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Abstract The quantum entanglement is an important feature of many protocols in the field

of quantum computing. In this paper we evaluate a level of entanglement in short qutrit

chains. This evaluation is carried out with use of the computable cross norm and

realignment criterion and the concurrence measure. We also present some explicit for-

mulae describing the concurrence measure for exemplary short spin chains. Utilizing the

obtained results, we indicate that analysing the level of entanglement allows to detect the

noise or deviation in the transfer process, in comparison to the perfect transfer where only

operation realizing transfer is present.

Keywords Quantum information transfer � Qubit/qutrit chains � Entanglement �
Computable cross norm and realignment criterion � Concurrence � Correctness of transfer �
Perfect transfer � Numerical simulations

1 Introduction

A phenomenon of quantum entanglement [17] is a fundamental feature of quantum sys-

tems. A presence of quantum entanglement in an examined system indicates system’s

quantum nature. The entanglement is also present in spin chains which became one of the

essential elements of quantum physics and quantum computing [16, 20, 24].
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Using spin chains to transfer an information was shown for the first time in [6]. An issue

of the perfect transfer was widely discussed in [7, 19, 33]. An important problem of qubit

and qudit states’ transmission was raised in [2, 4, 18]. The next issues are: creating,

detecting and analysing the level of entanglement in two adjacent chain’s nodes [1, 3]. The

questions connected with the presence of entanglement in spin chains are still an active

research field. In [15, 30, 32, 36] the analysis of entanglement in spin chains, also for qutrit

chains, was presented.

The main function of spin chains is a transfer of an information. A level of entanglement

in a spin chain changes during the transmission of quantum state/information. In spite of

difficulties associated with formulating the entanglement levels, it is possible to evaluate

the entanglement e.g. in spin chains. In this paper the level of entanglement is estimated for

short qutrit spin chains. The presented results may be used to verify if the process of

transfer is correct, because it seems that the level of entanglement can be treated as an

invariant for the transfer protocol in a spin chain.

The paper contains the following information: in Sect. 2 a form of Hamiltonian for

performing a XY-like transfer protocol for qutrit and qudit chains is presented (including a

short note concerning properties of the perfect transfer). There is also an algorithm

describing the realization of transfer protocol with a c condition playing a role of the

invariant expressing a level of entanglement during the transfer. In Sect. 3 a chosen cri-

terion for entanglement detection and the concurrence measure are presented.

Section 4 contains the results of the experiments for detecting entanglement and cal-

culating the values of concurrence measure.

In Sect. 5 we show the influence of noise on the data transfer process. There is also an

average value of fidelity computed for a channel where distortions are presented by a

phase-damping method.

A summary and conclusions are presented in Sect. 6.

2 Hamiltonian for a Transfer Protocol in a Qudit Spin Chain

In this section we define a Hamiltonian HXYd which will be used to realize the perfect

transfer of quantum information in qutrit and qudit chains [4, 18, 25] for entanglement

creation between chosen points of a chain. The form of Hamiltonian, given below, is

naturally suitable for transfers discussed in this work—i.e. for transmission of information

in qutrit spin chains.

The SU(d) generator is utilized to create the XY-like Hamiltonian for qudits. The

construction of suitable SU(d) generator is given in ‘‘Appendix’’. Assuming that each qudit

has the same freedom level d� 2 (the qudit is defined in a similar way to qubit, however a

computational base for qudits is expressed with d orthonormal vectors – in case of qubits,

the base contains two orthonormal vectors):

HXYd ¼
X

ði;iþ1Þ2LðGÞ

Ji

2
Hk;j

ðiÞH
k;j
ðiþ1Þ þ bk;jðiÞb

k;j
ðiþ1Þ

� �
; ð1Þ

where Ji is defined as follows: Ji ¼
ffiffiffiffiffiffiffiffiffiffi
iðN�iÞ

p
2

for 1� k\j\d and Hk;j
ðiÞ, b

k;j
ðiÞ are SU(d) group

operators defined by (34) applied to the (i)th and ðiþ 1Þth qudit. The Hamiltonian (1) will

be also called the transfer Hamiltonian.
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The state transfers, studied in [6, 7, 33] use Hamiltonian H which have the following

property

H;
XN

i¼1

ZðiÞ

" #
¼ 0; ð2Þ

where ZðiÞ represents the sign gate applied for (i)th qubit. This means that spins are

preserved and dynamics generated by H is divided into series of subspaces denoted by the

number of qubit in state j1i—see in [19]. In the case discussed here, it is not hard to show

that

HXYd ;
XN

i¼1

gr;rðiÞ

" #
¼ 0; ð3Þ

for 1� r�ðd � 1Þ, so the Eq. (3) generalizes the situation mentioned in the Eq. (2)—

preserving spins and separating dynamics into subspaces.

