration prevented the observed
endothelial dysfunction (Figure 2b; P <0.05). In animals
submitted to MCAO and tPA the MCA endothelial
function was significantly altered by the conditions

Table 1 Neutrophil counts on peripheral blood before
surgery and after 24 h and 72 h of reperfusion in rats
submitted to ischemia/reperfusion and tPA and treated by
vehicle (saline 0.9%) or granulocyte colony stimulating
factor (G-CSF 60 pg/kg; 30 pL)

Neutrophils (/mm?) Vehicle (n=9) G-CSF (n=10)
Before ischemia 1808 + 665 1645+ 229

24 hours after ischemia 2993 + 350* 6626 + 1570%#
72 hours after ischemia 865 + 444 1176 + 587

Mean + SEM. *p < 0.05 vs basal state; #p < 0.0001 vs vehicle. G-CSF,
Granulocyte colony stimulating factor; tPA, tissue plasminogen activator, SEM
standard error of the mean.
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(P <0.001) without the additive effect of treatment
with G-CSF.

Effect of G-CSF treatment on neutrophil infiltration and
cerebral infarct size

G-CSFE, used in combination with tPA, in our MCAO
model was associated with a significant decrease in neu-
trophil infiltration into the infarct area (68.5+ 6.9 posi-
tive cells compared to 136.2 +25.2 in the vehicle group,
P <0.05; Figure 3b). This effect was parallel to a neuropro-
tective effect as it induced a significant reduction in infarct
size (98.71 +13.27 mm® compared to 153.72 + 12.25 mm?
in the vehicle group, P <0.05; Figure 3a).

Effect of G-CSF treatment on MMP-9 release from
neutrophil degranulation

MMP-9 intensity in the supernatant of ex vivo tPA-treated
peripheral neutrophils significantly varied according to the
in vivo conditions (Figure 4a). Twenty four hours after
the surgery, ex vivo tPA significantly induced the release
of MMP-9 from neutrophils stemming from sham-
operated rats, without a specific effect from G-CSF
(P <0.05; Figure 4b). After ischemia/reperfusion, ex vivo
tPA induced a significant increase in MMP-9 intensity in
the supernatant of PMNs submitted in vivo to ischemia
and G-CSF treatment (P <0.05). At 72 hours, no increased
in MMP-9 intensity was observed in the supernatant of
PMNs submitted iz vivo to ischemia/reperfusion or ische-
mia/reperfusion and G-CSF treatment.

In the brains of control animals there was no expres-
sion of MMP-9 at 24 and 72 hours. The MMP-9 positive
signal was markedly enhanced in the infarct region after
MCAO and tPA at 24 hours, and to a lesser extent at
72 hours (Figure 5). When G-CSF was administered the
MMP-9 positive signal in the infarct region was no lon-
ger present at 24 and 72 hours.

Discussion

We demonstrated for the first time that G-CSF adminis-
tered in combination with tPA during the acute phase of
cerebral ischemia worsened the risk of hemorrhage. More-
over, G-CSF has a harmful vascular effect witnessed by the
altered endothelium-dependent relaxation (an indirect
measure of more distal arteriolar damage) in the absence
of the ischaemic background. This effect may be related to
G-CSF's action on peripheral polynuclear neutrophils,
as suggested by the absence of endothelial damage
after neutrophil depletion. The increased hemorrhagic
risk observed when G-CSF is associated with tPA during
the acute phase of ischemia could be directly related to
MMP-9 degranulation from these peripheral neutrophils.
Our present work confirmed the acute neuroprotective
effect of G-CSF when administered during cerebral ische-
mia in MCAO models [2,14,15].
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Figure 1 Effect of subcutaneous administration of G-CSF (60 pug/kg; 30 pL) or vehicle (NaCl 0.9%, 30 pL) on the risk of hemorrhages.

(a) Number of hemorrhages in the infarct area (mean + SD). (b) Hemorrhages were seen in vivo on T2-weighted MRI images. (c) Macroscopically
visible on histological sections as petechiae or hematoma in the infarct area . Rats were all submitted to ischemia/reperfusion, tPA treatment and
72 hours of reperfusion. Scale bar =500 um. *P <0.05. G-CSF, granulocyte colony stimulating factor; MRI, magnetic resonance imaging; tPA, tissue

G-CSF

G-CSF
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This neuroprotective effect is probably independent
from G-CSF’s action on neutrophils and directly related
to G-CSF’s effect on neurons: previous reported mecha-
nisms include direct neuronal impact though specific
receptors, inducing neurogenesis, anti-inflammatory, and
anti-apoptotic mechanisms [15-17]. The systemic anti-
inflammatory effect probably explains the decreased

parenchymatous infiltration of polynuclear neutrophils
and the reduced presence of MMP-9 in the infarct
region in spite of G-CSF-increased circulating periph-
eral neutrophils. In fact, in our study and according
to others studies, the infiltration of neutrophils is signi-
ficantly reduced after G-CSF administration; leukocytosis
and MMP-9 release are restricted to the vessel compartment

