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Abstract In this paper, the compound Poisson risk model with surplus-dependent
premium rate is analyzed in the taxation system proposed by Albrecher and Hipp
(Blätter der DGVFM 28(1):13–28, 2007). In the compound Poisson risk model,
Albrecher and Hipp (Blätter der DGVFM 28(1):13–28, 2007) showed that a simple
relationship between the ruin probabilities in the risk model with and without tax
exists. This so-called tax identity was later generalized to a surplus-dependent tax
rate by Albrecher et al. (Insur Math Econ 44(2):304–306, 2009). The present paper
further generalizes these results to the Gerber–Shiu function with a generalized
penalty function involving the maximum surplus prior to ruin. We show that this
generalized Gerber–Shiu function in the risk model with tax is closely related to the
‘original’ Gerber–Shiu function in the risk model without tax defined in a dividend
barrier framework. The moments of the discounted tax payments before ruin and the
optimal threshold level for the tax authority to start collecting tax payments are also
examined.
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1 Introduction

In this paper, we consider the compound Poisson risk model with surplus-dependent
premium rate. Let {S(t)}t≥0 be the aggregate claim amount process defined as

S(t) =

⎧
⎪⎨

⎪⎩

N(t)∑

i=1
Yi, N(t) > 0

0, N(t) = 0
,

where {N(t)}t≥0 is a Poisson process with rate λ > 0 and {Yi}∞i=1 is a sequence of
independent and identically distributed (i.i.d.) positive random variables with density
p(.) and finite mean. We assume that the claim number process {N(t)}t≥0 and the
claim sizes {Yi}∞i=1 are independent.

Let U(t) be the surplus level at time t ≥ 0. It is assumed that the insurer’s
instantaneous premium rate at time t is c(U(t)) where c(.) is a positive deterministic
function. The motivation for a surplus-dependent premium rate is two-fold. First, as
argued by Lin and Pavlova (2006), a large surplus level allows the insurer to reduce
premiums in order to stay competitive. On the other hand, when the surplus level
runs low, the insurer is likely to charge a higher premium to avoid insufficiency
of funds. Second, from a mathematical viewpoint, the class of risk models with
surplus-dependent premium rate includes a large variety of risk models involving
dividend strategies and/or interest earnings as special cases (see Section 2.3 for some
examples).

The surplus process {U(t)}t≥0 is defined via the dynamics

dU(t) = c(U(t)) dt − dS(t), t ≥ 0, (1.1)

with U(0) = u. In this paper, the compound Poisson risk model modified by tax
payments under a loss-carry forward tax system is studied. Such a tax model was first
proposed by Albrecher and Hipp (2007) in the context of a constant tax rate and was
later generalized by Albrecher et al. (2009) to a surplus-dependent tax rate. Under
this taxation system, it is assumed that, whenever the surplus process {U�(t)}t≥0 is at
its running maximum U�(t) = sup0≤s≤t U�(s) at a given time t ≥ 0, a fraction γ (U�(t))
of the premium income is paid as tax and as a result, the surplus process grows at the
reduced rate c(U�(t))[1 − γ (U�(t))]. Hence, the surplus process {U�(t)}t≥0 under the
above tax system satisfies

dU�(t) = c (U�(t))
[
1 − γ

(
U�(t)

)
I
(
U�(t) = U�(t)

)]
dt − dS(t), t ≥ 0, (1.2)

where I(A) is the indicator function of the event A. Throughout the paper, we
assume that the tax function γ (.) satisfies 0 ≤ γ (x) < 1 for x ≥ 0. Clearly, when
γ (.) ≡ 0 (i.e. in a tax-free environment), the surplus process {U�(t)}t≥0 reduces to
{U(t)}t≥0.

Remark 1 Note that the tax rate γ (.) is a function of the surplus level of the process
{U�(t)}t≥0 with tax (e.g. Albrecher et al. 2009) as opposed to Kyprianou and Zhou
(2009) and Renaud (2009) where the tax rate is a function of the surplus level of the
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process {U(t)}t≥0 without tax. As shown by Kyprianou and Zhou (2009, Lemma 1),
whenever the premium rate is constant (i.e. c(.) ≡ c), the processes {U(t)}t≥0 and
{U�(t)}t≥0 attain their respective running maximums at the same time and there is
a one-to-one correspondence between the two running maximums. However, this is
generally not true when the premium rate is surplus-dependent. Therefore, we have
chosen the former definition which is more natural.