It is necessary to add that an appropriate unitary operator for transfer operation is

determined by the equation

Ut ¼ e�itHXYd
; ð4Þ

where t represents evolution time and i represents imaginary unity. The symbol U repre-

sents the unitary operation which performs the transfer protocol.

A very important issue raising in the context of information’s transfer in spin chains is a

problem of the perfect transfer. If the symbol 1 denotes the initial node of the chain and N

stands for the final node then a transfer is the perfect transfer when for the time t we have:

jhNje�iHXYd tj1ij ¼ 1: ð5Þ

In such a situation there were no distortions and the final and initial states are the same in

the meaning of fidelity measure.

Introducing a definition of the transfer protocol based on a Hamiltonian and a unitary

operator allows to describe the transfer (Fig. 1) as an algorithm (or structural quantum

program [12, 31]). A very important issue is the use of c condition as an invariant for the

protocol. The invariant c is based on a function calculating the level of entanglement.

t ; time va r i ab l e
N > 0 ; number o f s tep
HXY d ; Hamiltonian f o r path L with l v e r t i c e s )

Ut = e−i(t/N)HXY d ; un i ta ry operator
|ψ(t0)〉 ; i n i t i a l s t a t e o f chain
i :=0;
{γ : E(|ψ(ti)〉) ∼= E(|Ψ(t)〉) ∧ i = 0}
whi le i < N do
begin

|ψ(ti+1)〉 := Ut|ψ(ti)〉
i := i + 1
{γ : E(|ψ(ti)〉) ∼= E(|Ψ(t)〉)} ∧ i < N

end ;
{γ : E(|ψ(ti)〉) ∼= E(|Ψ(t)〉) ∧ i ≥ N}

Fig. 1 The data transfer process
in a spin chain showed as an
algorithm expressing the use of a
unitary operator on a quantum
register. The condition c plays
the role of an invariant and
describes the level of
entanglement in the register
jwðtiÞi where ti represents the
time in a step number i
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Let EðjWðtÞiÞ be the function to determine a level of entanglement for a chain under

perfect state transfer. The computable cross norm and realignment criterion, negativity and

concurrence seem to be good candidates to play this role.

Remark 1 Calculating the level of entanglement in multiple qubit, qutrit and, particularly,

qudit systems is a problem which is still unsolved for mixed quantum states (however it is

possible to give lower bound for concurrence for mixed states [9]). Due to this fact, in the

notation of invariant c for perfect state protocol (algorithm)—c : EðjwðtiÞiÞ ffi EðjWðtÞiÞ—
sign ffi expresses that the level of entanglement is comparable with used measure (e.g.

CCNR criterion or concurrence).

In this paper the transfer protocol is used to realize the transmission of information

through the path which length equals N. In general the process of transfer involves an

unknown qudit state (where d is a freedom level):

jwi ¼ a0j0i þ a1j1i þ � � � þ ad�1jd � 1i where ai 2 C and i\d: ð6Þ

However, in our examples described in further part of this work, we transfer only the qutrit

state, i.e. d ¼ 3.

Figure 2 shows the scheme of transfer protocol’s realization. The whole process is

divided into discrete steps which are realized by operator Ut (see also Fig. 3).

|ψ0〉 |ψ1〉 |ψ2〉 |ψn−2〉 |ψn−1〉 |ψn〉

Fig. 2 The picture of quantum information transfer’s realization in a spin chain for a single unknown qudit
state jwi in the path of length l. The state jw0i represents the initial state and state jwni denotes the final state
obtained after execution of transfer protocol

T0

T1

T

(a) (b)
|ψin〉

|ψout〉
TN−1

|ψin〉

|ψout〉

Fig. 3 The examples of quantum circuits realizing the transfer protocol for N nodes. In the case a we
assume that the whole process will be realized by one unitary operator T, so this operation needs an access to
all chain’s nodes. The case b quantum circuit where the transfer process is realized by local operators Ti
correlated with two adjoining chain’s nodes
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3 The CCNR Criterion and Concurrence

In this part a basic information about computable cross norm and realignment criterion

(termed CCNR criterion) and concurrence will be recalled. The mentioned methods may

be used as measures to estimate a level of entanglement in a bipartite system. The CCNR

criterion uses two auxiliary operations called vectorization and realignment.