Table 2 Histologic examination of incidence and severity of intracerebral hemorrhages after 72 h of reperfusion in rats
submitted to ischemia/reperfusion and tPA and treated by vehicle (saline 0.9%) or granulocyte colony stimulating

factor (G-CSF 60 pg/kg; 30 pL)

Histologic score

Severity

0=no hemorrhage

1 =macroscopically visible hemorrhages

2 =hematoma Mean number of petechial

(n) (n) (n) hemorrhages + SEM
Vehicle (n=9) 1 8 0 41+09
G-CSF (n=10) 0 10 4% 103+18*

*p < 0.05 vs vehicle. G-CSF, Granulocyte colony stimulating factor; tPA, tissue plasminogen activator, SEM standard error of the mean.
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Figure 2 Effect of subcutaneous administration of G-CSF (60 pug/kg; 30 pL) or vehicle on the endothelium-dependant function of the
middle cerebral artery. (a) Dose-response to acetylcholine after ischemia/reperfusion and thrombolysis. Endothelial relaxation was expressed as
percentage of change in diameter of pre-constricted arteries measured after 72 hours of reperfusion. (b) Dose response to acetylcholine after
vinblastine pretreatment in control rats. Vinblastine was used for neutrophil depletory and administered four days before the administration of
G-CSF. Values are mean + SEM. *P <0.05 versus control; § P <0.05 versus control G-CSF; #P <0.001 versus control. Ach, acetylcholine; G-CSF,

and do not contribute to an exacerbation of brain lesion
[18,19]. As the accumulation of neutrophils within ische-
mic brain territories correlates with the severity of neuro-
logical injury [20], this decrease in infiltrating neutrophils
could in part support the neuroprotective effect of G-CSF.

In contrast, increased neutrophils in peripheral blood
due to G-CSF probably have a deleterious vascular im-
pact. In fact, extravasation of red blood cells (the starting
point of hemorrhages) correlates with changes in arteri-
olar endothelial cells, underpinned by degradation of the
basal membrane and rupture of the blood-brain barrier
[21]. We have previously demonstrated that induced-
neutropenia is associated with a partial prevention of
post-tPA hemorrhages, explained by the preservation of
vascular endothelial function and a decrease in circulating
polynuclear neutrophils [6]. It is well established that the

rolling and adhesion of circulating polynuclear neutrophils
during ischemia are responsible for vascular alterations in
the ischaemic area [22]. Whalen et al. correlated the in-
creased neutrophil count induced by G-CSF treatment to
blood-brain barrier damage [23]. These circulating neutro-
phils are a source of MMP-9, a protease which is particu-
larly present in and around cerebral microvessels after a
brain infarct [24]. This protease could mediate blood-
brain barrier breakdown, tissue injury, edema formation,
and inflammation [22]. The activation of this protease is
the main mechanism correlated with the risk of cerebral
hemorrhage [25,26]. Therefore, G-CSF-induced leukocy-
tosis could be deleterious for vascular endothelium and
could explain the increase risk of hemorrhages.

Moreover, the MMP-9 release from PMNs could be
directly stimulated and up-regulated by tPA [12,27]. This
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effect, documented in our study with ex vivo tPA treat-
ment on cells submitted to iz vivo ischemia, was observed
at 24 hours after ischemia and no longer observed at
72 hours, in correlation with the kinetic of neutrophil
proliferation, recruitment, and activation during stroke
[28,29]. In our study, degranulation of MMP-9 from
peripheral neutrophils was significantly increased when
G-CSF was administered in the acute phase of ischemia,
suggesting the combination of a direct action of G-CSF on
neutrophil proliferation and activation with a direct effect
of tPA on the neutrophil degranulation of MMP-9. Also
worthy of note, ischemia by itself leads to rapid MMP-9
release from neutrophil degranulation [30], explaining the

low level of MMP-9 release after ex vivo tPA at 24 hours
post-ischemia in comparison to the level observed in
control group. These three conditions (ischemia, tPA
administration, and G-CSF-induced leukocytosis) could
directly concur with the hemorrhagic risk associated with
thrombolysis.

Conclusion

Our work highlights the potential hemorrhagic risk in
administering G-CSF in combination with tPA during
the acute phase of cerebral ischemia, probably though
vascular alterations mediated by the MMP-9 release from
peripheral neutrophils.
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Figure 4 MMP-9 release from peripheral neutrophil degranulation of purified rat neutrophils after 30 minutes ex vivo tPA stimulation
at 24 and 72 hours of in vivo ischemia. Representative gelatin zymogram showing MMP-9 release in supernatant (a) and bar graphs representing
mean values and SEM of 92 kDa proMMP-9 content (arbitrary unit by densitometry) (b). n =4 per group, *P <0.05 versus PBS in control conditions;
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Figure 5 Representative immunochemistry images of MMP-9 positive signals in the cortical infarct region in rats submitted to
ischemia/reperfusion, tPA treatment and 24 or 72 hours of reperfusion. Rats were administered with G-CSF (60 ug/kg; 30 pL) or vehicle
(NaCl 0.9%, 30 L) five hours after reperfusion (n=5 in each group). Scale bar: 50 um. G-CSF, granulocyte colony stimulating factor; MMP-9, matrix
metallopeptidase 9; tPA, tissue plasminogen activator.
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