The time of ruin T� of the surplus process {U�(t)}t≥0 is defined as T� = inf{t ≥ 0 :
U�(t) < 0} where T� = ∞ if ruin does not occur. Its ruin probability ψ�(u) is given
by ψ�(u) = Pr{T� < ∞|U�(0) = u}. With a slight abuse of notation, in the remainder
of this paper the subscript ‘�’ is replaced by ‘γ ’ whenever the tax rate is constant
(i.e. γ (.) ≡ γ ). Similarly, in the absence of tax payments, we further replace the
subscript ‘γ ’ by ‘0’. For instance, ψγ (u) and ψ0(u) are the ruin probabilities for the
process (1.2) with γ (.) ≡ γ and γ (.) ≡ 0 respectively. If γ (.) is bounded by a constant
less than 1, then the condition ψ0(0) < 1 is sufficient to guarantee that ψ�(u) < 1 for
∀u ≥ 0 (see Albrecher et al. 2009). In the sequel, we also require that the following
two technical conditions are fulfilled, namely

∫ x

0

dz
c(z)[1 − γ (z)] < ∞ for any finite x ≥ 0 and

∫ ∞

0

dz
c(z)

= ∞. (1.3)

See Lin and Sendova (2008).
For the case of a constant premium rate c(.) ≡ c, Albrecher et al. (2009) showed

that

1 − ψ�(u) = exp
{

−
∫ ∞

u

1
1 − γ (x)

d
dx

ln[1 − ψ0(x)] dx
}

, u ≥ 0, (1.4)

which is an extension of the so-called tax identity

1 − ψγ (u) = [1 − ψ0(u)]
1

1−γ , u ≥ 0, (1.5)

first established by Albrecher and Hipp (2007). Ruin probabilities and other ruin-
related quantities (e.g. the total discounted tax payments before ruin) have since
been analyzed in other risk models. For instance, Albrecher et al. (2008a) showed
that the tax identity (1.5) with minor adjustments remains valid in a dual risk
model with exponentially distributed innovations. Wei (2009) examined a compound
Poisson risk model with credit interest and showed that Eq. 1.5 also holds. Albrecher
et al. (2008b) and Kyprianou and Zhou (2009) showed that the identities (1.5) and
(1.4) remain valid for a Lévy insurance risk model with constant tax rate and general
tax structure respectively. In this paper, we notably extend the identity (1.4) to a
generalization of the Gerber–Shiu discounted penalty function.

For the surplus process {U�(t)}t≥0, the ‘original’ Gerber–Shiu discounted penalty
function m�(u) is defined as

m�(u) = E
[
e−δT�w

(
U�

(
T−

�

)
, |U�(T�)|) I (T� < ∞)

∣
∣U�(0) = u

]
, u ≥ 0, (1.6)

where δ ≥ 0 is the force of interest or a Laplace transform argument, and w : R
2 → R

is the so-called penalty function depending on the surplus prior to ruin U�(T−
� ) and
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the deficit at ruin |U�(T�)| (see Gerber and Shiu 1998). We remark that when both
the tax rate and premium rate are constant, the quantity mγ (u) was studied by Ming
et al. (2010) under an ‘absolute ruin’ setting (see e.g. Cai 2007 for the definition
of ‘absolute ruin’). In this paper, we extend Eq. 1.6 by further incorporating the
maximum surplus level before ruin (or equivalently the running maximum at the
time of ruin), namely U�(T�) into the analysis. As in Cheung and Landriault (2010),
we consider the generalized analytic tool

φ�(u)= E
[
e−δT�w(U�(T−

� ), |U�(T�)|)w∗(U�(T�))I (T� < ∞)
∣
∣U�(0)=u

]
, u≥ 0,

(1.7)

with w∗(.) a real-valued function. Clearly, the Gerber–Shiu function m�(u) in Eq. 1.6
is a special case of φ�(u) in Eq. 1.7 with w∗(.) ≡ 1.

We point out that the multiplicative form of the penalty function w(., .)w∗(.) is not
as restrictive as one may think. For instance, the discounted joint density of the triplet
(U�(T−

� ), |U�(T�)|, U�(T�)) can be analyzed through Eq. 1.7 with w(x, y) = e−qx−ry

and w∗(z) = e−sz (see Cheung and Landriault 2010, Section 4.2). Also, the density
function of the distance between the running maximum and running minimum of
{U�(t)}t≥0 at the time of ruin, namely U�(T�) + |U�(T�)|, can also be studied via the
Gerber–Shiu function φ�(u) (see Cheung and Landriault 2010, Proposition 1). The
analysis of an additive penalty function of the form w(., .) + w∗(.) is also possible via
the sum of two Gerber–Shiu functions of the form (1.7).

Under the aforementioned tax framework, we also examine the n-th moment of
discounted tax payments paid until ruin, namely

Wn,�(u) = E
[{∫ T�

0
e−δvγ (U�(v))c(U�(v))

× I
(
U�(v) = U�(v)

)
dv

}n∣
∣
∣U�(0) = u

]

, u ≥ 0, (1.8)

for n = 0, 1, 2, . . ., with the usual convention that W0,�(.) ≡ 1. As far as the dis-
counted tax payment is concerned, we always assume δ > 0. While the quantity
W1,γ (u) was studied by Albrecher and Hipp (2007) when c(.) ≡ c, an analysis of the
higher moments

{
Wn,γ (u)

}∞
n=1 in the context of a Lévy insurance risk model can be

found in Albrecher et al. (2008b). We also refer interested readers to Kyprianou
and Zhou (2009) and Renaud (2009) respectively for the study of W1,�(u) and
{Wn,�(u)}∞n=1 in the Lévy insurance risk model with general tax structure.