The vectorization of a given matrix A ¼ ½aij�m�n is represented by the operation

vec : Am�n ! Cmn, and

vecðAÞ ¼ ½a11; . . .; am1; a12; . . .; am2; . . .; a1n; . . .; amn� ð7Þ

The realignment is based on the vectorization of matrix and applies to the scalar product of

two matrices:

RðA	 BÞ ¼ vecðAÞT � vecðBÞ: ð8Þ

The realignment of matrix’s elements—the initial matrix dimensions are 2� 2—in a space

H ¼ HA 	 HB may be illustrated by the example:

ρ =

⎛
⎜⎜⎝

a11 a12 a13 a14
a21 a22 a23 a24

a31 a32 a33 a34
a41 a42 a43 a44

⎞
⎟⎟⎠ , R(ρ) =

⎛
⎜⎜⎝

a11 a21 a12 a22
a31 a41 a32 a42

a13 a23 a14 a24
a33 a43 a34 a44

⎞
⎟⎟⎠ ð9Þ

The operation of realignment is realized similarly for larger matrices, e.g. for matrices

3� 3:

R(ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a21 a31 a12 a22 a32 a13 a23 a33
a41 a51 a61 a42 a52 a62 a43 a53 a63
a71 a81 a91 a72 a82 a92 a73 a83 a93

a14 a24 a34 a15 a25 a35 a16 a26 a36
a44 a54 a64 a45 a55 a65 a46 a56 a66
a74 a84 a94 a75 a85 a95 a76 a86 a96

a17 a27 a37 a18 a28 a38 a19 a29 a39
a47 a57 a67 a48 a58 a68 a49 a59 a69
a77 a87 a97 a78 a88 a98 a79 a89 a99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ð10Þ

The realignment allows to specify the criterion which is able to detect and track the

entanglement’s behaviour during the transfer process. This method is called CCNR cri-

terion [28]. Generally, the CCNR criterion is defined by the fact that if the matrix qAB of a

bipartite m� n system is separable, then:

jjqRABjj � 1; ð11Þ

in the case jjqRABjj[ 1 state qAB is entangled. Of course qR stands for the completion of

realignment operation on the state q.
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Remark 2 Generally, the CCNR criterion is not sufficient to detect all the cases of

entanglement in any quantum system. However, it is sufficient to correctly detect the

entanglement in qudit, and of course qutrit, spin chains.

It should be also pointed out that the value of CCNR criterion may be calculated using

Singular Value Decomposition (SVD):

jjqRABjj ¼
Xq

i¼1

riðqRABÞ ð12Þ

where ri represents a singular value of qRAB and q ¼ minðm2; n2Þ.

Remark 3 It should be pointed out that the singular valued decomposition is performed

on matrix qRAB directly after the operation of realignment:

SVDðqRABÞ ¼ UKVy ð13Þ

where U and Vy represents unitary matrices; K stands for a diagonal matrix containing

singular values. The value of norm may be calculated as:

jjqRABjj ¼
Xq

i¼1

Kii: ð14Þ

The other details concerning the use of SVD may be found in [10]. The further information

about CCNR criterion is also presented in [14, 29] and [5] in chapter 10.

The correctness of CCNR criterion may be amplified by using the states of subsystems

what was shown in [35]:

jjðqAB � qA 	 qBÞRjj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Tr q2A

� �
Þð1� Tr q2Bð ÞÞ

q
; ð15Þ

If the above condition is fulfilled, it means that the state qAB is separable (otherwise the

state is entangled).

The concurrence measure is used to calculate a level of entanglement, as well. Con-

currence [9] for pure state jwABi in bipartite system d 	 d is defined as

CðjwABiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� Tr q2A

� �� �q
: ð16Þ

4 Tracing of Entanglement

In this section we present the results of calculating a level of entanglement with use of

CCNR criterion and concurrence. Figure 4 shows the values of CCNR criteria calculated

according to the Eqs. (12) and (15). The process of transfer was realized for the state jþi,
which for qubits is jþi2 state and for qutrits is expressed as jþi3 state:

jþi2 ¼
1ffiffiffi
2

p ðj0i þ j1iÞ or jþi3 ¼
1ffiffiffi
3

p ðj0i þ j1i þ j2iÞ: ð17Þ

The value of CCNR criterion was calculated according to the Eq. (12). In case of

amplified CCNR criterion, the Eq. (15) was transformed to:
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jjðqAB � qA 	 qBÞRjj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Tr q2A

� �
Þð1� Tr q2Bð ÞÞ

q
[ 0: ð18Þ

If the above inequality is true, then the analysed state is entangled.

