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Abstract

We fully characterize quasiconvex hulls for three arbitrary solenoidal
(divergence free) wells in dimension three. With this aim we establish weak lower
semicontinuity of certain functionals with integrands restricted to generic two-
dimensional planes and convex in (up to three) rank-2 directions within the planes.
Within the framework of the theory of compensated compactness, the latter repre-
sents an example when the differential constraints fail the constant rank condition
but nevertheless the so-called Λ-convexity still implies lower semicontinuity and
A -quasiconvexity (which essentially means that rank-2 convexity implies
S-quasiconvexity—that is quasiconvexity in the sense of the divergence-free dif-
ferential constraints—on the planes). The proof employs a version of Müller’s
estimates of Haar wavelet projections in terms of the Riesz transform. The above
semicontinuity result is then applied to the three solenoidal wells problem via ana-
logs of Šverák’s “nontrivial” quasiconvex functions and connectedness properties
of the rank-2 envelopes. As another application of the semicontinuity result, we
obtain a “geometric” result of a more general nature: characterization of certain
extremal three-point H -measures for three-phase mixtures (of three characteris-
tic functions) in dimension three. We also discuss the applicability of the results
to problems with other differential constrains, in particular to three linear elastic
wells, and further generalizations.

1. Introduction

The problem of characterizing microstructures which may result from mixing
a given set of component “phases” emerges for example in variational modeling
of martensitic phase transformation, see, for example [1,26] and further references
therein, as well as in bounding effective properties of composites, see for example
[4,23] also containing numerous further references. The mathematical approaches
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use the notion of relaxation for the underlying (non-convex) energy minimization
problem subjected to appropriate differential constraints and lead to the deploy-
ment of fundamental mathematical concepts of quasiconvexity, Young measures
and associated mathematical theory of compensated compactness [28,45].

Within the above general framework, this paper addresses two distinct specific
problems, which appear related at the fundamental level. The first problem is the
characterization of the S-quasiconvex hull K qc

S , of a set K of three 3 × 3 matrices
subjected to divergence-free differential constraints. The second one is the charac-
terization of extremal three-point H -measures for mixtures of three characteristic
functions in dimension three. Both problems are resolved via, in particular, an
application of a non-classical version of a semicontinuity result of the theory of
compensated compactness, developed in this paper following the ideas in [24] and
most recently in [19].

The first problem, although of an intrinsic mathematical interest, is also directly
relevant to bounding effective properties of composites, cf., for example [11,23].
To be specific, it is stated as follows: given a set K = {A1, A2, A3} ⊂ M

3×3 of
three real 3×3 matrices, characterize the set K qc

S of all matrices B0 such that there
exists a sequence {Bh} ⊂ L2

loc(R
3,M3×3), L2

loc-equi-integrable, Q-periodic, with
Q = (0, 2π)3, and such that

⎧
⎪⎨

⎪⎩

DivBh = 0 in D ′(R3,R3) ,

dist(Bh, K ) → 0 locally in measure as h → ∞,

−∫Q Bh = B0 ∀ h.

(1)

When the fields Bh are curl-free rather then divergence-free, and, thus, are gradi-
ents of suitable vector-fields, the analogous problem was solved by Šverák [40].
More generally, problem (1) falls into the framework of A -quasiconvexity where
the differential constraint on the fields Bh is replaced by more general ones (see
for example [9]). Notice that the problem is stated in (1) within the L2-theory,
although the results could be extended to the L p-theory context, 1 < p < ∞, see
[19] containing all the relevant additional technical ingredients.

As recently shown by Palombaro and Ponsiglione [33], non-constant solutions
to the “exact” version of problem (1), that is non-constant divergence-free fields
taking values in K almost everywhere, may only exist if K contains rank-2 connec-
tions, more precisely if rank(Ai − A j ) � 2 for some i �= j (the rank-2 connections
correspond to pairwise compatibility under the divergence-free differential con-
straints). In contrast, as shown by Garroni and Nesi [11], there exist sets K with
no rank-2 connections for which the problem of “approximate rigidity” (1) admits
solutions for some B0 /∈ K . Such examples in [11] correspond to the cases when
the two-dimensional plane through K contains three distinct “rank-2 directions”
and the mutual position of A1, A2 and A3 is such that the rank-2 lines through them
form an “inner triangle” inside the convex hull of K , like in Fig. 1(1) below. This
is analogous to similar constructions, also involving an inner triangle, employed
for example in [30] in the context of optimal microstructures for conducting poly-
crystrals, in [2] in the context of mutual compatibility of three pairwise incom-
patible linearly elastic wells, and in [39] in the context of extremal three-phase
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H -measures (see also below). The inner triangle construction is, in turn, remi-
niscent of the so-called T4 configuration for four mutually compatible although
pairwise incompatible gradient fields. The latter was used in different contexts by
various authors, for example in [36] in the context of counterexamples to regularity
of elliptic systems (see also [27] for recent advances) and by Tartar [48] as an
example of a mutual compatibility of pairwise incompatible matrices with result-
ing failure of compactness for associated sequences of gradient fields, followed
by numerous publications. The construction involving the inner triangle will play
an important role in this paper too, and we refer to all three point sets that enjoy
this property as sets of Type 1. One of the main results of this paper (Theorem 5)
asserts that if K contains no rank-2 connections then the set K qc

S is non-trivial,
that is K qc

S � K , if and only if K is of Type 1. This is somewhat analogous to a
recent result in [6] on the triviality, in the context of gradient fields, of the quasi-
convex hulls for sets of 2 × 2 matrices containing neither rank-1 connections nor
T4 configurations.

The characterization of K qc
S when K is of Type 1, is performed in two steps.

First one seeks an inner bound for K qc
S , and then one proves the optimality of such

bound. An explicit construction for the inner bound is provided by an “infinite-rank”
sequential lamination, the idea successfully exploited earlier in a number of differ-
ent settings, see for instance [2,30,36,39,48]. All the essential details specifically
for the divergence free (Div-free) context are found in [11].

Establishing the optimality of the inner bound requires an additional analysis.
For the T4 configuration of the approximate non-rigidity for four pairwise incom-
patible gradient wells, one way to prove the sharpness of the inner bound is by
employing the Šverák’s [41] “nontrivial” quasiconvex (but not polyconvex) func-
tion det+. Our motivation is somewhat similar in spirit. For this we construct a
suitable modification of a function (originally introduced in the study of compos-
ites in homogenization, for example [46]), which is rank-2 convex and quadratic
and, therefore, quasiconvex in the space of Div-free fields. This modification is
a function defined only on a “model” two-dimensional plane determined by the
three-wells and partially resembles the Šverák’s function since it behaves like det+
function and is rank-2 convex on the plane (see Lemma 4).

A crucial accompanying ingredient is in establishing weak lower semicontinuity
of functionals with rank-2 convex integrands on the above generic two-dimensional
plane (the central Theorem 1), which may be of an independent interest. Within
the framework of the theory of compensated compactness, the latter represents an
example when the differential constraints fail the constant rank condition, thereby
invalidating the classical proofs, for example [9,29]. Nevertheless, akin to examples
in [19,24] for diagonal gradient fields, the weak lower semicontinuity is still equiv-
alent to A -quasiconvexity—in this particular context, to S-quasiconvexity, that is
quasiconvexity in the sense of the divergence-free differential constraints—on the
planes. Moreover, the so-calledΛ-convexity (specifically, the rank-2 convexity on
a generic plane) implies the S-quasiconvexity.

For proving the latter semicontinuity result, we closely follow Müller [24] and
utilize in an appropriate way three-dimensional modifications of Haar wavelet pro-
jection estimates in terms of the Riesz transform. In [24] Müller, in the context of
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the L2-theory and in dimension two, employs techniques of harmonic analysis such
as Paley-Littlewood dyadic decomposition and almost orthogonality, see for exam-
ple [38], while the most recent work [19] extends the results not only to arbitrary
dimensions but also for an L p-theory, 1 < p < ∞, by additionally employing the
advanced tools of the Calderon-Zygmund theory. Both [24] and [19] subsequently
apply the Haar projectors—Riesz transforms estimates for deriving the semicon-
tinuity for separately convex integrands on diagonal gradient fields. Nevertheless,
we believe that our generic semicontinuity result, Theorem 1, is essentially new, as
well as allows interesting applications and further generalizations as presented in
this paper and beyond, see for example [32].

As a first application, Theorem 1 allows us to fully characterize the
S-quasiconvex hull for all sets of Type 1. In other cases, when K does not con-
tain any rank-2 connection but is not a set of Type 1, we first employ the above
mentioned analog of Šverák’s function to “disconnect” the set K qc

S (which coin-
cides with the rank-2 convex hull K r2) and then employ connectedness properties
of rank-2 envelopes, following from results of Kirchheim [16] and Matoušek [20]
(see Lemma 6). This allows us to prove that in such a case necessarily K qc

S = K
(Theorem 3). All the remaining cases (see Definitions 3 and 4 and the subsequent
Remarks) can be treated without any special difficulty (see Theorem 4 and Propo-
sition 4, and Theorem 5 for a full catalog).

The second, related, problem addressed in this paper is the characterization of
the H -measures associated with three-phase mixtures in dimension three. Problem
(1) is equivalently reformulated in terms of a relaxation of a three-well energy
(N = 3) as follows. Given the function F(η) = 1

2 min{|η − Ai |2 , i = 1, . . . , N },
η ∈ M

3×3, N ∈ N, N � 2, and θ ∈ (0, 1)N with
∑

i θi = 1, characterize the
S-quasiconvexification of F , Qθ

S F , at fixed volume fractions θ :

∀η ∈ M
3×3 Qθ

S F(η) := inf
−∫ χi =θi

inf
B∈V

1
2−
∫

Q

∣
∣
∣
∣
∣
η + B(x)−

N∑

i=1

χi Ai

∣
∣
∣
∣
∣

2

dx . (2)

Here V is the space of L2
loc(R

3,M3×3) functions B(x) which are Q-periodic,
DivB = 0 in D ′(R3,R3) and

∫

Q Bh = 0, and χi ’s, i = 1, . . . , N , are characteris-
tic functions of disjoint measurable subsets of Q. Zero sets over all θ , that is such η
that Qθ

S F(η) = 0 for some θ , equivalently re-define the S-quasiconvex hull K qc
S .

Problems similar to (2) emerge in the framework of linearized elasticity, with the
function F being the minimum of N quadratic functions of the linearized strain with
same elastic moduli but different stress-free strains (see, for example [2,17,39]).
More generally, one could consider a problem analogous to (2) for rather arbitrary
differential constraints (in the above-mentioned framework of A -quasiconvexity).

One approach to these problems is based on the idea of using Fourier analysis,
following earlier precedents in the metallurgical literature, for example [15]. As a
result (2) is equivalently reformulated into a problem of minimization with respect
to special objects characterizing the “intensity” of the oscillations (of the charac-
teristic functions) in various directions, the H -measures, introduced by Tartar
[47], and independently by Gerard [12], the idea proposed and advanced in this
context by Kohn [17]. This approach was developed further by Smyshlyaev and
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Willis [39], who first argued that for a rather generic nonconvex function with a
quadratic growth (namely the difference of a quadratic function and of another con-
vex function) the quasiconvexification problem can be reduced to (“kinematically
unconstrained”) non-local minimum energy principle. This followed the general
methodology employed before for nonlinear composites by Talbot and Willis,
for example [43], consistently with the thesis on the “non-locality” of quasiconvex-
ity, [18]. Further use of the Fourier transform naturally leads to the reformulation
in the language of H -measures, in particular for multi-well energies with quadratic
wells as in (2). This reduces the problem of relaxation to that of characterizing the
extremal points of the (weak* compact, convex) set of H -measures.

When the number of phases is two, N = 2, the set of the H -measures is known
and the relaxation of a two-well energy may be explicitly computed [17] (see also
[35]). In contrast, for N > 2, the H -measures are not fully characterized. It is known
that they satisfy some necessary restrictions [17], but these are in general not suffi-
cient. For N = 3, Smyshlyaev and Willis [39] explicitly characterized the bigger
convex set (the “superset”) described by the known restrictions for the H -measures
(whose extremal points are matrix Borel measures supported in no more than three
Dirac masses). They also provided a sufficient condition by showing that among
these critical points there is a large class of actual H -measures, realized generally
by an infinite-order sequential lamination, and considered applications to three-well
problems with gradient and linear elastic constraints (see also [10,13]).

In the present paper we prove that the above condition of realizability is essen-
tially necessary, at least for all the measures supported on three linearly independent
directions. As a result we are able to fully characterize certain extremal three-point
H -measures (Theorems 7, 8 and 9). One strategy for achieving this is the following.
We study problem (2) for N = 3, and, following the recipe of [17], rewrite it as a
minimization over the H -measures. We use next an algorithm of [39] which allows
one to compute a lower bound on Qθ

S F by minimizing over all extremal points
of the superset. We find that every three-point extremal measure of the superset
supported on linearly independent directions is the unique minimizing measure
delivering a zero lower bound on Qθ

S F at η =∑i θi Ai , for a suitable choice of
A1, A2, A3 and θ . Then we use the results of the first part of the paper to establish
the attainability or otherwise of this lower bound. Namely, the measure in question
is an H -measure if and only if the zero lower bound is attained, that is if and only
if Qθ

S F(η) = 0, equivalently, η ∈ K qc
S , with K = {A1, A2, A3}. We briefly sketch

also an argument for establishing these results directly for the H -measures (Remark
8), with both approaches equivalent at a fundamental level via crucially relying on
the key Theorem 1.

An attractive feature of the H -measures is that those are purely “geometri-
cal” objects, that is they do not depend on the differential constraint but only on
the microgeometry of mixing the characteristic functions. They thereby separate
the microgeometry of mixing from the differential constraints, which makes the
new H -measures’ results potentially applicable to other problems of relaxation, for
example, just to mention one, to that of linearized elastic wells, as we also briefly
explore in this paper.
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The structure of the paper is as follows. In Section 2 we define the S-quasiconvex
hull and discuss its relation to the S-relaxation with fixed volume fractions. Sec-
tion 3 reviews the results from [11] and [33], provides the main tool for proving the
(sharp) outer bound for the S-quasiconvex hull K qc

S of an arbitrary three-point set
(Lemma 4, Theorem 1 and Corollary 1) and finally gives the full characterization
of K qc

S (Theorem 5). Section 4 is devoted to the proof of Theorem 1 (with the key
wavelet analysis and estimates in terms of the Riesz transform) and some other
technical results. The reformulation of the relaxation problem in terms of minimi-
zation with respect to the H -measures is discussed in Section 5 and follows [17]
and [39]. The main results on the H -measures are stated and proved in Section 6:
Theorem 7 essentially establishes that the sufficient conditions [39, Proposition
6.1] for realizability of a class of extremal three-point measures of the superset by
the H -measures are also necessary, while Theorems 8 and 9 rule out some extremal
measures outside the above class (except for degenerate cases listed in accompa-
nying Remarks). Section 7 completes the description of the remaining cases and
summarizes the results. Section 8 discusses further applications of the results, in
particular to the problem of three linear elastic wells, and Section 9 discusses some
further generalizations and prospects. The Appendices prove a technical lemma,
review the definition and some properties of the H -measures and specialize those
to the three divergence-free wells problem.