This paper is organized as follows. In Section 2, an expression for the Gerber–
Shiu function φ�(u) in terms of the Laplace transform of a first passage time and
the ‘original’ Gerber–Shiu function in a risk model with a dividend barrier strategy
is derived. The moments of the discounted tax payments are the subject matter of
Section 3. Section 4 considers the situation where tax payments only start when
the surplus process reaches a given threshold level. The optimal threshold level
which maximizes the difference between the expected value of total discounted tax
payments and the ‘original’ Gerber–Shiu function is also examined. Section 5 ends
the paper by some concluding remarks.
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2 Analysis of the Generalized Gerber–Shiu Function

2.1 A Differential Equation

Up to the time of the first claim, the surplus process {U�(t)}t≥0 is at its running
maximum. For a first claim occurring at time t, the surplus level just before the
payment of this claim is

f�(u, t) = u +
∫ t

0
c
(

f�(u, v)
)[

1 − γ
(

f�(u, v)
)]

dv. (2.1)

If the first claim does not cause ruin, there are two possibilities as the process further
evolves:

• the surplus process reaches its running maximum f�(u, t) before ruin , or
• the surplus process does not reach its running maximum f�(u, t) before ruin, and

hence the maximum surplus prior to ruin is the surplus level just prior to the first
claim.

On the other hand, if the first claim causes ruin, the maximum surplus level prior
to ruin is identical to the surplus prior to ruin. Combining the above cases, one
finds that

φ�(u) =
∫ ∞

0
λe−(λ+δ)t

[∫ f�(u,t)

0
χδ

(
f�(u, t) − y; f�(u, t)

)
p(y) dy

]

φ�

(
f�(u, t)

)
dt

+
∫ ∞

0
λe−(λ+δ)t

[∫ f�(u,t)

0
l
(

f�(u, t) − y; f�(u, t)
)

p(y) dy

]

w∗
(

f�(u, t)
)

dt

+
∫ ∞

0
λe−(λ+δ)t

[∫ ∞

f�(u,t)
w

(
f�(u, t), y − f�(u, t)

)
p(y) dy

]

w∗
(

f�(u, t)
)

dt,

(2.2)

for u ≥ 0 where

χδ(u; b) = E
[
e−δτb I (τb < T0) |U0(0) = u

]
, 0 ≤ u ≤ b , (2.3)

is the Laplace transform of the first passage time τb = inf{t ≥ 0 : U0(t) = b} avoiding
ruin enroute in the model without tax, and

l(u; b) = E
[
e−δT0w

(
U0(T−

0 ), |U0 (T0) |) I (T0 < τb ) |U0(0) = u
]

, 0 ≤ u ≤ b ,

(2.4)

is the ‘original’ Gerber–Shiu function with the event that the surplus process does not
upcross level b before ruin in the model without tax. We remark that notationally we
emphasize the dependence of the quantity χδ(u; b) on δ, and this will be particularly
useful in Section 3.

Changing the variable of integration from t to x = f�(u, t) in Eq. 2.2, it fol-
lows from Eq. 2.1 that dx = c( f�(u, t))[1 − γ ( f�(u, t))] dt. This implies that dt =
(c(x)[1 − γ (x)])−1 dx. Given that x = u when t = 0, we have t = k�(u, x) where

k�(u, x) =
∫ x

u

dz
c(z)[1 − γ (z)] , x ≥ u. (2.5)
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Note that the two technical conditions (Eq. 1.3) are necessary to ensure a proper
definition of k�(u, x). It follows that

φ�(u) =
∫ ∞

u

λ

c(x)[1 − γ (x)]e−(λ+δ)k�(u,x)

[∫ x

0
χδ(x − y; x)p(y) dy

]

φ�(x) dx

+
∫ ∞

u

λ

c(x)[1 − γ (x)]e−(λ+δ)k�(u,x)

[∫ x

0
l(x − y; x)p(y) dy + α(x)

]

w∗(x) dx,

(2.6)

where

α(x) =
∫ ∞

x
w(x, y − x)p(y) dy, x ≥ 0.

Differentiating Eq. 2.6 with respect to (w.r.t.) u leads to

φ′
�(u) = φ�(u)

c(u)[1 − γ (u)]
[

(λ + δ) − λ

∫ u

0
χδ(u − y; u)p(y) dy

]

− λ

c(u)
[
1 − γ (u)

]

[∫ u

0
l(u − y; u)p(y) dy + α(u)

]

w∗(u), (2.7)

for u ≥ 0. Note that Eq. 2.7 is a first-order non-homogeneous differential equation
with non-constant coefficients. We find the solution of the differential equation (2.7)
by further analyzing the Laplace transform of the first passage time τb , namely
χδ(u; b).