Naturally, during the transfer process, the level of entanglement initially increases and

then decreases. All analysed short spin chains were divided into two subsystems: A and B.

Remark 4 It should be pointed out that the subsystems A and B are treated as systems

with a greater number of dimensions. However, it is still possible to detect the entangle-

ment with use of CCNR criterion and to evaluate the level of entanglement with

concurrence.

Figure 5 shows the values of concurrence measure for some exemplary chains. It can be

observed that the entanglement’s dynamics is similar to the results from Fig. 4.

Using the Eq. (16) allows to present the explicit formulae for calculating the level of

entanglement in spin chains. If an unknown qubit state:
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Fig. 4 The entanglement detection with use of CCNR criterion and amplified CCNR criterion for short
qubit and qutrit chains. The presented values were calculated numerically and the transferred state was jþi
state
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jwi ¼ aj0i þ bj1i; ð19Þ

is transferred through the short path (l ¼ 2), then the level of entanglement in this 2-qubit

chain can be expressed as:

Cl¼2
d¼2ðaÞ ¼

1

4
4a4 þ 3b4 þ 8a2b2 cosð2aÞ þ b4 cosð4aÞ
� �

ð20Þ

where a represents the duration of the transfer process.

For a 2-qutrit chain the transfer of an unknown state:

jwi ¼ aj0i þ bj1i þ cj2i; ð21Þ

can be precisely described by the concurrence:

Cl¼2
d¼3ðaÞ ¼

1

4
4a4 þ 3ðb2 þ c2Þ2 þ 8a2 b2 þ c2

� �
cosð2aÞ þ b2 þ c2

� �2
cosð4aÞ

� �
ð22Þ

The dynamics of changes for concurrence values depends on the values cosð2aÞ and

cosð4aÞ—both in qubit and qutrit chains. The constants preceding cosð2aÞ and cosð4aÞ
correspond to the probability amplitudes. A sum of probability amplitudes’ values equals
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Fig. 5 The values of concurrence measure for short qubit and qutrit chains. The presented results were
calculated numerically and the transferred state was jþi state
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one what is easy to proof when for some a values: cosð2aÞ ¼ cosð4aÞ ¼ 1. Furthermore the

values of amplitudes:

ða2 þ b2Þ2 ¼ 1; ða2 þ b2 þ c2Þ2 ¼ 1 ð23Þ

both for qubit and qutrit chains of any length, because of a trace calculation in (16). An

exemplary value of concurrence measure for 4-qutrit chain is:

Cl¼4
d¼3ðaÞ ¼

1

64
c0 þ ðc1 þ c2Þ cos 2aþ ðc3 þ c4 þ c5Þ cos 4að

þðc6 þ c7Þ cos 6aþ ðc8 þ c9 þ c10Þ cos 8aþ ðc11 þ c12 þ c13Þ cos 12aÞ
ð24Þ

where
P

i ci ¼ 1 and the ci coefficients are composed of the probability amplitudes’ values

of transferred state.

Figure 6 presents the values of concurrence measure for explicit formulae. The changes

in the level of entanglement, illustrated as local minima, were not detectable with

numerical calculations (see Fig. 4). These minima correspond to the different levels of

entanglement between separate chain’s parts, e.g. between adjacent qubits/qutrits.

Remark 5 It should be noted that usually there is no need to analyze the global level of

entanglement for the whole chain. The character of a transfer in a one-dimensional spin

chain causes that the entire transferred information will be placed in the last node in the last

step of the process. It means that the levels of entanglement can be calculated only in the

first and the last node to check if the transfer process is correct. The needed quantum state,

for the spin chain with the number of nodes greater than two, we obtain by use of the

partial trace operation. If q represents the state of the whole chain with N nodes then the

state in the first (denoted as 1) and the last (described as N) node we calculate as:

q1N ¼ Trð2;3;...;i�k;...;N�2;N�1ÞðqÞ ð25Þ

where Trð�ÞðqÞ is the partial trace operation.
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Fig. 6 The values of
concurrence measure, for short
spin chains, obtained with use of
the formulae (20) and (22)
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5 Transfer with Noise Presence

Naturally, the presence of noise in a transfer process causes a distortion of quantum state

what can be verified, i.a., with use of fidelity measure. The presence of noise may be

analyzed in the context of Grover’s algorithm [13] and usually the distortions severely

hamper the realization of a quantum algorithm or a quantum protocol.