2. Preliminaries S-quasiconvexification problem

In this section we set some notation, state the S-quasiconvexification prob-
lem and give its equivalent formulation in terms of minimization for a quadratic
three-well problem.

Let Q = (0, 2π)d be the periodicity cell in R
d , d � 2 is the spatial dimension.

Let K be a subset of real-valued m × d matrices, K ⊂ M
m×d , m � 1.

Definition 1. The S-quasiconvex hull K qc
S of K is the set of all B0 ∈ M

m×d

such that there exists a sequence {Bh} ⊂ L2
loc(R

d ,Mm×d), L2
loc-equi-integrable1,

Q-periodic and such that

{
DivBh = 0 in D ′(Rd ,Rm) ,

dist(Bh, K ) → 0 locally in measure as h → ∞,
(3)

and −
∫

Q Bh = B0, ∀ h.

Here −
∫

Q Bh stands for the volume average 1
|Q|
∫

Q Bh , |Q| := (2π)d is the volume
of Q. In (3) DivBh = 0 means that each row in matrix Bh(x) is divergence-free in

1 A sequence {Bh} ⊂ L2
loc(R

d ,Mm×d ) is called L2
loc-equi-integrable if for any bounded

Ω ⊂ R
d , for any ε > 0 there exists δ > 0 such that for all measurable E ⊂ Ω with

meas(E) < δ, suph ||Bh ||L2(E) < ε. The equi-integrability prevents “concentration”.
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the sense of distributions. The convergence locally in measure means here that for
all ε > 0, measure {x ∈ Q : dist(Bh, K ) > ε} → 0 as h → ∞.

It is easily checked that K ⊆ K qc
S ⊆ K c, where K c denotes the convex hull of

K . In particular, let K be a finite set of N distinct matrices, A1, . . . , AN in M
m×d ,

where N � 2 is the number of “phases”. In this case the above problem is related
to that of relaxation of a “multi-well energy” of the form

F(η) = 1
2 min{|η − Ai |2 , i = 1, . . . , N } , η ∈ M

m×d (4)

(in (4) for A ∈ M
m×d we denote |A| := (

Tr(AT A)
)1/2

). Here the “relaxation” is
also to be understood in the context of solenoidal (divergence free) fields. We will,
in fact, equivalently deal with the so-called “S-quasiconvexification at fixed volume
fractions”, defined as follows. Let θ = (θ1, . . . , θN ) ∈ [0, 1]N , with

∑N
i=1 θi = 1 ,

where θi , i = 1, . . . , N , are “the volume fractions”. Denote I (θ) the set of all char-
acteristic functions χ(x) = (χ1(x), . . . , χN (x)) of non-intersecting measurable
subsets comprising Q with fixed volume fractions θ , that is

I (θ) =
{

χ : R
d → {0, 1}N , Q − periodic

and measurable :
N∑

j=1

χ j = 1 almost everywhere,−
∫

Q
χ = θ

}

. (5)

Definition 2. For any θ ∈ [0, 1]N , with
∑N

i=1 θi = 1, the S-quasiconvexification
of F at fixed “volume fractions” θ , denoted Qθ

S F , is

∀η ∈ M
d×d Qθ

S F(η) := inf
χ∈I (θ)

inf
B∈V

1
2−
∫

Q

∣
∣
∣
∣
∣
η + B(x)−

N∑

i=1

χi Ai

∣
∣
∣
∣
∣

2

dx . (6)

Here V is the space of Q-periodic divergence-free matrix fields with zero average
on Q,

V :=
{

B ∈ L2
loc(R

d ,Mm×d), Q − periodic,

−
∫

Q B(x)dx = 0, DivB = 0 in D ′(Rd ,Rm)
}
. (7)

Definition 2 falls in the more general framework of A -quasiconvexity (see,
for example [9]). Indeed formula (6) involves matrix fields subject to differential
constraints of “solenoidal” (that is divergence free) type; hence the label S, being
a particular example of more general differential constraints.

It follows directly from the definitions that:

Proposition 1. B0 ∈ K qc
S if and only if there exists θ ∈ [0, 1]N such that

QS
θ F(B0) = 0.

We consider in this paper three-point sets K = {A1, A2, A3} ∈ M
3×3, that is

set N = d = m = 3, and give in the next section a full characterization of K qc
S . In

the second part of the paper, we exploit the above equivalence to use the obtained
results for characterizing certain extremal H -measures.
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3. Characterization of the S-quasiconvex hull of three-point sets

The main purpose of this section is to fully characterize the S-quasiconvex hull
K qc

S of any three-point set K = {A1, A2, A3} ⊂ M
3×3. The matrices Ai , i = 1, 2, 3

are assumed not to lie on a single straight line (which is a trivial case for purposes
of finding K qc

S : K qc
S = K if the direction of the line is not a rank-2 direction and

K qc
S = K c otherwise).2 Remind that K c denotes the convex hull of K .

A special role is played by the “rank-2 directions” in M
3×3, along which any two

matrices are “compatible” in the sense of divergence free fields: if rank(A−C) � 2
(equivalently, det(A−C) = 0) then for any simple lamination in a direction ξ ∈ S2

such that (A − C)ξ = 0 the matrix field B(x) taking constant values A and C in
the alternating layers is obviously divergence-free. We will conventionally refer
to such matrices as rank-2 connected and the connecting straight line as a rank-2
direction. Further analysis will depend on the number of such rank-2 directions in
the two-dimensional plane formed by A1, A2 and A3. If Ai , i = 1, 2, 3 are pair-
wise connected, that is rank(Ai − A j ) � 2 for all i �= j , trivially K qc

S = K c via a
two-stage sequential lamination. The aim is therefore to characterize K qc

S when K
contains at least one pair of rank-2 disconnected matrices, that is rank(Ai − A j ) = 3
for some i �= j . Then the plane cannot contain more than three rank-2 directions
(since det(Ai − t A j ) = 0 as cubic equation with respect to t cannot have more than
three solutions), and the main effort will be towards the case when there are exactly
three such directions (the cases of less than three directions will be treated thereafter
by a direct adaptation). Then, depending on the position of the three rank-2 direc-
tions relative to the triangle formed by A1, A2 and A3 on this plane, the set K may
be of three different types, as follows. Each vertex A j of the triangle (A1, A2, A3)

may contain zero to three rank-2 lines through it pointing strictly inside the triangle.
Provided K is rank-2 disconnected, the total number of such lines over the three
vertices is always three. This suggests the following classification.

Definition 3. We say that K is of Type 1 if there is precisely one rank-2 line through
each vertex pointing inside the triangle, and those lines do not intersect in a sin-
gle point (cf. Definition 4 below), that is form an “inner triangle” inside K c [see
Fig. 1(1)]. We say that K is of Type 2 if the mutual position of A1, A2 and A3 is
such that the three vertices have one, two and zero such rank-2 lines, respectively,
see Fig. 1(2). We say that K is of Type 3 if one of the three vertices has three lines
pointing inside the triangle (and hence the others have none), see Fig. 1(3).

Definition 4. We say that K is a set of degenerate Type 1 if the “inner triangle”
degenerates into a single point that we denote by S0 (see Fig. 4).

Remark 1. The plane through A1, A2, A3 contains three distinct rank-2 directions
if and only if, after reduction to K = {0, I, A} (always possible by shifting by a
constant matrix and left multiplying by an invertible matrix, cf. Lemma 1 below),
A is diagonalizable with distinct real eigenvalues.

2 This conclusion will itself follow from the results on this Section as a trivial limit case.
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Fig. 1. (1) The “inner triangle” S1S2S3 formed by the rank-2 lines for the sets of Type 1.
(2) A set of Type 2. (3) A set of Type 3. In (1–3) the dashed lines delimit the convex hull
while the solid lines are rank-2 lines

Remark 2. Cases when some of the matrices in K are rank-2 connected are
“borderlines” between the above three types, some of which could be included as
limit cases, while others have to be treated separately. For example, if on Fig. 1(1)
the point S1 merges with A3 and/or S2 with A1, S3 with A2, those cases can, for pur-
poses of the forthcoming analysis, be included as limit cases into Type 1. However
similar limit cases for Types 2 and 3 will have to be considered separately.

We first study the sets of Type 1 and then separately the sets of degenerate Type
1, see Proposition 3. We will show that if (not fully rank-2 connected) K is of Type
1, then K � K qc

S � K c (Corollary 2), while for sets of Type 2 the S-quasiconvex
hull is trivial, that is K qc

S = K (Theorem 3), except for the limit cases containing
rank-2 connections. The sets of Type 3 with no rank-2 connections have trivial
S-quasiconvex hulls, too. Their study does not present any special difficulty and is
postponed to Section 7. The case of A having multiple eigenvalues follows essen-
tially the same approach as for the sets of Type 1 and Type 2 and the related results
are stated in Theorem 4. Finally, the case of non-diagonalizable A is treated in
Section 7. We give in Theorem 5 a complete account of all the cases.

Remark 3. If K = {A1, A2, A3} does not contain any rank-2 connection, then there
exists no “exact” divergence free matrix field B such that B ∈ K almost everywhere,
and −

∫
B =∑3

i=1 θi Ai with θi ∈ (0, 1) ∀ i = 1, 2, 3 (see [33]).

The next lemma shows that for the purpose of characterizing the S-quasiconvex
hull of a set, one can make a convenient change of variables. In particular it allows
us to reduce the problem to the diagonal case when dealing with sets of Types 1, 2
and 3.

Lemma 1. Suppose K = {A1, A2, A3} ⊂ M
3×3 and K̄ = {N A1G+ M, N A2G+

M, N A3G + M} with G, N ∈ GL(3,R), M ∈ M
3×3. Then B0 ∈ K qc

S if and only
if N B0G + M ∈ K̄ qc

S .

The proof of Lemma 1 is given in Appendix A.
We will now focus on the sets of Type 1. Before stating the main results of this

section, we briefly explain how the sets of Type 1 look (see [11,31,33] for further
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details). A key “geometric” property of every set K = {A1, A2, A3} of Type 1
which does not contain rank-2 connections, see Fig. 1, is that one can find three
matrices S1, S2, S3 ∈ M

3×3 such that

S2 = q1 A1 + (1 − q1)S1,

S3 = q2 A2 + (1 − q2)S2, (8)

S1 = q3 A3 + (1 − q3)S3,

where q1, q2, q3 ∈ (0, 1), and det(Ai − Si ) = 0, i = 1, 2, 3, that is Ai and Si

are rank-2 connected. The rank-2 lines A1S1, A2S2, A3S3 intersect forming the
triangle S1S2S3 as in Fig. 1. The following lemma describes algebraically all the
sets of Type 1 which do not contain rank-2 connections (in fact, it follows by direct
calculation from (8) via Lemma 1 with appropriate diagonalization of matrices).

Lemma 2. [33] Suppose K ⊂ M
3×3 does not contain any rank-2 connection. Then

K is of Type 1 if and only if there exist q1, q2, q3 ∈ (0, 1), G, N ∈ GL(3,R),
M ∈ M

3×3 such that

K = {M, N + M, N A + M} , (9)

where

A = 1

q3

[(

1 −
3∏

i=1

(1 − qi )

)

G−1 diag (λ1, λ2, λ3)G − q2(1 − q3)I

]

, (10)

with

λ1 = 0 , λ2 = 1/(1 − q1) , λ3 = q2/(q1 + q2 − q1q2). (11)

Notation. For every K = {A1, A2, A3} of Type 1, we set (see Fig. 1):

Γ1(K ) =
{

ξ ∈ M
3×3 : ξ = t1 A1 + t2S1 + t3 A3,

ti ∈ [0, 1) , t1, t3 �= 0 ,
3∑

i=1

ti = 1

}

,

Γ2(K ) =
{

ξ ∈ M
3×3 : ξ = t1 A2 + t2S2 + t3 A1,

ti ∈ [0, 1) , t1, t3 �= 0 ,
3∑

i=1

ti = 1

}

,

Γ3(K ) =
{

ξ ∈ M
3×3 : ξ = t1 A3 + t2S3 + t3 A2,

ti ∈ [0, 1) , t1, t3 �= 0 ,
3∑

i=1

ti = 1

}

,
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T (K ) := K c −
3⋃

i=1

Γi (K ) (12)

(hence T (K ) is the union of the closed triangle S1S2S3 and the three “arms” [A1S2),
[A2S3) and [A3S1)). The above includes the limit cases when K contains one or
two rank-2 connections. For example, if rank(A1 − A2) � 2, then A1 = S2 and
T (K ) is given by the union of the closed triangle S1S2S3 and the two “arms” [A2S3)

and [A3S1).
The next result provides an inner bound for the S-quasiconvex hulls of the sets

of Type 1.

Lemma 3. If K is of Type 1, then T (K ) ⊆ K qc
S .

Proof. This follows from [11] (see in particular Lemmas 4.1 and 4.2 therein). An
explicit construction realizing a point in T (K ) is that of infinite-rank sequential
lamination, cf. [2,30,36,48]. 	

In the sequel we will show that in fact K qc

S = T (K ). By Lemma 3, we only need
to prove K qc

S ⊆ T (K ). By Lemma 1 it suffices to prove the latter in the diagonal
case, that is when K is of the form K = {0, I, D(q)}, where D(q) is given by (10)
with G = I and (q1, q2, q3) an arbitrary point in (0, 1)3.

To proceed, we first recall the notion of S-quasiconvexity (see [9] for the general
setting).

Definition 5. A continuous function f : M
3×3 → R with quadratic growth is said

to be S-quasiconvex if for every Q-periodic divergence free matrix field
B ∈ L2

loc(R
3,M3×3)

−
∫

Q
f (B) dx � f

(

−
∫

Q
B dx

)

. (13)

If f is S-quasiconvex, B0 ∈ K qc
S and {Bh} satisfies (3) for K = {A1, A2, A3}

and −
∫

Q Bh = B0, then necessarily B0 = ∑3
i=1 θi Ai for some θ ∈ [0, 1]3, with

∑3
i=1 θi = 1, and

f (B0) �
3∑

i=1

θi f (Ai ). (14)

Hence if for a given B0 =∑3
i=1 θi Ai , for some S-quasiconvex f holds

f (B0)>
∑3

i=1 θi f (Ai ), then B0 /∈ K qc
S . Unfortunately, we do not know any ex-

plicit S-quasiconvex function which can provide the optimal bound on K qc
S when

the set K is of the type (9). Therefore the characterization K qc
S = T (K ) will be

performed in several steps. The plan is briefly as follows:
Step 1. We consider a “model” plane π generated by two rank-2 matrices

V1 = diag(1, 1, 0), V2 = diag(−1, 0,−1) . (15)



786 M. Palombaro & V. P. Smyshlyaev

Hence π := {M ∈ M
3×3 : M = uV1 + vV2 for some u, v ∈ R} . We construct a

particular function T + on π which is rank-2 convex, that is convex along all the
(three) rank-2 directions contained in π (Lemma 4).
Step 2. In this central step we prove that inequality (14) holds true whenever K ⊂ π ,
B0 ∈ K qc

S and f is a rank-2 convex function on π . This will follow from the key
Theorem 1, establishing appropriate weak lower semicontinuity and Corollary 1.
Step 3. We show that, up to a transformation, the considered sets K are subsets of
the plane π . Namely, for every i = 1, 2, 3, there exists a transformation of the type
described in Lemma 1 that maps the rank-2 lines Ai Si and Ai+1Si+1 into V1 and V2,
respectively (A4S4 := A1S1). This will allow us to use the function T + to check
that for B0 �∈ T (K ) the inequality (14) fails and hence B0 �∈ K qc

S , establishing
K qc

S = T (K ) (Theorem 2).
Step 1. Denote by π+ the subset of π defined as follows

π+ := {M ∈ π : M = uV1 + vV2 for some u > 0, v > 0} .
Recall that a function f : M

3×3 → R is said to be rank-2 convex if f is con-
vex along all the rank-2 lines, that is if t → f (M + tV ) is convex in t for every
M, V ∈ M

3×3 with rank(V ) � 2.