2.2 Analysis of χδ(u; b)

Recall that the Laplace transform χδ(u; b) pertains to the non-tax surplus process
{U0(t)}t≥0. Thus, for γ (.) ≡ 0, Eq. 2.5 becomes

k0(u, x) =
∫ x

u

dz
c(z)

, x ≥ u,

where k0(u, x) corresponds to the time that {U0(t)}t≥0 reaches level x (from level u) if
no claim occurs enroute. By conditioning on the time and amount of the first claim,
one finds that

χδ(u; b) =
∫ k0(u,b)

0
λe−(λ+δ)t

[∫ f0(u,t)

0
χδ( f0(u, t) − y; b)p(y) dy

]

dt + e−(λ+δ)k0(u,b),

(2.8)

for 0 ≤ u ≤ b . By a change of variable from t to x = f0(u, t) in Eq. 2.8, one deduces
that

χδ(u; b) =
∫ b

u

λ

c(x)
e−(λ+δ)k0(u,x)

[∫ x

0
χδ(x − y; b)p(y) dy

]

dx + e−(λ+δ)k0(u,b). (2.9)
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Differentiating Eq. 2.9 w.r.t. u yields the homogeneous integro-differential equation

χ ′
δ(u; b) = λ + δ

c(u)
χδ(u; b) − λ

c(u)

∫ u

0
χδ(u − y; b)p(y) dy, (2.10)

for 0≤u≤b . Equation 2.10 together with the trivial boundary condition χδ(b ; b)=1
(see Gerber et al. 2006a) implies that

χδ(u; b) = vδ(u)

vδ(b)
, 0 ≤ u ≤ b , (2.11)

where vδ(u) is a non-trivial solution of the homogeneous integro-differential equation

v′
δ(u) = λ + δ

c(u)
vδ(u) − λ

c(u)

∫ u

0
vδ(u − y)p(y) dy, u ≥ 0, (2.12)

which is unique up to a multiplicative constant (see e.g. Lakshmikantham and Rao
1995). Without loss of generality, one may assume vδ(0) = 1. From Eq. 2.11, it is
clear that vδ(u) is a non-decreasing function in u. In cases where the premium rate is
constant, vδ(u) is simply (a constant multiple of) the scale function in the literature
of Lévy processes (see e.g. Biffis and Kyprianou 2010).

2.3 Solution to the Generalized Gerber–Shiu Function

Substituting Eq. 2.11 in Eq. 2.7 followed by an application of Eq. 2.12 leads to

φ′
�(u) = φ�(u)

c(u)[1 − γ (u)]
[

(λ + δ) − λ

vδ(u)

∫ u

0
vδ(u − y)p(y) dy

]

− λ

c(u)[1 − γ (u)]
[∫ u

0
l(u − y; u)p(y) dy + α(u)

]

w∗(u)

= φ�(u)

1 − γ (u)

v′
δ(u)

vδ(u)
− λ

c(u)[1 − γ (u)]
[∫ u

0
l(u − y; u)p(y) dy + α(u)

]

w∗(u),

(2.13)

for u ≥ 0. Rearranging Eq. 2.13 gives rise to

φ′
�(u)− 1

1−γ (u)

v′
δ(u)

vδ(u)
φ�(u)=− λ

c(u)[1 − γ (u)]
[∫ u

0
l(u−y; u)p(y) dy + α(u)

]

w∗(u).

(2.14)

Note that the above equation also holds true for the ‘original’ Gerber–Shiu function
m0(u) without tax payments (by letting w∗(.) ≡ 1 and γ (.) ≡ 0), i.e.

m′
0(u) − v′

δ(u)

vδ(u)
m0(u) = − λ

c(u)

[∫ u

0
l(u − y; u)p(y) dy + α(u)

]

. (2.15)
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Comparing Eqs. 2.14 and 2.15, one deduces that

φ′
�(u) − 1

1 − γ (u)

v′
δ(u)

vδ(u)
φ�(u) = 1

1 − γ (u)

[

m′
0(u) − v′

δ(u)

vδ(u)
m0(u)

]

w∗(u), (2.16)

for u ≥ 0. By multiplying both sides of Eq. 2.16 by the integrating factor
exp{− ∫ u

0 [1 − γ (z)]−1[v′
δ(z)/vδ(z)] dz}, one observes that

d
du

[

exp
{

−
∫ u

0

1
1−γ (z)

v′
δ(z)

vδ(z)
dz

}

φ�(u)

]

= 1
1−γ (u)

exp
{

−
∫ u

0

1
1−γ (z)

v′
δ(z)

vδ(z)
dz

}[

m′
0(u)− v′

δ(u)

vδ(u)
m0(u)

]

w∗(u). (2.17)

By noting that

exp
{

−
∫ ∞

0

1
1 − γ (z)

v′
δ(z)

vδ(z)
dz

}

≤ exp
{

−
∫ ∞

0

v′
δ(z)

vδ(z)
dz

}

= 1
vδ(∞)

≤ 1.