However, calculating the value of fidelity needs the information about the quantum state

before and after the transfer. We know that the initial state is separable and the phe-

nomenon of entanglement should only be present during the transfer process (if the transfer

is perfect, the final state is also separable). This issue should make us reflect that calcu-

lating the level of entanglement for the final state, with use one of known measures, may

tell us if the transfer was perfect.

The concurrence is relatively easy to compute so we will use this measure (16) to detect

the presence of noise.

The distortions will be presented as a phase-damping in a qutrit spin chains, expressed

as a quantum channel in a Kraus representation. Phase-damping will be applied to the

whole qutrit chain. However, for qutrits, and for qudits in general, the phase-damping

operation does not have a unique representation. The model discussed in the works

[2, 11, 22] is one of the examples of this operation. In our work we use the following

operators for phase-damping:

EðqÞ ¼
Xd�1

i¼0

EiqE
y
i ; Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � 1

i

� �
1� p

2

� �i
1þ p

2

� �d�1�i
s

Zi; ð26Þ

where the damping strength is as follows 0� p� 1 and d�1
i

� �
represents the binomial

theorem.

Remark 6 It should be noted that expression (26) can be regarded as a special case of

Weyl’s channel [11]:

EðqÞ ¼
Xd�1

m;n¼0

pm;nðZnXmÞqðXmZnÞy; ð27Þ

where elements of the matrix p satisfy the following conditions: 0� pm;n � 1 andPd�1
m;n¼0 pm;n ¼ 1. The operators Z and X are generalised Pauli matrices for the sign

changing and negation operations on qudits.

The definitions of qudit gates X and Z are:

Xjji ¼ jj

d
1i; Zjji ¼ x jjji; ð28Þ

where x stands for k-th root of unity:

xd
k ¼ cos

2kp
d

� �
þ i sin

2kp
d

� �
¼ e

2pik
d ; k ¼ 0; 1; 2; . . .; d � 1; ð29Þ

d expresses the degree of root and i denotes the imaginary unit. It is also assumed that

j

d
a ¼ ðjþ aÞmod d; j 2 N: ð30Þ
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T0

T

(a) (b)
|ψin〉

|ψout〉

|ψin〉

|ψout〉

E

E0

T1 E1

TN−1 EN−1

T0

(c)
|ψin〉

|ψout〉

E0 T1 E1 TN−1 EN−1

Fig. 7 The diagrams of quantum circuits realizing the transfer of quantum state. In a case a the transfer is
realized with use of one T gate (this operation is performed in every node) and the distortion is presented as
an E gate. A case b expresses the situation where a transfer and a distortion are realized locally (effecting
only adjacent nodes). In a case c the operators T and E are decomposed to a sequence of Ti and Ei operations
which are performed alternately
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Fig. 8 The value of concurrence measure during the data transfer in two and more qutrit chains. If the noise
is present, it is generated as a phase-damping with parameter p ¼ 0:85
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The distortion operator will be utilized after the operation of data transfer. The transfer

operator is a global operator which affects all the elements in a short spin chain. Three

basic ways to introduce the noise to a spin chain are presented at Fig. 7.

Figure 8 depicts the values of concurrence measure for a few experiments with short

spin chains. The diagram shows that the presence of noise significantly changes the level of

entanglement during the transfer process (the level of entanglement should decrease in the

final part of the process). The distortions (in Fig. 8 the strength of distortions is equal to

p ¼ 0:85) prevent the drop of entanglement’s level, so the presence of entanglement in the

final state means that the transfer was not completed successfully. It should be mentioned

that the noise, presented as the phase-damping channel, even for the boundary values p ¼ 0

or p ¼ 1 still distorts information during the transfer process.

We can confirm this result also by calculating the average value of fidelity for the

perfect transfer and transfer operators in e.g. 2-qutrit chains. The works [8, 23, 26] show

that the average value of fidelity may be computed as:
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Fig. 9 The values of fidelity and concurrence measures for the 2-qutrit chain where the transfer process was
divided into sixteen steps and the distortions were caused by phase-damping (with different parameters)
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Favgðw;U0; EÞ ¼
1

nðnþ 1Þ Tr
X

k

M
y
kMk

 !
þ
X

k

jTr Mkð Þj2
 !