Lemma 4. (Construction of T +) There exists a continuous function T + : π → R

with a quadratic growth, such that:

T + is rank-2 convex on π, that is, t → f (M + tV ) is convex for every M, V ∈π
(16)

with rank(V ) � 2 ;
T +(M) > 0 if M ∈ π+; (17)

T +(M) = 0 if M ∈ π\π+ . (18)

Proof. As a motivation, consider first the function T : M
3×3 → R given by

T (M) = 2tr (MT M)− (tr M)2 . (19)

This is an S-quasiconvex function, see for example [47], satisfying (16) and (17),
but not (18). The idea is to appropriately modify the restriction of T to the plane
π to achieve (18). First, the restriction of T to π is, via (15):

∀ u, v ∈ R T (uV1 + vV2) = 2[(u − v)2 + u2 + v2] − 4(u − v)2 = 4uv.

Define T + : π → R in the following way:

∀ u, v ∈ R T +(uV1 + vV2) = u+v+, (20)

where u+ and v+ denote the positive parts of u and v : u+ := max{0, u}, v+ :=
max{0, v} (the function T + is loosely analogous to the function det+ of Šverák
[41]). The function T + satisfies (17) and (18) by construction. It is also rank-2 con-
vex by direct inspection since the only rank-2 directions in π are V1, V2, V1 + V2,
as follows from (15). 	
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Step 2. In this central step, we prove that inequality (14) holds for all rank-2 convex
functions on π whenever K ⊂ π . For notational simplicity we regard any function
f defined on π as a function on R

2 via the identification:

(y1, y2) ∈ R
2 → y1V1 + y2V2 ∈ π,

and, when no ambiguity arises, we write f (y1, y2) instead of f (y1V1 + y2V2).
Hence, if f is a rank-2 convex function on π , then as a function on R

2 it is sep-
arately convex (that is convex in both y1 and y2), and is additionally convex in
the diagonal direction (1, 1), that is t ∈ R → f (y1 + t, y2 + t) is convex for
every (y1, y2) ∈ R

2. This immediately follows from the fact that the only rank-2
directions in π are those along V1, V2 and V1 + V2.

Before introducing the main result, to clarify the motivation further consider
Q-periodic divergence free matrix fields whose values are restricted to π , that is
B ∈ Vπ where

Vπ =
{

B ∈ L2
loc(R

3,M3×3), Q − periodic, DivB = 0 in D ′(R3,R3),

B ∈ π almost everywhere
}
.

Lemma 5. Let B ∈ Vπ . Then there exist η1, η2, η3 ∈ L2
loc(R), (0, 2π)-periodic,

such that

B(x1, x2, x3)=(η3(x3)− η1(x1))V1 + (η2(x2)− η1(x1))V2 , almost everywhere.

(21)

Moreover, for every rank-2 convex function f on π with quadratic growth

−
∫

Q
f (B) � f

(
−
∫

Q B
)
. (22)

Proof. By assumptions there exist u, v ∈ L2
loc(R

3) , (0, 2π)3-periodic such that

B(x) = u(x)V1 + v(x)V2 almost everywhere.

The equation DivB = 0 then yields, see (15),

∂1(u − v) = 0, ∂2u = 0, ∂3v = 0, in D ′(R3), (23)

with shorthand notation ∂ j := ∂
∂x j

, j = 1, 2, 3. Then (21) follows from (23) by
explicit integration.

Further,

−
∫

Q
f (B) dx = −

∫

Q
f (η3(x3)− η1(x1), η2(x2)− η1(x1)) dx1dx2dx3

� f (η̄3 − η̄1, η̄2 − η̄1) = f
(

−
∫

Q B dx
)
,

where η̄1, η̄2, η̄3 denote the averages of η1, η2, η3 over (0, 2π). In the last inequal-
ity we have, sequentially, used the convexity of the integrand in η2(x2), η3(x3) and
in η1(x1). 	
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Notice in passing that relations (23) somewhat resemble those in the proof of [25,
Theorem 1], although the precise detail is fundamentally different: the example in
[25] is for gradient fields, which would essentially imply in the present notation,
see (24) below, a stronger requirement of the H−1

loc convergence of the gradients of
∂2uh , ∂3vh and ∂1(uh − vh). As a result, less sophisticated methods suffice in [25].

The next key result builds on the above motivation and provides the central
tool for proving our main claim. It is a modification of a result due to Müller
[24, Theorem 1] (see also [19]), appropriately adjusted to the present setting of
divergence-free differential constraints in three dimensions, although is of a more
general interest, as the rest of this paper partly demonstrates, cf. for example
Remark 8 (see also [32] for a further generalization).

Theorem 1. Let f : R
2 → R be a separately convex function additionally convex

in the direction (1, 1), satisfying 0 � f (y) � C(1 + |y|2). Let U ⊂ R
3 be open

and suppose that

uh ⇀ u∞, vh ⇀ v∞ in L2
loc(U ) as h → ∞,

∂2uh → ∂2u∞, ∂3vh → ∂3v∞,
∂1(uh − vh) → ∂1(u∞ − v∞) in H−1

loc (U ) as h → ∞. (24)

Then for every open set V ⊂ U

∫

V
f (u∞, v∞) dx � lim inf

h→∞

∫

V
f (uh, vh) dx . (25)

The proof of Theorem 1 is postponed to Section 4.

Remark 4. Theorem 1 can be interpreted as a statement that rank-2 convexity is
equivalent to S-quasiconvexity on two-dimensional plane π , cf. [19,24] for analo-
gous interpretation for gradient fields on diagonal matrices. This allows various fur-
ther interpretations, for example, in terms of divergence free fields Young measures
supported on π being laminates and of the existence of S-quasiconvex functions
ε-close on any compact subsets of π to a given function rank-2 convex on π , cf.
[24, Theorem 2 and Corollary 3], and K qc

S = K r2 (see Definition 6 below).
On the other hand notice that, alike in [19,24], within the framework of the

theory of compensated compactness (24) represents an example of differential
constraints failing the constant rank condition, thereby invalidating the classical
proofs, for example [9,29].

Corollary 1. Let K = {A1, A2, A3} ⊂ π and let B0 =∑3
i=1 θi Ai ∈ K qc

S . Then
(14) holds true for every function f satisfying the assumptions of Theorem 1 (that
is rank-2 convex on π and with quadratic growth).

Proof. By definition of K qc
S there exists a sequence {Bh} satisfying (3) with

−
∫

Q Bh = B0 := u∞V1 + v∞V2. Then it directly follows from (3), cf. also

Proposition 1, that there exists a sequence {χh} ⊂ I (θ) of Q-periodic characteristic
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functions such that:

Ah :=
3∑

i=1

χh
i Ai ∈ π almost everywhere , −

∫

Q
Ah = B0 ,

DivAh → 0 strongly in H−1
loc (R

3) , Ah ∗
⇀ B0 in L∞(R3)

(for example, we can take “periodic rescaling” χh(x) = χ̃h(n(h)x), where χ̃h(x)
is a minimizing sequence in (6) associated with Bh and n(h) ∈ N, n(h) → ∞).

Therefore Ah = uh V1 + vh V2 for some functions uh, vh which satisfy

uh ⇀ u∞, vh ⇀ v∞ weakly in L2
loc(R

3),

∂2uh → 0, ∂3vh → 0, ∂1(uh − vh) → 0 strongly in H−1
loc (R

3).

We then apply Theorem 1 with V = Q to get

−
∫

Q
f (u∞, v∞) dx � lim inf

h→∞ −
∫

Q
f (uh, vh) dx .

Since lim inf
h→∞ −

∫

Q
f (uh, vh) dx =

3∑

i=1

θi f (Ai ), (14) follows from

f (u∞, v∞) ≡ f (B0). 	

Step 3. We are now ready to demonstrate that K qc

S = T (K ) for all sets K of the
form K = {0, I, D(q)}, where D(q) is defined by (10), (11) with G = I and
q = (q1, q2, q3) ∈ (0, 1)3. It will be convenient to give the explicit expressions for
the matrices D(q), S1(q), S2(q), S3(q) in this case, which follows by straightfor-
ward calculation from (10), (11) and (8) with A1 = 0, A2 = I , A3 = D(q):

D(q) = diag

(

− q2

q3
(1 − q3),

q1 + q3 − q1q3

q3(1 − q1)
,

q2

q1 + q2 − q1q2

)

,

S1(q) = diag

(

0,
1

1 − q1
,

q2

q1 + q2 − q1q2

)

,

S2(q) = diag

(

0, 1,
q2(1 − q1)

q1 + q2 − q1q2

)

,

S3(q) = diag

(

q2, 1,
q2

q1 + q2 − q1q2

)

.

(26)

Theorem 2. Let q ∈ (0, 1)3 and let K = {0, I, D(q)}. Then K qc
S = T (K ).

Proof. Let B0 ∈ K qc
S . By Lemma 3, it suffices to prove that B0 /∈⋃3

i=1 Γi (K );
see (12). This is achieved by a version of a “biting-out” argument as follows. For
simplicity we omit displaying the dependence on q in the matrices (26). We first
show that B0 /∈ Γ3(K ). Recall that the lines S3S1 and S2S3 are rank-2 lines. Then,

for N = diag

(

− 1

q2
,

1 − q1

q1
, − q1 + q2 − q1q2

q1q2

)

we find

N (S1 − S3) = V1 and N (S3 − S2) = V2.
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By assumption there exists a sequence {Bh} satisfying (3) with −
∫

Q Bh = B0. We
now define the new sequence {B ′

h} and the set K ′ in the following way:

∀ h B ′
h := N (Bh − S3) , K ′ := {−N S3, N (I − S3), N (D − S3)} .

It is readily seen that {B ′
h} satisfies the following:

⎧
⎪⎨

⎪⎩

DivB ′
h = 0 in D ′(R3,R3),

dist(B ′
h, K ′) → 0 in measure,

−
∫

Q B ′
h = N1(B0 − S3).

(27)

Next notice that the condition B0 /∈ Γ3(K ) is equivalent to N (B0 − S3) ∈ π\π+.
In order to prove the latter inclusion we use the function T + of Lemma 4. Since,
by construction, T +|K ′ = 0, using (27) and Corollary 1, one gets

T +(N (B0 − S3)) � 0,

implying the desired inclusion via (17).
To prove that B0 /∈ Γ1(K ), one first finds a diagonal matrix N ′ such that

N ′(S1 − S3) = diag(1, 1, 0) , N ′(S2 − S1) = diag(0,−1,−1),

which is possible since S1S3 and S2S1 are rank-2 lines. Then one employs Lemma 1
to make a change of variable (via a simple permutation matrix in this case) and
reduces to the previous case. In a fully analogous way, one shows that B0 /∈ Γ2(K ).

	

Corollary 2. If K is a set of Type 1, then K qc

S = T (K ).

Proof. This follows from Lemmas 1, 2 and Theorem 2. 	

We now turn to the characterization of the S-quasiconvex hull of the sets of

Type 2. To proceed, we need the following standard definition.

Definition 6. We define the rank-2 convex hull K r2 of a set K as

K r2 = {M ∈ M
3×3 : f (M) � sup

K
f, for all rank-2 convex f } .

Trivially, the rank-2 convex hull provides an inner approximation of the
S-quasiconvex hull of a set: K r2 ⊆ K qc

S .
An immediate consequence of Corollary 1 (see also Remark 4) is the following

Corollary 3. Let K = {A1, A2, A3} ⊂ π . Then K qc
S = K r2 .

Hence, to characterize the S-quasiconvex hull of the sets of Type 2, we can
equivalently deal with the rank-2 convex hull. We will employ the following lemma,
which is a particular case of a more general result first claimed in [21,34] and later
proved in [16,20].
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Fig. 2. Type 2: (1) generic case, (2) degenerate case

Lemma 6. Let C1, . . . ,Ck be disjoint compact sets and let K r2 ⊂ ∪k
i=1Ci . Then

K r2 = ∪k
i=1(K ∩ Ci )

r2.

Proof. Follows by direct adaptation of [20, Proposition 6.1] to present setting. 	

Theorem 3. If K is a set of Type 2 containing no rank-2 connection, then K qc

S = K .

Proof. Using Lemma 1 we can make a suitable change of variables and reduce as
before to the case K ⊂ π . Then, employing the same “biting-out” arguments as in
the study of Type 1, we can rule out from K qc

S the three triangles [see Fig. 2(1)]:
A1 P1 A2, A1 P3 A3 (⊂ A1 P4 A3), A2 P5 A3 (⊂ A2 P6 A3). Therefore, it only remains
to eliminate the triangle P1 P2 A2 and the “arm” (A1, P1]. Let C1 = {A3} and let
C2 be P1 P2 A2 ∪ [A1, P1]. Then, by Lemma 6, K r2 = A3 ∪ (K ∩ C2)

r2. Clearly
(K ∩ C2)

r2 = {A1, A2}r2 = {A1, A2} since A1 and A2 are rank-two disconnected.
Hence K r2 = {A1, A2, A3} = K . Finally, by Corollary 3 K qc

S = K as required.
	


Remark 5. The limit case of Type 2 when K contains a rank-2 direction is, of
course, special and results in a non-trivial K qc

S . Assume A1 and A3 are (rank-2)
connected. Let A2 be connected to points P1 and P2, see Fig. 2(2), Pj = t j A1 +
(1 − t j )A3, j = 1, 2, 0 � t2 < t1 � 1. Then K qc

S is the union of [A1, A3] and the
closed triangle [A2 P1 P2]. The inner inclusion holds by a simple sequential lami-
nation. The triangles A1 P1 A2 and A3 P2 A2 are eliminated by the same method as
above. The other limit case corresponds to A2 connected to no point in [A1, A3],
in which case K qc

S =[A1, A3] ∪ A2, via the same argument as in Theorem 3.

We conclude this section with treating the case when K = {0, I, A} and A is
diagonalizable (on R) with multiple eigenvalues.

Theorem 4. Assume that the set K = {0, I, A} does not contain any rank-2 con-
nection and that the matrix A is diagonalizable with a real eigenvalue of multiplicity
two or three. Then K qc

S = K .
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Proof. If A has an eigenvalue of multiplicity three, then A = aI for some a ∈ R,
a �= 1, a �= 0. Then the original Tartar’s S-quasiconvex function T , see (19),
provides the desired bound. Namely, inequality (14) for f = T reads

−3(θ2 + aθ3)
2 � −3θ2 − 3a2θ3,

which is equivalent to (a − 1)2θ2θ3 + θ1θ2 + a2θ3θ1 � 0 and is, hence, never
satisfied unless θi = 1 for some i = 1, 2, 3.