and assuming limu→∞ φ�(u) = 0, a substitution of u by x in Eq. 2.17 followed by
integrating the resulting equation over x from u to ∞ leads to

φ�(u) = −
∫ ∞

u

1
1 − γ (x)

exp
{

−
∫ x

u

1
1 − γ (z)

v′
δ(z)

vδ(z)
dz

}

×
[

m′
0(x) − v′

δ(x)

vδ(x)
m0(x)

]

w∗(x) dx, u ≥ 0. (2.18)

Note that Eq. 2.18 expresses φ�(u) in terms of the ‘original’ Gerber–Shiu function
m0(u) without tax payments together with the function vδ(u), which are both known
in a number of risk models. The details regarding the calculations of the quantities
m0(u) and vδ(u) in some risk models which are special cases of the process {U(t)}t≥0

without tax are given in several examples following Remark 2.

Remark 2 Although the differential equation (2.7) for φ�(u) involves the function
l(u; b), its solution (2.18) does not. Indeed, the function l(u; b) has been eliminated
from Eq. 2.7 through the use of Eq. 2.15. Nonetheless, the quantity l(u; b) is also of
independent interest and will be used in Section 4. It can be represented as

l(u; b) = m0(u) − χδ(u; b)m0(b), 0 ≤ u ≤ b . (2.19)

Equation 2.19 can easily be proved probabilistically as follows. Since l(u; b) is
the ‘original’ Gerber–Shiu function without tax when the surplus process does not
upcross level b before ruin, it is simply the ‘original’ Gerber–Shiu function m0(u)

minus the contribution to m0(u) from the sample paths of the surplus process
upcrossing level b at least once before ruin (i.e. χδ(u; b)m0(b)).
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Example 1 (Constant premium rate) In the simplest model with constant premium
rate c(.) ≡ c, the solution m0(u) is given by Gerber and Shiu (1998, Eq. (2.35)), while
vδ(u) can be found in Lin et al. (2003, Section 4).

Example 2 (Multi-threshold risk model) In a multi-threshold risk model (e.g. Lin
and Sendova 2008) with n thresholds {bi}n

i=1 (0 < b 1 < b 2 < . . . < b n < ∞), it is
assumed that when the surplus is between levels bi−1 and bi, the incoming premium
rate (net of any dividends) is ci for i = 1, 2, . . . , n + 1 with b 0 = 0 and b n+1 = ∞.
This is a special case of the risk model described in Section 1 where c(x) = ci for
bi−1 ≤ x < bi. Theorem 4.1 and Corollary 4.3 of Lin and Sendova (2008) provide
recursive schemes to evaluate vδ(u) and m0(u) respectively.

Example 3 (Risk model with credit interest and liquid reserves) In this risk model,
it is assumed that the insurer collects premium at a rate c. Whenever the surplus
level is below a fixed threshold level �, the surplus is kept as liquid reserves and
does not earn interest. On the other hand, whenever the surplus level exceeds
�, the excess of the surplus over � earns interest at a rate β > 0 (see Cai et al.
2009). In our context, we set c(x) = c for x ≤ � and c(x) = β(x − �) + c for x > �.
Cai et al. (2009) provides an expression for m0(u) via the solution of a Volterra
integral equation. The quantity vδ(u) can be identified in the same manner. The
special case � = 0 corresponds to the risk model with credit interest only; an analysis
of m0(u) and vδ(u) can be found in Cai and Dickson (2002) and Yuen et al. (2007)
respectively.

In the next subsection, we shall examine how in general the Gerber–Shiu function
φ�(u) can be expressed in terms of the ‘original’ Gerber–Shiu function under a
dividend barrier strategy.

2.4 Relationship of φ�(u) with a Dividend Barrier Strategy

To obtain further insights probabilistically, for a moment we consider the surplus
process (1.1) under a dividend barrier strategy at level b > 0 (see e.g. Lin et al. 2003).
Under such a dividend strategy, it is assumed that the entire premium rate is paid as a
dividend rate whenever the surplus process reaches level b until the time of the next
claim. The resulting surplus process can be viewed as a special case of the tax model
{U�(t)}t≥0 with

γ (x) =
{

0, 0 ≤ x < b
1, x ≥ b

.

For 0 ≤ u ≤ b , let m(u; b) be the ‘original’ Gerber–Shiu function under a barrier
strategy with initial surplus u and barrier level b . From Gerber et al. (2006a), it is
known that the so-called dividends-penalty identity

m(u; b) = m0(u) − V(u; b)m′
0(b), 0 ≤ u ≤ b , (2.20)

holds where

V(u; b) = vδ(u)

v′
δ(b)

, 0 ≤ u ≤ b , (2.21)

is the expected discounted dividend payments before ruin.
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Now we return to the Gerber–Shiu function φ�(u) under the general tax structure.
Using Eqs. 2.20 and 2.21, Eq. 2.18 can be rewritten as

φ�(u) =
∫ ∞

u

1
1 − γ (x)

exp
{

−
∫ x

u

1
1 − γ (z)

v′
δ(z)

vδ(z)
dz

}

× v′
δ(x)

vδ(x)

[

m0(x) − vδ(x)

v′
δ(x)

m′
0(x)

]

w∗(x) dx

= −
∫ ∞

u
w∗(x)m(x; x) dx

[

exp
{

−
∫ x

u

1
1 − γ (z)

v′
δ(z)

vδ(z)
dz

}]

, (2.22)

for u ≥ 0 where dx is used to specify that the differential is taken w.r.t. x.