ð31Þ

where Mk ¼ Ut
yEk and EðqÞ ¼

P
k EkqE

y
k represent the quantum channel – in this case

these are phase-damping operators. The unitary operator Ut realizes the perfect transfer.

The average value of fidelity, calculated analytically, for a 2-qutrit spin chain:

Favg ¼
1

15
3p2 þ p2 � 1

		 		þ 4pþ 3
� �

: ð32Þ

The average value of fidelity equals 2 / 3 what is confirmed by our numerical experiment

(see Fig. 9)—the average value of fidelity, calculated numerically, is Favg � 0:62702.

At Fig. 9 the level of entanglement is also presented. Its value confirms that the transfer

process did not end correctly.

6 Conclusions

Calculating the level of entanglement with use of CCNR criterion and, especially, with

concurrence proved to be a good solution for tracking the information transfer in qutrit spin

chains. The concurrence measure indicates unambiguously the details of transfer process

and due to this fact, it can be used as an invariant in the algorithmic description of transfer

protocol for an unknown qubit state and also for an unknown qutrit state (generalization for

qudit states is also available).

Naturally, the presented analysis concerns only short spin chains and it should be

extended for chains of any length. However, this extension is in fact only estimating the

upper bound for concurrence value in a spin chain. The numerical experiments seem to

imply that the length l ¼ 2 points out the upper bound for concurrence in a spin chain given

by the Hamiltonian (1).

Introducing the noise in a form of phase-dumping causes a higher level of entanglement

and a lower value of the fidelity measure. Tracking the entanglement level in chains with

and without noise allows to study the distortions. We suppose that analyzing the level of

entanglement in chains with and without noise, for example to compare the values of

fidelity measure, would be an interesting research issue.

It is important to add that the concurrence measure—apart from its analytical functions,

e.g. to track the level of entanglement, as it was shown in the paper—is at present also used

in the experiments [1] where the entanglement is produced in a two-photon system. In [34]

the concurrence was utilized for spin-1/2 chain which can be realized physically with use

of Benzene molecules [6]. Therefore, the functions described in the chapter may be applied

as a tool to verify the concurrence in the physical experiments where e.g. qutrits were used.

The level of entanglement is calculated to verify if the transfer process is correct. This

approach could answer the question if the protocol of quantum transmission is correct

without concerning the technical method of transfer realization. At present, the experi-

ments where the transmission is performed in an optical fiber [27] are accomplished. There

are also the attempts of transmission in the atmosphere [21] what refers to the issue of

wireless transfer. In both mentioned cases the measurement of the quantum entanglement’s

level in a spin chain allows the evaluation of transfer’s quality.
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Appendix: Construction of Lie Algebra’s Generator

In a following definition of the XY-like Hamiltonian for qutrits’ and, generally, qudits’

chain, the Lie algebra’s generator for a group SU(d) was used, where d� 2 is to define a set

of operators responsible for transfer dynamics. For clarity, the construction procedure of

SU(d) generators will be recalled—in the first step a set of projectors is defined:

ðPk;jÞt;l ¼ jkihjj ¼ dt;jdl;k; 1� t; l� d: ð33Þ

The first suite of dðd � 1Þ operators from the group SU(d) is specified as

Hk;j ¼ Pk;j þ Pj;k; bk;j ¼ �iðPk;j � Pj;kÞ; ð34Þ

and 1� k\j� d.

The remaining ðd � 1Þ generators are defined in the following way

gr;r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

rðr þ 1Þ

s
Xr

j¼1

Pj;j

 !
� rPrþ1;rþ1

" #
; ð35Þ

and 1� r�ðd � 1Þ. Finally, the d2 � 1 operators belonging to the SU(d) group can be

obtained.
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1. Almutairi, K., Tanaś, R., & Ficek, Z. (2011). Generating two-photon entangled states in a driven two-
atom system. Physical Review A, 84, 013831.

2. Amosov, G., Mancini, S., & Manko, V. (2006). Transmitting qudits through larger quantum channels.
Journal of Physics A: Mathematical and General, 39, 3375.
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123


	The Entanglement Level and the Detection of Quantum Data Transfer Correctness in Short Qutrit Spin Chains
	Abstract
	Introduction
	Hamiltonian for a Transfer Protocol in a Qudit Spin Chain
	The CCNR Criterion and Concurrence
	Tracing of Entanglement
	Transfer with Noise Presence
	Conclusions
	Acknowledgments
	Appendix: Construction of Lie Algebra’s Generator
	References