Now assume that A has two distinct eigenvalues, one of multiplicity two. In this
case the two-dimensional subspace generated by I and A contains only two rank-2
lines (one of which should in fact be rank-1). The case when the corresponding
affine rank-2 lines through 0, I and A do not intersect inside K c does not present
any difficulty and is treated in Section 7 together with the sets of Type 3. Here we
assume that there is one point of intersection inside K c. Then the proof is similar
to that of Theorems 2 and 3 and is, therefore, only sketched here. Namely, up to
a transformation, we may regard A diagonal and K ⊂ π̃ , where π̃ is the plane
generated by the matrices W1 := diag(0, 1, 1) and W2 := diag(1, 0, 0):

π̃ := {M ∈ M
3×3 : M = uW1 + vW2 for some u, v ∈ R} .

Then we follow the same approach as before. We define the function T̃
+ : π̃ → R

via T̃
+
(uW1 +vW2) = u+v+ and observe that T̃

+
is rank-2 convex on π̃ since

the only rank-2 (or rank-1) directions contained in π̃ are those generated by W1
and W2. Next, up to a further modification of Theorem 1 as sketched below and
Corollary 1, we show that rank-2 convexity on π̃ implies S-quasiconvexity on π̃
(see also [32, Theorem 1.3] for a further generalization unifying in a sense this case
with that in Theorem 1). Namely, the assumptions (24) in Theorem 1 are replaced
by

∂2uh → ∂2u∞, ∂3uh → ∂3u∞, ∂1vh → ∂1v∞ in H−1
loc (R

3) as h → ∞,

with the same conclusion held for any f separately convex with quadratic growth.
The proof relies again on Theorem 6, which implies an appropriately modified
version of Lemma 7: in (28) only the term containing h(1,0,0) is kept for u, and the
summand for v contains three similar terms with h(0,1,0), h(0,0,1) and h(0,1,1) and
arbitrary coefficients. Then, arguing as for the sets of Type 2, we first show that
K r2 is the union of two disjoint sets and apply Lemma 6. 	


The following theorem gives a full catalog of all the possible cases.

Theorem 5. Let K = {A1, A2, A3}. Then:

(i) if rank(Ai − A j ) � 2 ∀ i, j = 1, 2, 3, then K qc
S = K c;

(ii) if K is a set of Type 1, including the limit cases (see Remark 2), then
K qc

S = T (K ), see Fig. 1(1);
(iii) if K is a set of degenerate Type 1, then K qc

S = [A1, S0]∪[A2, S0]∪[A3, S0]
[cf. Fig. 4(1)];

(iv) if K is Type 2 or Type 3 and contains no rank-2 connected matrices, then
K qc = K (this includes the limit case of all the three matrices lying on a
single non-rank-2 directed line);
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(v) in the degenerate Type 2 case, for example det(A1 − A3) = 0: either
det(A2− Pj ) = 0, j = 1, 2, with Pj = t j A1+(1−t j )A3, 0 � t2 < t1 � 1,
with K qc

S = [A1 A3] ∪ [A2 P1 P2] [Fig. 2(2)]; or det
(

A2 − (t A1 + (1 − t)
A3)
) �= 0 ∀t ∈ [0, 1] in which case K qc = [A1, A3] ∪ A2;

(vi) in the degenerate Type 3 case, for example det(A1 − A3) = 0, K qc =
[A1, A3] ∪ A2;

(vii) if there are two rank-2 directions in the plane A1 A2 A3, K qc
S = K , unless

at least one of those coincides with, for example the A1 A3 line, in which
case

(vii-1) either there exists t ∈ [0, 1] such that det (A2 − (t A1 + (1 − t)A3)) = 0
and then K qc

S = [A1 A3] ∪ [A2, t A1 + (1 − t)A3];
(vii-2) or K qc

S = [A1 A3] ∪ A2;
(viii) in all other cases (of a single or no rank-2 direction in the plane) K qc

S = K ,
unless the (single) direction coincides, for example with A1 A3 line, in which
case K qc

S = [A1 A3] ∪ A2.

Proof. The cases (i),(ii),(v) and (vi) either are trivial or are covered by the argu-
ments used in the previous part of this section. The case (iii) is treated in the proof of
Proposition 3 in Section 6 below. In the case (vii) after reduction to K = {0, I, A},
A has a multiple eigenvalue, and we apply the arguments in the proof of Theorem 4.

The cases which are left to complete the proof of Theorem 5 are first when K is
a set of Type 3 and second when A is not diagonalizable. These cases are treated in
Proposition 4 when K does not contain any rank-2 connection. However the proof
extends as well to the case of rank-2 connected A1 and A3. 	


4. Proof of Theorem 1

The proof of Theorem 1 follows by an adaptation of the approach of [24],
see also [19]. Let h : R → R be defined as h = 1 on (0, 1/2], h = −1 on
(1/2, 1] and h = 0 elsewhere. For j ∈ Z, k ∈ Z

3, ε ∈ {0, 1}3 \ (0, 0, 0) we define
the three-dimensional Haar wavelet basis, cf. for example [22,38], {h(ε)j,k(x)}k, j,ε

as

h(ε)j,k(x) = h(ε)(2 j x − k)

where h(ε1,ε2,ε3)(x) := (h(x1))
ε1(h(x2))

ε2(h(x3))
ε3 (with the adopted convention

(−1)0 = 1, 00 = 0). For every u ∈ L2(R3) ∩ L1(R3) with
∫

R3 u dx = 0 we
consider the expansion of u into the Haar wavelets

u =
∑

j,k,ε

a(ε)j,kh(ε)j,k

and define the projection operator P(ε) by

P(ε)u :=
∑

j,k

a(ε)j,kh(ε)j,k .



794 M. Palombaro & V. P. Smyshlyaev

The following theorem is an adaptation of [24, Theorem 5] to the three-dimensional
case, see also [19, Theorem 1.1], and plays a central role providing key estimates
of the wavelet projectors in terms of the Riesz transforms Rk := −i∂k(−�)−1/2,
k = 1, 2, 3.

Theorem 6. The operator P(ε) can be extended to a bounded operator on L2 and
∀ k = 1, 2, 3 , ∀ ε = (ε1, ε2, ε3) with εk = 1 one has

‖P(ε)u‖2 � C‖u‖1/2
2 ‖Rku‖1/2

2 ,

where ‖ · ‖2 denotes the standard norm in L2(R3).

The proof of Theorem 6 is a direct line-by-line adaptation of the Müller’s proof [24,
Theorem 5] to the three-dimensional case, employing the deep ideas from harmonic
analysis (see, for example, [38]) of Littlewood-Paley dyadic decomposition and of
“almost orthogonality”, and is not reproduced here. [The Müller’s proof survives
the change of dimensionality, with in particular the assumption εk = 1 still imply-
ing that h(ε) has a compactly supported primitive in xk which eventually ensures
the estimate of the Haar wavelet projector P(ε) in terms of the Riesz transform Rk .
See also [19] where further generalizations have been obtained most recently. In
particular, [19, Theorem 1.1] implies Theorem 6, although the proof is technically
more advanced since it is developed for an arbitrary p-growth, 1 < p < ∞, by
additionally invoking advanced tools of the Calderon-Zygmund theory.]

We will next need the following lemma, which is a modification of Lemma 6
in [24].

Lemma 7. Let f satisfy the assumptions of Theorem 1. Assume that u, v ∈ L2(R3)

have the finite expansions in the Haar basis

u =
K∑

j=J

∑

k∈Z3

[
a(0,0,1)j,k h(0,0,1)j,k + c(1,0,0)j,k h(1,0,0)j,k

]
,

v =
K∑

j=J

∑

k∈Z3

[
b(0,1,0)j,k h(0,1,0)j,k + c(1,0,0)j,k h(1,0,0)j,k

]
.

(28)

Then
∫

R3
( f (u, v)− f (0, 0)) dx � 0.

Proof. The proof essentially follows [24, Lemma 6] by induction in K and employs
Jensen’s inequality to the integrations in x3, x2 and x1 via the convexity of f (u, v)
in the directions (1, 0), (0, 1) and (1, 1), respectively (cf. also Lemma 5 above).

	

We are now in position to prove Theorem 1.
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Proof of Theorem 1. As in the proof of [24, Theorem 1], we can assume without
loss of generality V = Q and u∞ = v∞ = 0. The assumptions (24) then imply

‖R2uh‖2 → 0, ‖R3vh‖2 → 0, ‖R1(uh − vh)‖2 → 0. (29)

Hence, by Theorem 6, it follows that

P(ε)uh → 0 in L2 ∀ ε such that ε2 = 1, (30)

P(ε)vh → 0 in L2 ∀ ε such that ε3 = 1, (31)

P(ε)(uh − vh) → 0 in L2 ∀ ε such that ε1 = 1. (32)

Additionally, we obtain the following:

(31) + (32) ⇒ P(1,0,1)uh → 0 in L2
loc(R

3) , (33)

(30) − (32) ⇒ P(1,1,0)vh → 0 in L2
loc(R

3) . (34)

Thus (30)–(34) yield

‖P(0,0,1)uh + P(1,0,0)vh − uh‖2 → 0

‖P(0,1,0)vh + P(1,0,0)vh − vh‖2 → 0.

This allows us to reduce the rest of the proof essentially to Lemma 7 adapting the
Müller’s techniques in a straightforward way. 	


5. Relaxation and H -measures

We return now to the original problem and develop an alternative way for
its solution, exploiting the equivalence Proposition 1. We use Fourier analysis to
execute the “internal” minimization in (6) for an arbitrary number N of “wells”,
essentially following the same method as used by Kohn [17], with appropriate
modifications for the solenoidal fields.

Let us fix χ ∈ I (θ) and compute the inner infimum (in fact, the minimum) over
B in (6). Elementary manipulation transforms the integral in (6) into

1
2−
∫

Q

∣
∣
∣
∣
∣
B(x)+ η −

N∑

i=1

χi Ai

∣
∣
∣
∣
∣

2

dx

= 1
2

⎧
⎨

⎩

∣
∣
∣
∣
∣
η −

N∑

i=1

θi Ai

∣
∣
∣
∣
∣

2

+ −
∫

Q

∣
∣
∣
∣
∣
B(x) −

N∑

i=1

(χi − θi )Ai

∣
∣
∣
∣
∣

2

dx

⎫
⎬

⎭
. (35)

The last term can be rewritten in the Fourier space using the Plancherel’s formula
in the form

1
2

∑

k∈Zn\{0}

∣
∣
∣
∣
∣
B̂(k)−

N∑

i=1

χ̂i (k)Ai

∣
∣
∣
∣
∣

2

, (36)
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where B̂(k) and χ̂i (k) are Fourier coefficients for the Q-periodic functions B and
χi , respectively. Notice that the frequency k = 0 does not contribute to (36), since
B̂(0) = 0 and χ̂i (0) = θi .

Minimization of (36) can be done separately for each k, with respect to all B̂(k)
consistent with the divergence-free constraint (7). For any k �= 0, the minimizing
value of B̂(k) as a result is

B̂(k) =
N∑

i=1

χ̂i (k)ΠV (k) Ai . (37)

Here ΠV (k) Ai denotes the orthogonal projection, in the sense of the inner product
〈A, B〉 := Tr(AT B̄) of (possibly complex) matrices A, B ∈ M

m×d , onto the space

V (k) = {ζ ∈ M
m×d : ζk = 0} .

Here V (k) describes the space of Fourier transforms of divergence free fields “of
frequency k” and depends actually only on the “direction of oscillation” k/|k|. The
orthogonal space to V (k) is given by the space V (k)⊥ of Fourier transforms of
gradient fields:

V (k)⊥ = {ζ ∈ M
m×d : ζ = v ⊗ k for some v ∈ R

m} .
Therefore, for every ζ ∈ M

m×d , we have

ΠV (k) ζ = ζ − (ζk)⊗ k/|k|2, Π
V (k)⊥ ζ = (ζk)⊗ k/|k|2. (38)

Plugging (37) into (36), we find that the minimum value of (36) is given by

1
2

∑

k �=0

∣
∣
∣
∣
∣

N∑

i=1

χ̂i (k)ΠV (k)⊥ Ai

∣
∣
∣
∣
∣

2

. (39)

The latter can be conveniently re-written as follows:

1
2

∑

k �=0

∣
∣
∣
∣
∣

N∑

i=1

χ̂i (k)ΠV (k)⊥ Ai

∣
∣
∣
∣
∣

2

= 1
2

N∑

i, j=1

∫

Sd−1

〈
Π

V (k)⊥ Ai ,ΠV (k)⊥ A j

〉
dµi j ,

where µ = (µi j )i, j is the H -measure generated by χ , see Appendix B, (B.1). Next
we set

∀ξ ∈ Sd−1 f i j (ξ) := 1
2

〈
Π

V (ξ)⊥ Ai ,ΠV (ξ)⊥ A j

〉
, (40)

and by (38), we find that

f i j (ξ) := 1
2 〈Aiξ, A jξ 〉, (41)

(with 〈·, ·〉 denoting here the conventional inner product of vectors in R
m).
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Then, taking in (6) into account (35)–(40) and (B.1), the minimization problem
for Qθ

S F becomes

QS
θ F(η) = 1

2

∣
∣
∣
∣
∣
η −

N∑

i=1

θi Ai

∣
∣
∣
∣
∣

2

+ inf
µ∈Y H (θ)

N∑

i, j=1

∫

Sd−1
f i j (ξ) dµi j (ξ). (42)

The minimization is with respect to all H -measures associated with N characteristic
functions. Notice that the weak∗ limits (B.2) have been included into the minimi-
zation [which is allowed since f i j ∈ C(Sd−1)]. The Krein–Milman theorem, for
example [5], assures further that the infimum in (42) is in fact the minimum and
is achieved at the set Y H

e (θ) of extremal points of (weak∗ compact and convex)
Y H (θ):

QS
θ F(η) = 1

2

∣
∣
∣
∣
∣
η −

N∑

i=1

θi Ai

∣
∣
∣
∣
∣

2

+ min
µ∈Y H

e (θ)

N∑

i, j=1

∫

Sd−1
f i j (ξ) dµi j (ξ). (43)

The latter in combination with Proposition 1 implies the following important
equivalence:

Proposition 2. For N � 2 and K = {A1, . . . , AN } and any B0 ∈ M
m×d ,

B0 ∈ K qc
S if and only if there exists θ ∈ [0, 1]N and an extremal H-measure

µ ∈ Y H
e (θ), such that

B0 =
N∑

i=1

θi Ai and
N∑

i, j=1

∫

Sd−1
f i j (ξ) dµi j (ξ) = 0. (44)

The above equivalence implies that, as long as we are able to characterize K qc
S ,

we are potentially able to clarify which candidate matrix Sd−1-Borel measures are
and which are not extremal points of the H -measures, thereby clarifying further
the structure of the set Y H (θ) of the H -measures themselves. For the two-well case
(N = 2) this approach leads to the exact computation of Qθ

S F , see [31], and the
above equivalence re-establishes the full characterization of the two-phase H -mea-
sures [17]. We further specialize to the case of three-wells in the dimension three
(N = d = m = 3 ), to exploit in this context the results of Section 3.