Remark 3 When δ = 0 and w(., .) ≡ w∗(.) ≡ 1, φ�(u) reduces to the ruin probability
ψ�(u) in the tax risk model and m(x; x) becomes the ruin probability in the risk model
with a dividend barrier strategy which is known to be 1. Hence, Eq. 2.22 becomes

ψ�(u) = 1 − exp
{

−
∫ ∞

u

1
1 − γ (z)

v′
0(z)

v0(z)
dz

}

= 1 − exp
{

−
∫ ∞

u

1
1 − γ (z)

d
dz

ln v0(z) dz
}

= 1 − exp
{

−
∫ ∞

u

1
1 − γ (z)

d
dz

ln
v0(z)

v0(∞)
dz

}

, (2.23)

for u ≥ 0. From Eqs. 2.3 and 2.11, it is immediate that v0(z)/v0(∞) = 1 − ψ0(z) which
together with Eq. 2.23 yields Eq. 1.4. Hence, Eq. 2.22 is an extension of the tax
identity (1.4).

Define τ�,b = inf{t ≥ 0 : U�(t) = b} to be the first passage time to level b for the
tax surplus process {U�(t)}t≥0 having Laplace transform

χδ,�(u; b) = E
[
e−δτ�,b I

(
τ�,b < T�

) |U�(0) = u
]

, 0 ≤ u ≤ b .

Relying on a similar series of arguments as used to derive Eq. 2.18, one can show
that

χδ,�(u; b) = exp

{

−
∫ b

u

1
1 − γ (z)

v′
δ(z)

vδ(z)
dz

}

, 0 ≤ u ≤ b . (2.24)

We remark that in the case of a constant tax rate γ (.) ≡ γ , it is immediate from
Eq. 2.24 (and Eq. 2.11) that

χδ,γ (u; b) = [
χδ(u; b)

] 1
1−γ , 0 ≤ u ≤ b . (2.25)
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Formulas (2.24) and (2.25) were obtained by Kyprianou and Zhou (2009) and
Albrecher et al. (2008b) respectively as fluctuation identities in the context of a Lévy
insurance risk process. Substituting Eq. 2.24 into Eq. 2.22, one easily finds that

φ�(u) = −
∫ ∞

u
w∗(x)m(x; x) dx

[
χδ,�(u; x)

]
, u ≥ 0. (2.26)

Equation 2.26 is a simple identity relating the generalized Gerber–Shiu function in
a risk model with tax to the ‘original’ Gerber–Shiu function in a risk model without
tax but with a dividend barrier strategy.

For the rest of this section, we assume δ = 0 and further examine Eq. 2.26. For
an initial surplus of U�(0) = u in the tax model, the maximum surplus before ruin is
less than x if and only if the surplus process {U�(t)}t≥0 drops below 0 before reaching
level x. Therefore,

Pr{U�(T�) < x, T� < ∞|U�(0) = u} = 1 − χ0,�(u; x), 0 ≤ u < x,

and hence the (defective) density of U�(T�) (with the event that ruin occurs) given
U�(0) = u is

gU�(T�)(x|u) = − d
dx

χ0,�(u; x), 0 ≤ u < x. (2.27)

Using Eq. 2.27, Eq. 2.26 (with δ = 0) can be written as

φ�(u) =
∫ ∞

u
w∗(x)m(x; x)gU�(T�)(x|u)dx, u ≥ 0. (2.28)

Also, by conditioning m(x; x) on its first departure from level x and on whether
the surplus process under a barrier strategy first reaches level 0 or level x thereafter,
we have

m(x; x) =
[∫ x

0
χ0(x − y; x)p(y) dy

]

m(x; x) +
∫ x

0
l(x − y; x)p(y) dy + α(x),

or equivalently

m(x; x) =
∫ x

0 l(x − y; x)p(y) dy + α(x)

1 − ∫ x
0 χ0(x − y; x)p(y) dy

=
∫ x

0 l(x − y; x)p(y) dy + α(x)
∫ x

0

[
1 − χ0(x − y; x)

]
p(y) dy + ∫ ∞

x p(y) dy

= E
[
E

[
w(U0(T−

0 ), |U0(T0)|)I (T0 < τx) |U0(0) = x − Y
]]

E [E [I (T0 < τx) |U0(0) = x − Y ]]
, (2.29)

where Y is the generic random variable representing the claim size.
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With the help of Eq. 2.29, a probabilistic interpretation of Eq. 2.28 can be given.
Indeed, in Eq. 2.28 the Gerber–Shiu function φ�(u) has been conditioned on the
maximum surplus level before ruin. If the tax process {U�(t)}t≥0 has a maximum
surplus before ruin of x (x ≥ u),

• a penalty of w∗(x) is applied;
• a claim shall occur as soon as {U�(t)}t≥0 reaches level x. This departure from level

x shall be followed by ruin before {U�(t)}t≥0 reaches level x (for the maximum
surplus to be x), and is therefore independent of the tax rate. The evaluation of
the penalty function w w.r.t. the surplus prior to ruin and the deficit at ruin under
the above conditions is given by the right-hand side of Eq. 2.29 which is known
to be m(x; x).