6. Extremal three-point H-measures

In the present section we turn to the problem of characterizing the H -measures
Y H (θ) for N = d = m = 3. Those arise in (43) but are intrinsically more gen-
eral geometric objects describing possible mixtures of characteristic functions. For
a full characterization, it would be sufficient describing the set Y H

e (θ) of the ex-
tremal point of the H-measures. This is not known explicitly but it was in effect
shown in [17] that Y H (θ) is contained in an explicitly described “superset” Y (θ),
see Appendix B.2 below and specifically (B.8). It was shown in [39] and then fur-
ther generalized in [13] that the extremal points Ye(θ) of Y (θ) are in turn explicitly
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characterized, being certain matrix Borel measures supported in no more than three
Dirac masses, and that a substantial sub-class of those are in fact the H -measures.
This is reviewed and clarified further in Appendix B.2. In particular, Ye(θ) is explic-
itly described in Proposition 5 and the associated geometric construction, see in
particular Fig. 6.

The aim of the present section is to characterize, as far as possible, Ye(θ) ∩
Y H (θ). We show that the solution to the problem discussed in Section 3, that is find-
ing K qc

S , also provides a key to the solution of this problem. More precisely, referring
to Appendix B.2 for further details, by Proposition 5 all the extremal points Ye(θ)

are three-point measures of the formµ(ξ) =∑3
r=1 µ

r δξr , withµr = mr ⊗mr . We
consider all those for which ξ1, ξ2, ξ3 are arbitrary linearly independent vectors.
The answer depends on the position of the associated normalized masses, that is
the points µr

cs = mr
cs ⊗ mr

cs on the boundary circle C on the (c, b)-plane, see
Figs 6, 3, relative to the “basic” points ν1, ν2 and ν3 [the latter correspond to the
three pairwise mixings of the three phases, cf. (B.12)]. Namely, we will distinguish
two cases. The first case is when µr

cs , r = 1, 2, 3, lie on the circular segments ν2ν1,
ν1ν3, ν3ν2, one on each segment, see Figs 3 and 4. Lemma 8 states that characteriz-
ing the H -measures in this case is equivalent to characterizing the S-quasiconvex
hull of the sets of Type 1. As a consequence we obtain criteria (Theorem 7) which
allows us to identify all the H -measures among the three-point measures having
normalized masses on different arches.

The second case is when two of the normalized masses lie on the same circular
segment, see Fig 5. Theorem 8 asserts that such measures are not H -measures.
This result is, in turn, equivalent to the characterization of the S-quasiconvex hull
of the sets of Type 2 (as shown in the proof of Theorem 8). Finally, the case when
two of the normalized masses merge is ruled out by Theorem 9. Appropriate limit
cases are covered in the Remarks 7, 11 and 12. Remark 8 briefly sketches how all
these results could be derived directly for the H -measures, that is without explicitly
exploiting the above equivalence (with both approaches seemingly equivalent at a
fundamental level by crucially relying on the compensated compactness property
provided by Theorem 1).

The precise plan is as follows: to each measure µ ∈ Ye(θ) with linearly inde-
pendent ξr , r = 1, 2, 3, we associate a set K = {A1, A2, A3} for which µ is
the only minimizing measure in the lower bound L(θ) on Qθ

S F , see (B.14), and
L(θ) = 0. Then we use the knowledge of the S-quasiconvex hull of K (Section 3)
in combination with the equivalence in Proposition 1, to establish the attainability
or otherwise of the lower bound. Namely, if B0(θ) := ∑3

i=1 θi Ai ∈ K qc
S then the

lower bound L(θ) is attained, and hence µ ∈ Y H (θ), otherwise µ /∈ Y H (θ).
For a three-point measure µ =∑3

r=1 µ
rδξr ∈ Ye(θ), let φr denote the angle

associated with the mass µr
cs ∈ C via (B.13), and let tr be defined as follows

(assuming φr �= π ):

tr := tan
φr

2
, r = 1, 2, 3 . (45)

Lemma 8. Let d = 3, and let, for a range of θ ∈ (0, 1)3, µ̄ ∈ Ye(θ) be supported
on three linearly independent vectors ξ1, ξ2, ξ3 ∈ S2:
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µ̄(ξ) =
3∑

r=1

µ̄rδξr .

Suppose that for the φ̄r associated with µ̄r and for tr related to φ̄r via (45)

φ̄1 ∈ (0, π) , φ̄2 ∈ (π, 3
2π) , φ̄3 ∈ ( 3

2π, 2π) , and t1(1 + t3) �= t3(1 + t2) .

(46)

Then there exists a set K = {A1, A2, A3}, depending on φ̄r , r = 1, 2, 3 but inde-
pendent of θ , of the form (9), (10) such that

µ̄ ∈ Y H (θ) ⇐⇒
3∑

i=1

θi Ai ∈ K qc
S . (47)

Proof. We first assume that µ̄ is supported on the canonical basis of R
3, (e1, e2, e3),

that is ξr = er , r = 1, 2, 3. By assumption, either t1(1 + t3) < t3(1 + t2) or
t1(1 + t3) > t3(1 + t2). We consider these two cases separately.
Case (i). Assume t1(1 + t3) < t3(1 + t2). Define q = (q1, q2, q3) as follows:

q1 = t1(1 + t3)− t3(1 + t2)

t3(t1 − t2)
, q2 = t1(1 + t3)− t3(1 + t2)

t2 − t3
,

q3 = t1(1 + t3)− t3(1 + t2)

(1 + t2)(t1 − t3)
. (48)

Since by assumption the numerators are negative and by (46) t1 ∈ (0,+∞),
t2 ∈ (−∞,−1), t3 ∈ (−1, 0), we find that q ∈ (0, 1)3. It is further directly
checked that for D(q) defined by (26) and q as in (48),

D(q) = diag(−t1,−t2,−t3). (49)

[Hence (48) may be viewed as the inversion of (26)]. Set

A1 = 0 , A2 = I , A3 = D(q) , K = {A1, A2, A3} ,
B0 = θ1 A1 + θ2 A2 + θ3 A3 .

(50)

By construction K is of the form (9), (10), that is by Lemma 2 is of Type 1.
Consider next QS

θ F(B0) and the lower bound L(θ) associated with it, see (B.14).
We will show that L(θ) = 0 with µ̄ the only minimizing measure. Then, by Prop-
osition 6, QS

θ F(B0) = 0 if and only if µ̄ ∈ Y H (θ) and the assertion of the lemma
follows via the equivalence Proposition 1.

To evaluate L(θ), use the algorithm stated in Lemma 9. To this end, evaluate
the function ψ(µ) = ψ(a, b, c) defined by (B.16) and note that by (B.7) and (41)

a(ξ) f 22(ξ)+ 2b(ξ) f 23(ξ)+ c(ξ) f 33(ξ) � 0

for any ξ ∈ S2. Therefore it is enough to prove that the function ψ(µ) vanishes
only at the points µ = tµ̄r , t � 0, r = 1, 2, 3, equivalently only at the three cross-
sectional points µ̄r

cs , see Figs. 3(i), 6. Parametrize the cross-sectional boundary
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circle C by the angle φ as in (B.13) and set e(φ) = sin(φ/2)A2 + cos(φ/2)A3.
Evaluation of ψ(µ) for µ belonging to C yields, cf. (B.16), (41) and (B.13):

ψ(a, b, c) = 1
2 min
ξ∈S2

{
a |A2ξ |2 + 2b 〈A2ξ, A3ξ 〉 + c |A3ξ |2

}

= 1
2 min|ξ |=1

|e(φ)ξ |2 = 1
2 min|ξ |=1

〈
e(φ)T e(φ)ξ, ξ

〉
. (51)

Therefore ψ(a, b, c) is the smallest eigenvalue of the symmetric non-negative
matrix

1

2
e(φ)T e(φ) = 1

2

(

sin
φ

2
A2 + cos

φ

2
A3

)T (

sin
φ

2
A2 + cos

φ

2
A3

)

.

Recalling (50),

e(φ)T e(φ) =
(

sin
φ

2
I + cos

φ

2
D(q)

)2

. (52)

Hence, via (49), the eigenvalues are λr = 1
2 (sin(φ/2)− tr cos(φ/2)), r = 1, 2, 3,

and

ψ(a, b, c) = 1
2 min

r=1,2,3

(

sin
φ

2
− tr cos

φ

2

)2

.

Hence ψ(a, b, c) = 0 if and only if tan(φ/2) = tr , r = 1, 2, 3, that is, via
(45), φ takes one of three possible values, φ = φ̄r , r = 1, 2, 3. Moreover, for
every r = 1, 2, 3, the minimizing point in (51) for φ = φ̄r is the eigenvector of
e(φ̄r )

T e(φ̄r ) corresponding to the zero eigenvalue, that is er . Since the decompo-
sition (B.17) of the cross-sectional total mass Mcs into the convex combination
of µ̄r

cs is unique, µ = µ̄ is the only minimizing measure in (B.15) and hence
QS
θ F(B0) = 0 if and only if µ̄ ∈ Y H (θ), and (47) follows.

Case (i i). Now let t1(1 + t3) > t3(1 + t2). Then choose q = (q1, q2, q3) ∈ (0, 1)3

in the following way:

q1 = t1(1 + t3)− t3(1 + t2)

t1 − t3
, q2 = t1(1 + t3)− t3(1 + t2)

t1(t3 − t2)
,

q3 = t1(1 + t3)− t3(1 + t2)

(1 + t3)(t1 − t2)
,

(53)

and set

A1 = 0 , A2 = P D(q)P , A3 = I , K = {A1, A2, A3} ,
B0 = θ1 A1 + θ2 A2 + θ3 A3 ,

(54)

where P is the permutation matrix

(
1 0 0
0 0 1
0 1 0

)

and D(q) is given by (26) with q as in

(53). By Lemma 2, K is still of Type 1. In particular PD(q)P = diag(− t−1
1 ,− t−1

2 ,

− t−1
3 ). Then one considers QS

θ (B0) corresponding to (54) and proceeds as in the
previous case.
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Fig. 3. The set Tcs(K ) in cases (i) and (i i) of the proof of Lemma 8

To conclude the proof we observe that if the measure µ̄ is supported on any
three linearly independent vectors ξ1, ξ2, ξ3 ∈ S2, then it is enough to replace the
matrix D(q) in (50) and (54) by G D(q)G−1, where G is the matrix with columns
ξ1, ξ2, ξ3: G := (ξ1 |ξ2| ξ3). 	


Remark 6. Lemma 8 establishes the equivalence between two problems: the one
on whether a three-point measure in Ye(θ) is an H -measure and the one on char-
acterizing the S-quasiconvex hull of the set K given by (50) or (54). The nature
of this equivalence can be visualized as follows, see Fig. 3. On the cross-section
Kcs in the (c, b)-plane consider the triangle specified by the points ν1 = (0, 0),
ν2 = (1, 0), ν3 = ( 1

2 ,− 1
2 ). For given A1, A2, A3, every point in the interior of K c

can be identified with a point inside the triangle ν1ν2ν3 via the mapping

3∑

i=1

θi Ai ∈ Int(K c)

ρ−→
(

θ3(1 − θ3)

θ2(1 − θ2)+ θ3(1 − θ3)
,

−θ2θ3

θ2(1 − θ2)+ θ3(1 − θ3)

)

∈ Kcs , (55)

describing the projection Mcs of the total mass M(θ), see (B.11), on the (c, b)-plane
of unit trace matrices. Now let µ̄ ∈ Ye(θ) satisfy the assumptions of Lemma 8 and
let K be the set associated with µ̄ via (50) or (54). Then set

Tcs(K ) := ρ
(
T (K ) ∩ Int(K c)

)
,

where T (K ) is the set defined by (12). Since by Corollary 2, K qc
S = T (K ), Lemma 8

can be equivalently re-stated by saying that µ̄ is an H -measure if and only if Mcs on
Kcs belongs to Tcs(K ). It can be further checked that Tcs(K ) is the region delimited
by the lines ν1µ̄

3
cs , ν2µ̄

2
cs and ν3µ̄

1
cs on the (c, b)-plane (see Fig. 3). We briefly illus-

trate its construction. On the (c, b)-plane draw the three segments ν3µ̄
1
cs , ν2µ̄

2
cs ,
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ν1µ̄
3
cs . Consider the intersections of each of the segments with the two others and

with the segments ν1ν2, ν1ν3, ν2ν3:

{R1} = ν3µ̄
1
cs ∩ ν1µ̄

3
cs , {R2} = ν3µ̄

1
cs ∩ ν2µ̄

2
cs , {R3} = ν2µ̄

2
cs ∩ ν1µ̄

3
cs ,

{R4} = ν3µ̄
1
cs ∩ ν1ν2 , {R5} = ν2µ̄

2
cs ∩ ν1ν3 , {R6} = ν1µ̄

3
cs ∩ ν3ν2 .

Then the set Tcs(K ) is given by the union of the closed triangle R1 R2 R3 and the
segments [R1, R6), [R2, R4), [R3, R5).

Keeping the notation introduced in Remark 6, we can then state the following

Theorem 7. Let µ̄ ∈ Ye(θ) satisfy the assumptions of Lemma 8. Then

µ̄ ∈ Y H (θ) ⇐⇒ Mcs ∈ Tcs(K ) = R1 R2 R3 ∪ [R1, R6) ∪ [R2, R4) ∪ [R3, R5).

Remark 7. The results of Theorem 7 can be extended to the case when the measure
µ̄ is such that one or more of the points µ̄r

cs coincide with some of the basic points
νs , s = 1, 2, 3. In this case some of the points R1, R2, R3 in Fig. 3 would merge
with some of the points νs . The set associated with µ in the sense of Lemma 8 is
still a set of Type 1, but with rank-2 connections, cf. Remark 2.

Conversely, if we study problem (6) when the set K contains one or more rank-
2 connections, then the resulting extremizing measure will have one or more of
the normalized masses coinciding with some of the basic points νs . In particular,
if the matrices A1, A2, A3 are pairwise rank-2 connected, then {A1, A2, A3}qc

S =
{A1, A2, A3}c and the minimizing measure µ will have normalized masses equal
to ν1, ν2 and ν3.

Remark 8. Theorem 7 essentially establishes that the sufficient conditions [39,
Proposition 6.1] for realizability of some extremal three-point measures of Y (θ) by
the H -measures are also necessary. This result crucially relies, via Lemma 8 and
Theorem 5, on the key lower semicontinuity result of Theorem 1 which has been, in
turn, proved using advanced tools of harmonic analysis, and, apparently, could not
be derived from polyconvexity/ quadratic translation-type arguments only (cf. for
example [7,8]). In principle, it could have been derived directly from Theorem 1,
that is without explicitly appealing to the three divergence-free wells problem,
namely directly for the H-measures, as we briefly sketch below. At a fundamen-
tal level the two approaches seem equivalent since in both cases crucially rely on
Theorem 1.

Consider µ̄ ∈ Ye(θ), hence in the form (B.9), and assume (again without loss
of generality) that ξr = er , r = 1, 2, 3. Suppose µ̄ ∈ Y H (θ). Then there exists a
sequence of characteristic functionsχh ∈ I (θ) such that for µ̄h ∈ Y H (θ) associated

to them via (B.1) µ̄h ∗
⇀ µ̄, and (up to a periodic rescaling) χh ⇀ θ in L2

loc(R
3).

Next, for each r = 1, 2, 3, consider a non-zero nr ∈ R
3 orthogonal to mr , see

(B.9), (
∑3

j=1 nr
j m

r
j = 0), with

∑3
j=1 nr

j = 0. Consider next a sequence of periodic

functions ψh
r (x) := ∑3

j=1 nr
j

(
χh

j (x)− θ j

)
. We claim that, for each r = 1, 2, 3,
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∂rψ
h
r → 0 in H−1

per (Q) ⊂ H−1
loc (R

3) with ‖F‖2
H−1

per (Q)
=∑k∈Z3\{0} |k|−2

∣
∣
∣F̂(k)

∣
∣
∣
2
:

∥
∥
∥∂rψ

h
r (x)

∥
∥
∥

2

H−1
per (Q)

=
∑

k∈Z3\{0}

⎛

⎝
k2

r

|k|2
3∑

i, j=1

nr
i nr

j χ̂i
h
(k)χ̂ j

h
(k)

⎞

⎠

=
∫

S2

3∑

i, j=1

ξ2
r nr

i nr
j dµ

h
i j (ξ) −→

∫

S2

3∑

i, j,s=1

ξ2
r nr

i nr
j m

s
i ms

jδes = 0.

(In the above we have used that if ξ = es then the r -th component ξr of ξ is zero
unless s = r whereas in the latter case the summand is zero by orthogonality of
nr and mr .) Next, since nr , r = 1, 2, 3, are co-planar, ψh

r (x), r = 1, 2, 3, are
linearly dependent. Hence there exist constants c2 and c3 (independent on h) such
thatψh

1 (x) ≡ c2ψ
h
2 (x)−c3ψ

h
3 (x). Let uh(x) := c2ψ

h
2 (x) and vh(x) := c3ψ

h
3 (x).

Then (29) holds as stated, equivalently implying that the assumptions of Theo-
rem 1 are satisfied for U = R

3 and uh , vh as above, up to a subsequence. Hence the
conclusion (25) of Theorem 1 can be directly applied to the above sequence of char-
acteristic functions. In particular, producing a function f satisfying the assumptions
of the Theorem but violating (25) [for example the one akin to (20)] establishes the
contradiction and the fact that µ̄ �∈ Y H (θ). Alternatively, µ̄ ∈ Y H (θ) by an explicit
infinite rank lamination construction, cf [39, Proposition 6.1].

Remark 9. We emphasize that Theorem 7 holds under the restriction of ξ1, ξ2 and
ξ3 being linearly independent (that is not co-planar vectors). If ξr , r = 1, 2, 3, are
linearly dependent then the result still holds one way: if Mcs ∈ Tcs(K ) then still
µ̄ ∈ Y H (θ), by continuity and the closedness of the H -measures. However we have
been unable to prove, by the present methods, the converse statement. Resolving
this may require further modifications of the methods of harmonic analysis cf. [24].
On the other hand, it is curious to notice in this context that the Šverák’s counter-
example of a rank-one convex function which is not quasiconvex [26,42] employs
a gradient field that oscillates in three co-planar directions, that is relates to an
H -measure supported exactly in three linearly dependent directions. This may
indicate at insufficiency of the arguments based on separate convexity in this case,
as well as keeps the possibility of a similar in spirit counterexample realizing an
H -measure outside Tcs(K ) (the latter would imply existence of sequences of mix-
tures of characteristic functions which could not be mimicked by sequential lami-
nation, in the sense of H -measures).

We discuss next the case when the triangle R1 R2 R3 on the (c, b)-plane degen-
erates into one single point, which we denote by R0 [see Fig. 4(2)]. In this case the
associated measure µ satisfies

t1(1 + t3) = t3(1 + t2);
therefore there is no set K of the type (9) for which (47) may hold. The set associated
with such measure µ is in fact of degenerate Type 1 (Definition 4).
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Fig. 4. (1) The set K0. (2) The set Tcs(K0) on the (c, b)-plane

Proposition 3. Let θ ∈ (0, 1)3, d = 3, and let µ ∈ Ye(θ) be supported on three
linearly independent vectors ξ1, ξ2, ξ3 ∈ S2:

µ(ξ) =
3∑

r=1

µrδξr .

Suppose that

φ1 ∈ (0, π) , φ2 ∈ (π, 3
2π) , φ3 ∈ ( 3

2π, 2π) , and t1(1 + t3) = t3(1 + t2) .

Then

µ∈YH (θ)⇐⇒ Mcs ∈[R0, R4)∪[R0, R5)∪[R0, R6)⇐⇒θ2 I +θ3 A0 ∈{0, I, A0}qc
S ,

where the matrix A0 is defined as follows:

A0 = − G−1diag(t1, t2, t3)G , G = (ξ1 |ξ2| ξ3)
−1 .

Proof. Set K0 = {0, I, A0} and S0 = G−1diag(0, 1,−t3)G. Observe first that S0
is rank-2 connected with each of the three matrices 0, I, A0 and that the set T (K0)

defined by (12) is given in this case by the union of three segments:

T (K0) = [0, S0] ∪ [I, S0] ∪ [A0, S0]
[see Fig. 4(1)]. According to Definition 4, K0 is a set of degenerate Type 1. More-
over it is easily checked that

ρ((0, S0] ∪ (I, S0] ∪ (A0, S0]) = [R0, R4) ∪ [R0, R5) ∪ [R0, R6) , ρ(S0) = R0,

with the mapping ρ defined by (55). Using the function T + introduced in Section 3
and arguing as for the sets of Type 1, one can show that every point outside T (K0)

does not belong to (K0)
qc
S . Then, using the algorithm from Lemma 9 and proceed-

ing as in the proof of Lemma 8, one checks that the lower bound for Qθ
S F(B0),
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Fig. 5. The case of two normalized masses lying on the same arch

with K = K0 and B0 = θ2 I + θ3 A0, is zero and is delivered only by the given
measure µ. Therefore if µ ∈ Y H (θ) then Mcs ∈ [R0, R4) ∪ [R0, R5) ∪ [R0, R6).

Now let Mcs ∈ [R0, R5)∪[R0, R6). A way to prove thatµ ∈ Y H (θ) is to use an
approximation argument. Consider a sequence of points M1

m on the circle C such
that M1

m → µ1
cs as m → ∞ [see Fig. 4(2)]. By Theorem 7 it follows that for every

m the measure µm corresponding to the split M1
m, µ

2
cs, µ

3
cs is an H -measure. By

construction µm ∗
⇀ µ and therefore µ ∈ Y H (θ) by closedness of the H -measures,

see (B.3). If Mcs ∈ [R0, R4) then one introduces a similar perturbation around the
point µ2

cs or µ3
cs and proceeds as before. We have thus proved that

µ ∈ Y H (θ) ⇐⇒ Mcs ∈ [R0, R4) ∪ [R0, R5) ∪ [R0, R6)

and hence (K0)
qc
S = [0, S0] ∪ [I, S0] ∪ [A0, S0]. 	


Remark 10. The case when all the points µr
cs lie on the same circular segment

(that is either ν2ν1, or ν1ν3 or ν3ν2) is clearly not associated with an H -measure:
the projection on the cross-section of the total mass of the measure is then outside
the triangle ν1ν2ν3, which must not be the case.

The next result describes the case when two of the normalized masses lie on
the same arch. Fig. 5 represents a measure with one normalized mass on the arch
ν1ν2 and the other two masses on the same arch ν1ν3.

Theorem 8. Let θ ∈ (0, 1)3, d = 3 and let µ ∈ Ye(θ) be supported on three
linearly independent vectors ξ1, ξ2, ξ3 ∈ S2:

µ(ξ) =
3∑

r=1

µrδξr .

Assume that the points µ1
cs, µ

2
cs, µ

3
cs are pairwise distinct and that µr

cs �= νi for all
r, i = 1, 2, 3. If two and only two of the normalized masses µ1

cs, µ
2
cs, µ

3
cs lie on the

same circular segment, then µ /∈ Y H (θ).
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Proof. Let A = − G−1diag(t1, t2, t3)G, with G = (ξ1 |ξ2| ξ3)
−1. It can then be

easily checked that the set K = {0, I, A} is of Type 2 and does not contain any
rank-2 connections. We now proceed as in the previous cases. We study problem (6)
for A1 = 0, A2 = I, A3 = A and, again using the algorithm of Lemma 9, we find
that the lower bound L(θ) for Qθ

S F(θ2 I + θ3 A) is zero and is delivered only by the
given measureµ. Since by Theorem 3 K qc

S = K , necessarily Qθ
S F(θ2 I +θ3 A) > 0;

therefore µ is not an H -measure. 	

Remark 11. Observe that the result of Theorem 8 does not extend to all the limit
cases when one of the normalized masses coincides with one of the basic points.
For example, if in Fig. 5 the point µ1

cs merges with ν2, it is easy to check that this
corresponds to the degenerate Type 2 case displayed on Fig. 2(2), see Remark 5. The
corresponding three-point measures then are H -measures, although they are not
extremal being convex combinations of two two-point measures related to (ν2, µ

2
cs)

and (ν2, µ
3
cs). One can see that then Mcs could be any point inside the intersection

of triangles ν2µ
2
csµ

3
cs and ν1ν2ν3. On the other hand, if µ2

cs = ν1, this corre-
sponds to the other limit of Type 2 with K qc

S = [A1, A2] ∪ A3 and no non-trivial
H -measures (the case µ3

cs → ν3 corresponds to a limit Type 1 case and is covered
by Theorem 7).

Theorem 9. Let θ ∈ (0, 1)3, d = 3, and let µ ∈ Ye(θ) be supported on three
linearly independent vectors ξ1, ξ2, ξ3 ∈ S2:

µ(ξ) =
3∑

r=1

µrδξr .

Assume that µr
cs �= νi for all r, i = 1, 2, 3. If µ1

cs and µ2
cs lie on different arches

and µ2
cs = µ3

cs , then µ /∈ Y H (θ).

Proof. We again associate to µ a set K for which µ is the (only) extremizing
measure in (B.14) and delivers a zero lower bound. Such set is again given by
K = {0, I, A}, where A = −G−1diag(t1, t2, t3)G. By assumption we have t2 = t3
and therefore the set K satisfies the assumptions of Theorem 4. Then K qc

S = K
and µ is not an H -measure. 	

Remark 12. Notice that the conclusions of Theorem 9 do not extend to the case
when one normalized mass coincides with a basic point. Indeed it is easy to check
that if µ1

cs coincides with a basic point and µ2
cs = µ3

cs lie on the opposite arch
(for example µ1

cs = ν2 and µ2
cs = µ3

cs ∈ ν1ν3), or if µ2
cs = µ3

cs merge with a
basic point and µ1

cs lies on the opposite arch (for example µ2
cs = µ3

cs = ν1 and
µ1

cs ∈ ν2ν3), then the corresponding measure is an H -measure for all Mcs on the
segment µ1

csµ
2
cs ∩ ν1ν2ν3. In both cases, those are in fact not extremal points of

Y H (θ), being convex combinations of two other H -measures supported in two
points each, (ξ1, ξ2) and (ξ1, ξ3), respectively. The latter are in correspondence
with sets K containing one rank-2 connection, with a non-trivial S-quasiconvex
hull, as described in Theorem 5 (vii-1).
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Remark 13. The results in Theorems 7, 8 and 9 provide full characterization of
certain extremal H -measures supported in (no more than) three linearly independent
directions. This appears sufficient for purposes of full resolution of the problem of
characterizing the quasiconvex hulls for three solenoidal wells. However the above
results do not imply a full characterization of the three-phase H -measures Y H (θ)

themselves: while the latter are fully determined by their extremal points, there
may exist additional extremal points of Y H (θ) supported in more than three points,
therefore not being extremal points of the (fully characterized) superset Y (θ). There
may also be additional three-point supported extremal H -measures which are not
extremal for Y (θ), that is such that at least one of µr is not extremal (µr �∈ C).
We sketch below an argument establishing the existence of such “extra” extremal
H -measures supported in both four points and three points.

Consider H -measures supported in three Dirac masses according to Theorem 7,
that is associated with sets of Type 1, with fixed µ̄r

cs , and linearly independent ξr
(for example ξr = er ), r = 1, 2, 3. This could be achieved for a range of volume
fractions θ , in particular such that Mcs(θ) is well inside the triangle R1 R2 R3, see
Fig. 3. Select such θ = θ(0) and let the corresponding extremal H -measures be
µ̄(0) ∈ Y H (θ(0)). By continuity, there exists � > 0 such that the above property
is held for all |θ − θ(0)| < �. Select on the circle C one more “cross-sectional
mass” µ̄4

cs such that for θ = θ(0) there does not exist an H -measure corresponding
to {µ̄r

cs, r = 1, 2, 4}, which is clearly possible by Theorem 7 and let ξ4 �= ξr ,
r = 1, 2 such that ξ1, ξ2, ξ4 are linearly independent (this includes in partic-
ular the case of ξ4 = ξ3). Hence for the corresponding three-point (ξ1, ξ2, ξ4)
Borel measure µ̄, extremal for Y (θ(0)), µ̄ /∈ Y H (θ(0)). For 0 < t < 1, the
Borel measures µ̄(t) := (1 − t)µ̄(0) + tµ̄ are, hence, supported in four points
if ξ4 �= ξ3 and still in three points for ξ4 = ξ3. We argue that at least for small
enough positive t those are H -measures; therefore the one corresponding to the
maximal value of such t (t = t0, 0 < t0 < 1) can only be an extremal H -mea-
sure supported in four (or three if ξ4 = ξ3) points. To establish this, notice that
since µ̄4

cs ∈ C is extremal, µ̄4
cs = m ⊗ m for some m ∈ R

2, |m| = 1. Let
θ(1) := θ(0) +�m/2, θ(2) := θ(0) −�m/2 and let the corresponding extremal H -
measures be µ̄(1) ∈ Y H (θ(1)), µ̄(2) ∈ Y H (θ(2)), respectively (hence all supported
in the same ξr with the same µ̄r

cs , r = 1, 2, 3). Then “mix” these two H -measures
in equal volume fractions via a lamination in layers perpendicular to ξ4. The “mix-
ing formula” for H -measures (see, for example [17,47], [39, Section 6(a) (6.4)])
produces the following new H -measure µ̄(12) ∈ Y H (θ(0)):

µ̄(12) = 1

2
µ̄(1) + 1

2
µ̄(2) + �2

4
µ̄4

csδξ4 .