3 Moments of the Discounted Tax Payments

By conditioning on the time and the amount of the first claim as well as on whether
the process will return to the surplus level just prior to the first claim (if ruin does not
occur on the first claim), the quantity Wn,�(u) defined by Eq. 1.8 satisfies

Wn,�(u) =
∫ ∞

0
λe−λtξn(u, t) dt +

n∑

j=1

(
n
j

)∫ ∞

0
λe−(λ+ jδ)tξn− j(u, t)

×
[∫ f�(u,t)

0
χ jδ( f�(u, t) − y; f�(u, t))p(y) dy

]

W j,�( f�(u, t)) dt, (3.1)

for u ≥ 0 where

ξ j(u, t) =
[∫ t

0
e−δvc( f�(u, v))γ ( f�(u, v)) dv

] j

, (3.2)

corresponds to the j-th moment of the discounted tax payments made from time 0 to
the time of the first claim t. Letting

σ j,n(u, t) =
(

n
j

)

e− jδtξn− j(u, t), (3.3)

for j = 0, 1, . . . , n, a change of the variable of integration from t to x = f�(u, t) in
Eq. 3.1 results in

Wn,�(u) =
∫ ∞

u

λe−λk�(u,x)

c(x)[1 − γ (x)]σ0,n (u, k�(u, x)) dx

+
∫ ∞

u

λe−λk�(u,x)

c(x)[1 − γ (x)]
n∑

j=1

σ j,n (u, k�(u, x))

×
[∫ x

0
χ jδ(x − y; x)p(y) dy

]

W j,�(x) dx. (3.4)
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Differentiating Eq. 3.4 w.r.t. u, one finds

W ′
n,�(u) = λ

c(u)
[
1 − γ (u)

]

[

1 −
∫ u

0
χnδ(u − y; u)p(y) dy

]

Wn,�(u)

+
∫ ∞

u

λe−λk�(u,x)

c(x)[1 − γ (x)]
[

∂

∂u
σ0,n (u, k�(u, x))

]

dx

+
∫ ∞

u

λe−λk�(u,x)

c(x)[1 − γ (x)]
n∑

j=1

[
∂

∂u
σ j,n (u, k�(u, x))

]

×
[∫ x

0
χ jδ(x − y; x)p(y) dy

]

W j,�(x) dx, (3.5)

for u ≥ 0.
Similarly, a change of variable in Eq. 3.2 from v to z = f�(u, v) results in

ξ j(u, t) =
[∫ f�(u,t)

u
e−δk�(u,z) γ (z)

1 − γ (z)
dz

] j

.

From Eqs. 3.2 and 3.3, it follows that

∂

∂u
σ j,n (u, k�(u, x)) = ∂

∂u

{(
n
j

)

e− jδk�(u,x)

[∫ x

u
e−δk�(u,z) γ (z)

1 − γ (z)
dz

]n− j
}

= jδ

c(u)
[
1 − γ (u)

]σ j,n (u, k�(u, x))

+ (n − j)δ

c(u)
[
1 − γ (u)

]σ j,n (u, k�(u, x))

− γ (u)

1 − γ (u)

(
n
j

)

e− jδk�(u,x)(n − j)ξn− j−1 (u, k�(u, x))

= nδ

c(u)
[
1 − γ (u)

]σ j,n (u, k�(u, x))− nγ (u)

1 − γ (u)
σ j,n−1 (u, k�(u, x)) ,

(3.6)

where σ j,n (u, t) = 0 for j > n. Substituting Eq. 3.6 into Eq. 3.5 and then by making
use of Eq. 3.4, one finds that

W ′
n,�(u) = 1

1 − γ (u)

[
λ + nδ

c(u)
− λ

c(u)

∫ u

0
χnδ(u − y; u)p(y) dy

]

Wn,�(u)

− nγ (u)

1 − γ (u)
Wn−1,�(u), (3.7)

Equation 3.7 together with Eqs. 2.11 and 2.12 leads to

W ′
n,�(u) = 1

1 − γ (u)

v′
nδ(u)

vnδ(u)
Wn,�(u) − nγ (u)

1 − γ (u)
Wn−1,�(u), (3.8)

for u ≥ 0.
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In what follows, we solve the differential equation (3.8) assuming that
limu→∞ Wn,�(u) is finite. Note that this condition is satisfied for most premium rate
functions of interest in ruin theory (for instance, when c(.) is a bounded function)
under δ > 0. Now, multiplying Eq. 3.8 by the same integrating factor (with δ replaced
by nδ) used to obtain Eq. 2.18 yields

Wn,�(u) =
∫ ∞

u

nγ (x)

1 − γ (x)
exp

{

−
∫ x

u

1
1 − γ (z)

v′
nδ(z)

vnδ(z)
dz

}

Wn−1,�(x) dx, u ≥ 0.