This is clearly an H -measure supported in the four (respectively, three if ξ4 = ξ3)
points. Such a measure can only be a convex combination of µ̄(0) and µ̄ and hence
µ̄(12) = µ̄(t∗), for some 0 < t∗ < 1. By convexity and closedness, there exists
“maximal” t0, t0 � t∗ > 0 such that µ̄(t) ∈ Y H (θ(0)) if and only if t ∈ [0, t0]
(since µ̄(1) = µ̄ /∈ Y H (θ(0)), t0 < 1). Hence µ̄(t0) is an extremal H -measure
supported in four (respectively three) points, that is µ̄(t0) ∈ Y H

e (θ)\Ye(θ).
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7. Last part of Theorem 5 and a brief summary

In the present section we complete the proof of Theorem 5 and give a summary
of the main results of the paper.

Proposition 4. Let K = {0, I, A} where det(A) �= 0 and det(A − I ) �= 0. Assume
that one of the following conditions is satisfied:

(i) K is a set of Type 3;
(ii) A is diagonalizable and the plane formed by K contains only two distinct

rank-2 directions (hence one of them is rank-1), and the corresponding affine
rank-2 lines through 0, I and A do not intersect at points inside K c;

(iii) A is not diagonalizable.

Then K qc
S = K .

Proof. We consider problem (6) for the given set K and show that the lower bound
L(θ) defined by (B.14) is strictly positive for all values of the volume fractions θ ,
implying that the quasiconvex hull is trivial.

Assume (i). Then the matrix A is diagonalizable and has three distinct real
eigenvalues. Using the algorithm of Lemma 9, one can see that L(θ) could be zero
only if the extremizing measure in (B.14) had all the three normalized masses on
the same circular segment, either ν1ν2, or ν1ν3 or ν3ν2. Since this cannot be the
case (see Remark 10), the lower bound is strictly positive.

Assume (i i). Then the matrix A is diagonalizable and has two distinct real
eigenvalues, one of multiplicity two. As in case (i), one can see that L(θ) could be
zero only if the extremizing measure had normalized masses on the same circular
segment, except that in this case two of them merge. Again, this cannot be the case.

Now assume (i i i). If A has one real eigenvalue and two complex (hence com-
plex conjugate), then the functionψ defined by (B.16), see also (51), (52), vanishes
for a single value of φ and therefore the lower bound is strictly positive. If A has
two distinct eigenvalues, one of which has algebraic multiplicity two but geomet-
ric multiplicity one, or if A has one eigenvalue of algebraic multiplicity three but
geometric multiplicity two, then the lower bound may be zero but is delivered by
a two-point supported measure. On the other hand, two-point measures are not
H-measures. The latter can be shown for example via the Šverák’s incompatibility
result3 for three gradient wells [41], see [8, Section 5], [39, Section 7(a)]; or by
reformulating Theorem 4 above in an equivalent H -measure setting, appropriately
exploiting again the equivalence Proposition 2.

Finally, if A has a single eigenvalue of algebraic multiplicity three but geo-
metric multiplicity one, then the lower bound is strictly positive (with ψ vanishing
again for a single value of φ). 	

Summary. The results presented in Section 6 provide characterization of all extre-
mal three-point H -measures of the form µ(ξ) =∑3

r=1 µ
rδξr when ξ1, ξ2, ξ3 are

3 Remark in passing that the Šverák’s result itself could be re-derived via a straightforward
adjustment of the approach in Sections 3 and 4 above.
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linearly independent vectors and the associated pointsµr
cs on the (c, b)-plane lie on

the circular segments ν2ν1, ν1ν3, ν3ν2, one on each segment, including possibly the
endpoints, Fig. 3. The only extremal H -measures in this class are those described
by Theorem 7, including the limit cases as discussed in Remark 7 and Proposition 3.

Theorems 8 and 9 complete full characterization of the extremal three point
H -measures, within the extremal points Ye(θ) of the superset Y (θ), supported on
three arbitrary linearly independent directions: except for the limit cases described
in Remarks 11 and 12, all other measures in the set Ye(θ) are not H -measures.

On the other hand, the presented analysis allows us to fully solve the problem
of the S-quasiconvexification for three arbitrary solenoidal wells (Theorem 5). The
conclusion is that a non-trivial quasiconvex hull can only emerge in the situation
as in Fig. 1(1), that is when there are three separate rank-two directions in the
plane formed by K = {A1, A2, A3} and the mutual position of A1, A2 and A3 on
this plane is such that an inner triangle is formed, including the limit cases. Then,
according to Corollary 2, K qc

S = T (K ). In all other cases K qc
S = K , unless K

contains rank-2 connections, as catalogized in Theorem 5.

8. On applications of the H-measure results. The three well
problem for linear elasticity

An attractive feature of the H -measure is that it is a purely geometric object,
that is independent of the differential constraints. Hence the same H -measures are
involved in characterizing the relaxation of problems with different differential
constraints, in particular of associated quasiconvex hulls. Therefore, any progress
in characterizing the H -measures can be potentially transferred from problems with
one type of differential constraints to those with another. In this section we discuss
the application of the results on the H -measures to the problem of characterizing
the quasiconvex hull for three linear elastic wells.

The problem is formulated similarly to that in Sections 3 and 5 with K =
{A1, A2, A3} and A1, A2 and A3 being now three symmetric matrices in M

d×d

of given linearized “transformation strains”. The divergence-free differential con-
straint for a field B, cf. (7), is in turn replaced by the requirement that B is a
symmetrized gradient of a periodic displacement field u:

B(x) = 1

2

(
∇u + (∇u)T

)
, u ∈ H1

� (Q,R
d). (56)

The multi-well energy is analogous to (4), being characterized more generally
by a quadratic form generated by a positive definite elastic tensor C which would
formally coincide with (4) for the special case of an isotropic tensor with Lamé
constants λ = 0 and µ = 1/2 (cf. [39, Section 7(b)]), resulting in C = I with
I being the identity tensor. Notice that the exact choice of C does not affect the
issue of characterizing the (linear elastic) quasiconvex hull K qc

le , so there is no loss

of generality in choosing C = I for this purpose. As before, η = ∑3
i=1 θi Ai ,

θ ∈ [0, 1]3,
∑3

i=1 θi = 1, is in K qc
le if and only if Qθ

le F(η) = 0. Here the relaxed
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energy Qθ
le F is defined by (6) where in the definition (7) for V the divergence-free

constraint is replaced by (56).
The relaxed energy Qθ

le F(η) can, in turn, be equivalently expressed in terms of
minimization with respect to H -measures [17,39], namely (43) still holds with the
same set of H -measures Y H (θ) as before but f i j (ξ) requiring re-evaluation for the
linear elasticity context. Specializing to the three-dimensional elasticity (d = 3),
f i j (ξ) is as follows (cf. [39, Section 7(b)]):

f i j (ξ) = 1

2
Akl

i �klpq(ξ)A
pq
j . (57)

Here Akl
i denotes the (kl) components of the matrix Ai and summation is

implied with respect to repeated indices, and

�klpq(ξ) := 1

2
{Tkp(ξ)Tlq(ξ)+ Tkq(ξ)Tlp(ξ)}, Tkl(ξ) := δkl − ξkξl .

Hence (57) can be equivalently re-written as follows:

f i j (ξ) = Tr
[
Ai T (ξ)A j T (ξ)

]
, (58)

where T (ξ) = I − ξ ⊗ ξ .
Further, the lower bound L(θ) for Qθ

le F , as computed in [39] is given by (B.14)
with the same “universal” superset Y (θ).

Assuming further without loss of generality A1 = 0, the linear elastic analog
of (B.16) when restricted to the circle C parametrized as before by φ ∈ [0, 2π),
see (B.13), can be computed, as in (51), and in the present case reads

ψ(a, b, c) = ψ(φ) = inf
ξ∈S2

Tr
[
(e(φ)T (ξ))2

]
, (59)

where e(φ) := sin(φ/2)A2 + cos(φ/2)A3. Denoting by ν j (a, b, c) = ν j (φ),
j = 1, 2, 3, the eigenvalues of e(φ) and by k1, k2 and k3 the components of ξ with
respect to the (orthonormal) basis of the eigenvectors diagonalizing e(φ), (59) via
a straightforward calculation reads:

ψ(a, b, c) = inf
k∈S2

{(
ν1k2

2 + ν2k2
1

)2 +
(
ν2k2

3 + ν3k2
2

)2 +
(
ν3k2

1 + ν1k2
3

)2

+ 2ν2
1 k2

2k2
3 + 2ν2

2 k2
3k2

1 + 2ν2
3 k2

1k2
2

}
. (60)

It is easy to see that ψ(φ) = 0 if and only if at least one of the eigenvalues ν j ,
j = 1, 2, 3 is zero and the two others are not of the same sign, that is

ν1 � ν2 = 0 � ν3. (61)

In particular, for the case of strict inequalities (ν1 < ν2 = 0 < ν3) the zero
minimum in (60) is achieved at exactly two different directions k ∈ S2: k2 = 0,
k3 = ±|ν3/ν1|1/2k1, giving rise to two different locations on the sphere for the
component extremal mass corresponding to such φ.
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The condition of compatibility of two linear elastic matrices Ai and A j is known
to be of similar type: one of the eigenvalues of (Ai − A j ) must be zero and the
two others must not be of the same sign, see for example [2]. Hence, for pairwise
compatible wells ψ(0) = ψ(π) = ψ(3π/2) = 0, in which case K qc

le = K c, for
example [2]. Therefore, it remains to consider the cases when the wells are not
pairwise compatible. We assume without loss of generality that A2 and A1 = 0 are
incompatible, that is upon diagonalization, A2 = diag (α1, α2, α3)with α1α2 > 0.
We then argue that the equation ψ(φ) = 0 does not have more than three solu-
tions for φ (within the range [0, 2π)) unless, in the chosen basis, α3 = 0 and
Ak3

3 = A3k
3 = 0, k = 1, 2, 3. The latter corresponds to two-dimensional linear

elasticity, for which the quasiconvex hull is known and is in particular trivial in
the case of pairwise incompatible wells, see for example [39, Section 7(b)]. For
the former assertion, a necessary condition for ψ(φ) = 0 is det e(φ) = 0. The
latter equation does not have more than three solutions: if det e(φ) = 0 then either
φ = π implying det A2 = 0 or det(A3 + t A2) = 0 which is (a nontrivial) at most
cubic equation in t := tan(φ/2). From these values of φ those failing (61) should
be excluded further, and as a result we end up with no more than three values of t
such that ψ(φ) = 0.

Further, η ∈ K qc
le if and only if L(θ) = 0 and a minimizing measure in Y (θ) is

an H -measure. The previous reasoning assures that, as in the divergence-free case,
the total mass could generically only be split in a no more than a single triple of
extremal masses corresponding to ψ(φr ) = 0, r = 1, 2, 3. Since for each of such
φr there are generically two corresponding “minimizing” directions on the sphere,
ξ
(1)
r and ξ (2)r , the minimizing measures could be supported in up to six Dirac masses.

On the other hand, the results of this paper, in particular of Section 6, provide full
characterization of H -measures supported in no more than three (linearly indepen-
dent) points. The most interesting case of three solutions ψ(φr ) = 0, r = 1, 2, 3
corresponds to the situation when the plane (A1, A2, A3) contains three “linear
elastically compatible” directions, see [2] and [39, Section 7(b)] for such exam-
ples. The results of Section 6 are directly applicable to characterize the “inner
bound” for K qc

le , namely in the Type 1 case when the “internal triangle” is formed,
Fig. 1, implying T (K ) ⊂ K qc

le , cf. [2].
However, for establishing the outer bounds, some further developments are

required to eliminate (or otherwise) the possibility of the minimizing H -measure
being supported in four to six points. For example, our results in Section 6 ensure
that in the Type 1 case the exterior to T (K ) is not realized by any extremal point
of the superset Y (θ), that is by (generically) any extremal measure supported in
a triple of points ξ (k)1 , ξ (l)2 and ξ (m)3 , where (k, l,m) ∈ {1, 2}3 (note that one of
those triples may be co-planar, which is the case at least for diagonal matrices by
direct inspection, cf Remark 9). This argument on its own does not, however, elim-
inate the possibility of an H -measure being a convex combination of those points.
This poses an interesting open problem, whose resolution would possibly require
further developments of the ideas of harmonic analysis akin to [24] and/or other
ideas. It is also possible that the arguments based on the linear elastic analog of
rank-2 convexity implying (linear elastic) quasiconvexity may fail. In this context,
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counter examples of Milton [23, Section 31.9] of linear elastic mixtures that can-
not be mimicked by sequential lamination via an elastic analog of the Šverák’s
counterexample [42], cf. Remark 9, may be relevant.

9. Discussion

We have essentially established that the key semicontinuity result, Theorem 1,
has two seemingly different but fundamentally equivalent implications: full char-
acterization of quasiconvex hulls for three solenoidal wells in dimension three,
and complete resolution of the problem whether or not the extremal points of the
superset Y (θ) are (extremal) three-phase H -measures (with the exception of the
degenerate case of measures supported in three co-planar directions). In this work
we confined ourselves to characterizing the zero sets for the relaxed energy QSF;
however, the approach could equally be extended for establishing the optimality,
or otherwise, of the H -measure lower bound (B.20) for QSF with equal quadratic
wells, cf. [13,39] (remark in passing that the analysis becomes substantially harder
for the case of unequal elastic moduli even for two wells, N = 2, see for example
[3,37] for recent progress).

The presented results could be generalized further in various ways. The semi-
continuity Theorem 1 can be generalized both from the two-dimensional planes to
three-dimensional subspaces of diagonal matrices for d = 3, and for d > 3, with
further counter-examples analogous to [42] for some higher dimensions, see [32]. It
should also be possible to describe a rather general class of differential constraints
A where on one hand the constant rank condition does not hold (making the classi-
cal results [9,29] inapplicable) but on the other hand the appropriate semicontinuity
result still holds via an appropriate application of the Haar wavelet estimates.

The most recent extension in [19] of the interpolatory estimates between Haar
projections and Riesz transforms for arbitrary p-growth (1< p<∞) allows almost
immediately generalizing the presented result correspondingly. It also widens the
scope for further applications, for example for improving further the bounds for
nonlinear composites, cf. [11, Section 6], including the “harder” case of p > 2,
cf. [44]. Remark in passing that whenever the bounds happen to be non-optimal
our construction allows, at least in principle, for quantifying this non-optimality,
with the potential application for the bounds improvement, et cetera. Likewise,
the elimination of the points of Ye(θ) from the H -measures yields also, in princi-
ple, elimination of a quantifiable neighborhood of such points, leading in effect to
additional restrictions on the H -measures.

For N -phase H -measures with arbitrary N , the structure of the extremal points
of Y (θ)was studied in [13] where a direct analog of Proposition 5 was established,
with the extremal points supported in (no more than) l(N ) = N (N − 1)/2 Dirac
masses, and the realizability of some of those by sequential lamination was also
discussed, which is in the direction of generalization of the sufficient condition
in [39, Proposition 6.1] for arbitrary N . However, for generalizing the necessary
conditions of the present approach, the l(N ) directions have to be linearly inde-
pendent, which requires d � N (N − 1)/2 (with lower dimensions for the points in
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Ye(θ) supported in less than l(N ) directions). In particular, for N = 2 the approach
works for any dimension (l(2) = 1), and for N = 3 for d � 3. Possible further
generalizations would require additional modifications of the presented ideas (for
example from harmonic analysis, cf. [19]) and/or other ideas. We also expect the
new H -measure results to be applicable for characterizing the A -quasiconvex hulls
for rather generic differential constraints.
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Appendix A. Proof of Lemma 1

We may assume that M = 0 and N = G−1 since, as already remarked, shift
by a matrix and left-multiplication by an invertible matrix do not play any role
(with the latter for example keeping the divergence-free property). Let B0 ∈ K qc

S
and G ∈ GL(3,R). By definition there exists a sequence of Q-periodic L2 equi-
integrable divergence free matrix fields {Bh} which satisfy

dist(Bh, K ) → 0 locally in measure, and −
∫

Q
Bh = B0.

We introduce the new variable y in R
3 given by

y = GT x

and define the sequence {B̄h} in the following way:

B̄h(y) := G−1 Bh(G
−T y)G. (A.1)

Then one can check that Bh is still divergence free in R
3, and

dist(B̄h, K̄ ) → 0 locally in measure. (A.2)

If G ∈ GL(3,Q), that is G is rational-valued and invertible, then there exists a
positive integer l such that B̄h is periodic with periodicity cube (0, 2lπ)3, which
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can be re-scaled back to a 2π -periodic field B̄h(yl) completing the proof. If G
has irrational entries, we can employ the following standard construction, cf. for
example [14]. Decompose B̄h in the following way:

B̄h(y) = G−1 B0G + G−1(Bh − B0)(G
−T y)G.

Notice then that G−1(Bh − B0)(G−T y)G is divergence free and periodic with peri-
odicity cell Q̄ := GT Q and zero mean in Q̄. Therefore there exists a sequence of
Q̄-periodic matrix fields {Vh} ⊂ H1

loc(R
3) bounded in L2(Q̄) such that

G−1(Bh − B0)(G
−T y)G = Curl Vh(y). (A.3)

[The curl-operation is understood above as acting on each row of the matrix Vh(y).
The representation (A.3) can be derived by, for example, directly adopting the
argument in [14, page 7] to Q̄-periodic functions.] Now let {Lh} be an increasing
sequence of positive numbers such that Lh → ∞ as h → ∞ and define

ϕh(y) := min{1, dist(y, ∂Qh)} for y ∈ Qh

where Qh = (0, 2πLh)
3 and extend ϕh periodically to the whole R

3. Next set

B̂h(y) = G−1 B0G + 1

Lh
Curl (ϕh(Lh y)Vh(Lh y))

and observe that the sequence {B̂h} is divergence-free Q-periodic, L2
loc-equi

-integrable and satisfies (A.2) since, in particular,
∫

Q
|Vh(Lh y) ∧ ∇ϕh(Lh y)|2 dy � 1

L3
h

∫

Qh∩{∇ϕh �=0}
|Vh(y)|2 dy

� C
| det G|−1

Lh
‖Vh‖2

L2(GT Q) → 0 .

	


Appendix B. H -measures of characteristic functions

Appendix B.1. Definition and basic properties

The following is the definition of H -measures associated with periodic micro-
geometries of H -measures, sufficient for the purposes of the present work. For a
general construction, involving functions that need not be periodic or characteristic,
see, for example [12,47].

We denote by χ̂ j (k), k ∈ Z
d , the Fourier coefficients for the Q-periodic func-

tions χ j :

χ̂ j (k) := −
∫

Q
χ j (x)e

−ik·x dx .
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For every χ ∈ I (θ), see (5), we call H -measure generated by χ the matrix-valued
measure µ = (µi j )i, j defined as follows:

µi j = Re
∑

k∈Zd\{0}
χ̂i (k)χ̂ j (k)δk/|k| , 1 � i, j � N , (B.1)

where δk/|k| denotes a unit Dirac mass at the point ξ = k/|k| on the unit sphere
Sd−1 and k �= 0 has integer components. Introduce the notation

∫

Sd−1
ϕ(ξ)dµi j (ξ)

to denote integration of a continuous function ϕ, ϕ ∈ C(Sd−1), with respect to the
measure µi j .
The set of all possible H -measures for a given θ , which we will denote by Y H (θ), is
characterized by including all weak∗ limits of (B.1), that is all Borel matrix-valued
measures µi j such that there exists a sequence of measures µm

i j of the form (B.1)

for some χm ∈ I (θ), m = 1, 2, . . . , and µm
i j

∗
⇀ µi j , that is

∫

Sd−1
ϕi j (ξ)dµ

m
i j (ξ) −→

∫

Sd−1
ϕi j (ξ)dµi j (ξ) (B.2)

as m → ∞ for all ϕi j ∈ C(Sd−1). So

Y H (θ) =
{
µi j : ∃µm

i j of the form (B.1) and µm
i j

∗
⇀ µi j as m → ∞

}
. (B.3)

It can be checked (see, for example [17,39]) that the H -measures satisfy the
following properties:

µi j = µ j i and
N∑

i=1

µi j = 0 , 1 � j � N , (B.4)

∫

Sd−1
dµi j (ξ) = δi jθi − θiθ j =: Mi j (θ) (no summation in i, j), (B.5)

µi j (ξ) = µi j (−ξ), that is
∫

Sd−1
f (−ξ)dµi j (ξ)

=
∫

Sd−1
f (ξ)dµi j (ξ), ∀ f ∈ C(Sd−1), (B.6)

N∑

i, j=1

∫

Sd−1
ϕi (ξ)ϕ j (ξ)dµi j (ξ) � 0 for any ϕ j ∈ C(Sd−1), j = 1, . . . , N .

(B.7)
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We denote the set of all Borel measures on the unit sphere4 Sd−1 subject to restric-
tions (B.4)–(B.7) by Y (θ):

Y (θ) =
{
µ = (µi j )

N
i, j=1

: (B.4) − (B.7) hold
}
. (B.8)

It follows that Y H (θ) ⊂ Y (θ). Both Y (θ) and Y H (θ) are weak∗ closed infinite-
dimensional convex sets in the space of matrix measures. Further, since (B.4)–(B.7)
ensure that Y (θ) is bounded in

(
C(Sd−1)N×N

)∗
, it is weak∗ compact and hence

so is Y H (θ). Hence, by Krein–Milman theorem, for example [5], both Y H (θ) and
Y (θ) are fully characterized by their extremal points.

Kohn (see [17], Theorem 6.4) has shown that for the case of two wells (N = 2)
the conditions (B.4)–(B.7) are necessary and sufficient to characterize the whole set
Y H (θ), that is the sets Y H (θ) and Y (θ) coincide for N = 2. In contrast, for N > 2,
the above restrictions are generally insufficient (Kohn, personal communications;
see also discussion in [39]). Therefore the set Y H (θ) is strictly contained, at least
in some cases, in Y (θ).

Appendix B.2. Description of the set Y (θ) for N = 3

The following proposition gives an explicit description of the set Ye(θ) of
extremal points of the superset Y (θ) for N = 3, following Smyshlyaev and Willis
[39], see also [13]:

Proposition 5. Let N = 3 and θ ∈ [0, 1]3,
∑3

i=1 θi = 1. Then µ ∈ Ye(θ) if and
only if

µ =
3∑

r=1

mr ⊗ mr δξr , (B.9)

where mr ∈ R
3, r = 1, 2, 3, are such that

∑3
i=1 mr

i = 0,
∑3

r=1 mr
i mr

j = δi jθi −
θiθ j , and ξr ∈ Sd−1, r = 1, 2, 3, are (counting ±ξ as one point), either

(i) three different points, with either mr , r = 1, 2, 3 linearly independent, or
m3 = 0 and m1, m2 linearly independent; or

(ii) ξ1 = ξ2 = ξ3.

Proof. This follows essentially directly from the proofs of [39, Proposition 5.1,
Lemma 5.2 and Proposition 5.3], see also [13, Proposition 5.1]5 where this was
made more explicit and generalized for arbitrary N . 	


4 Note that the restriction (B.6) requires the measures to be distributed over the sphere
symmetrically. Therefore we can always identify the opposite points ±ξ on the sphere (hence,
in effect dealing with the projective space RPd−1 rather than Sd−1), as we will henceforth
implicitly assume.

5 The “if” condition is stated in [13] not entirely precisely, which does not however affect
the subsequent applications.
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Notice that the above “component masses” µr = mr ⊗ mr lie on the boundary
∂K of the cone K of non-negative symmetric matrices in the three-dimensional
subspace of M

3×3 specified by (B.4). Proposition 5 hence means that the extremal
measures are either supported in three or two points and then are such that the com-
ponent masses µr ∈ ∂K , r = 1, 2(, 3) are linearly independent, or are supported
in a single point with total mass (B.5).

The restriction (B.4) implies that it is sufficient to consider three component
scalar measures

a(ξ) := µ22(ξ), b(ξ) := µ23(ξ) = µ32(ξ), c(ξ) := µ33(ξ). (B.10)

with the condition (B.7) requiring the matrix measures

(
a(ξ) b(ξ)
b(ξ) c(ξ)

)

to be non-

negative. By (B.5) for any measure µ ∈ Y (θ) the associated reduced 2 × 2 “total
mass” is

M(θ) =
(
θ2(1 − θ2) −θ2θ3

−θ2θ3 θ3(1 − θ3)

)

. (B.11)

Every non-negative symmetric matrix µ =
(

a b
b c

)

belongs to the convex cone

K in the (a, b, c) space:

K =
{
(a, b, c) ∈ R

3 : a � 0 , c � 0 , ac − b2 � 0
}
.

Every matrix µ �= 0 belonging to K is uniquely characterized by its trace
trµ = a + c > 0 and its “projection” µcs on the cross-section Kcs of the unit
trace:

µ = (trµ)µcs .

The cross-sectionKcs is described by the relations a + c=1, b2+(c − 1/2)2 �1/4
and so can be identified with a disc in the (c, b)-plane (see Fig. 6). The total mass
M(θ) belongs to K and (B.11) implies that its projection Mcs on Kcs always lies
inside the triangle defined in the (c, b)-plane by the points

ν1 = (0, 0), ν2 = (1, 0), ν3 = (1/2,−1/2),

by noticing that M = θ1θ2ν1 + θ1θ3ν2 + 2θ2θ3ν3. The latter “basic points” νr ,
r = 1, 2, 3, are themselves the projections of three special directions nr ⊗ nr on
∂K where in the original symmetric “full” form

n1 = (−1, 1, 0)T, n2 = (1, 0,−1)T, n3 = (0, 1,−1)T, (B.12)

and play important role in the subsequent analysis.
The boundary component masses µr = mr ⊗ mr have cross-sections lying on

the (c, b)-plane on the boundary circle C := {(c, b) : b2 + (c − 1/2)2 = 1/4}, that
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Fig. 6. The cross-section Kcs of the cone K on the (c, b)-plane

is are extremal for Kcs (equivalently, µr
cs = mr

cs ⊗ mr
cs , mr

cs ∈ R
2, |mr

cs | = 1, that
is mr

cs ∈ S1). Parametrize C by the angle φ ∈ [0, 2π), see Fig. 6:

⎧
⎪⎨

⎪⎩

a = (1 − cosφ)/2 = sin2(φ/2) (= 1 − c)

b = 1
2 sin φ = sin(φ/2) cos(φ/2)

c = (1 + cosφ)/2 = cos2(φ/2).

(B.13)

On this way, for any µ ∈ Ye(θ), the points µr
cs can be identified by the angles φr ,

r = 1, 2(, 3).
Now go back to the problem of evaluating Qθ

S F , via H -measures, see (42) for
N = 3. Without knowing Y H (θ), we instead minimize in (42) over the larger set
Y (θ). This will lead to the precise evaluation of Qθ

S F provided (one of ) the min-
imizing measure(s) µ ∈ Y (θ) turns out to be an H -measure, that is µ ∈ Y H (θ).
Otherwise, it will provide a strict lower bound on Qθ

S F . With this aim we set

L(θ) := inf
µ∈Y (θ)

3∑

i, j=1

∫

Sd−1
f i j (ξ) dµi j (ξ) , (B.14)

where f i j is defined by (41) (hence, by construction, Qθ
S F(B0) � L(θ) where

B0 =∑3
i=1 θi Ai ).

The next lemma gives an explicit formula for L(θ) clarifying further the role
of the set Ye(θ) in the minimization problem (B.14). It is assumed, without loss of
generality, that A1 = 0.
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Lemma 9. [39] Let θ ∈ (0, 1)3 be given with
∑3

i=1 θi = 1 and A1, A2, A3 ∈
M

m×d with A1 = 0. Then the infimum in (B.14) is attained and the minimizing
measure can be chosen in Ye(θ). Moreover

L(θ) = (tr M(θ)) min
3∑

r=1

αrψ(µ
r
cs), (B.15)

where ψ : K → R is defined by

ψ(µ) = ψ(a, b, c) := min
ξ∈Sd−1

{
a f 22(ξ)+ 2b f 23(ξ)+ c f 33(ξ)

}
, (B.16)

and the minimum in (B.15) is taken over all possible decompositions of Mcs(θ)

into a convex combination of no more than three extremal masses µr
cs ∈ C:

Mcs =
3∑

r=1

αrµ
r
cs, αr � 0,

3∑

r=1

αr = 1 . (B.17)

Proof. All the components of the proof can be found in [39] (in particular see Prop-
osition 5.1 and 5.3 and Lemma 5.2 therein); see also [13, Theorem 5.2]. Namely,
by the Krein–Milman theorem, the infimum of the linear continuous functional on
the right hand side of (B.14) over (a weak∗ compact convex set) Y (θ) is achieved
at its extremal point. Using f i j (ξ) = 0 for either i = 1 or j = 1 (due to (41) and
A1 = 0), and Proposition 5, (B.14) is re-written as

L(θ) = min
µ∈Ye(θ)

3∑

r=1

{
ar f 22(ξr )+ 2br f 23(ξr )+ cr f 33(ξr )

}
, (B.18)

where ar = (
mr

2

)2, br = mr
2mr

3 and cr = (
mr

3

)2. Since for any µ ∈ Ye(θ), µ =
∑3

r=1 αrµ
r
csδξr and ψ(µ) is homogeneous of degree one, that is ψ(tµ) = tψ(µ)

for any t � 0, the result follows. 	

Lemma 9, hence, suggests the following algorithm for computing L(θ):

(i) consider all possible decompositions of the cross-section Mcs(θ) of the total
mass into the convex combination of at most three extremal matrices µr

cs ,
see (B.17).

(ii) for any split (B.17) choose ξr minimizing (B.16);

(iii) minimize with respect to all admissible splits of the form (B.17).

This procedure leads to finding (no more than) three critical points µ̄1
cs, µ̄

2
cs

(, µ̄3
cs) on C (see Fig. 6) with associated directions ξr , r = 1, 2, 3, such that the

extremizing measure µ̄ is

µ̄ = (tr M)
3∑

i=1

αr µ̄
r
csδξr , αr � 0 , α1 + α2 + α3 = 1 . (B.19)

Summarizing all the above,
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Proposition 6. The following lower bound holds:

Qθ
S F(B0) � L(θ). (B.20)

All the minimizers of the right hand side are in the form (B.19). The equality is held
in (B.20) if and only if at least one of such minimizers is an H-measure.
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