(3.9)

Using Eq. 2.24, Eq. 3.9 becomes

Wn,�(u) =
∫ ∞

u

nγ (x)

1 − γ (x)
χnδ,�(u; x)Wn−1,�(x) dx, u ≥ 0. (3.10)

As shown in Renaud (2009, Theorem 3.1), an equation of the form (3.10) also holds
true in a Lévy insurance risk model.

Remark 4 In particular, when n = 1, Eqs. 3.9 and 3.10 become

W1,�(u) =
∫ ∞

u

γ (x)

1 − γ (x)
exp

{

−
∫ x

u

1
1 − γ (z)

1
V(z; z)

dz
}

dx, (3.11)

and

W1,�(u) =
∫ ∞

u

γ (x)

1 − γ (x)
χδ,�(u; x) dx, (3.12)

respectively, where Eq. 2.21 has been used to obtain Eq. 3.11. Note that Eq. 3.11
relates the expected discounted tax payments to the expected discounted dividends
under a barrier strategy, an observation made by Albrecher and Hipp (2007)
when γ (.) ≡ γ and c(.) ≡ c. Furthermore, Eq. 3.12 allows for the same probabilistic
interpretation as Remark 3.4 of Albrecher et al. (2008b).

4 Delayed Start of Tax Payments and the Optimal Tax Threshold

In this section, we pay special attention to the case where tax payments do not
start immediately. More precisely, we assume that there is a threshold level b > 0
(which is no less than the initial surplus u) such that tax payments start if and when
the surplus process reaches level b before ruin. In this section, a predetermined
tax structure γ (.) such that 0 < γ (x) < 1 for ∀x ≥ 0 is assumed. Note that this
predetermined tax structure γ (.) does not allow the tax rate γ (x) to be equal to 0
for any x; otherwise it may result in γ (b) = 0 which means that tax payments do not
actually start at level b .

For a threshold tax strategy at level b , the actual tax structure is given by

γb (x) =
{

0, 0 ≤ x < b
γ (x), x ≥ b

. (4.1)

The surplus process under the above tax structure is denoted by {U�b (t)}t≥0. We
remark that if the process {U�b (t)}t≥0 starts with surplus U�b (0) = b , it is equivalent
to the process {U�(t)}t≥0.
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4.1 The Gerber–Shiu Function

Let φ�b (u; b) be the Gerber–Shiu function (1.7) under the tax structure γb (.) defined
by Eq. 4.1. Clearly, φ�b (b ; b) = φ�(b). Applying the tax structure γb (.) to Eq. 2.24,
we also have

χδ,�b (u; x) = χδ(u; x), 0 ≤ u ≤ x ≤ b ,

and

χδ,�b (u; x) = χδ(u; b)χδ,�(b ; x), 0 ≤ u ≤ b ≤ x.

From Eq. 2.26, one deduces that

φ�b (u; b) = −
∫ b

u
w∗(x)m(x; x) dx [χδ(u; x)]−

∫ ∞

b
w∗(x)m(x; x) dx

[
χδ(u; b)χδ,�(b ; x)

]

= ϕ(u; b) + χδ(u; b)φ�(b), (4.2)

for 0 ≤ u ≤ b , where

ϕ(u; b) = −
∫ b

u
w∗(x)m(x; x) dx [χδ(u; x)] . (4.3)

It can be shown that

ϕ(u; b)= E
[
e−δT0w(U0(T−

0 ), |U0(T0)|)w∗(ZT0)I (T0 <τb ) |U0(0)=u
]

, 0≤u≤b ,

(4.4)

has solution given by the right-hand side of Eq. 4.3. As a direct consequence, the term
χδ(u; b)φ�(b) in Eq. 4.2 represents the contribution to φ�b (u; b) from the sample
paths of the surplus process {U�b (t)}t≥0 which upcross level b before ruin. It is also
instructive to note that l(u; b) defined in Eq. 2.4 is a special case of ϕ(u; b) in Eq. 4.4
with w∗(.) ≡ 1.

Remark 5 We remark that an equation of the form (4.2) also holds true for the
generalized Gerber–Shiu function φ(u; b) under a dividend barrier strategy at level
b . By observing that the maximum surplus level before ruin is b almost surely if the
surplus process hits level b before ruin, one concludes that

φ(u; b) = ϕ(u; b) + χδ(u; b)w∗(b)m(b ; b), 0 ≤ u ≤ b .

4.2 Optimal Threshold Level: Dickson–Waters Modification

In Albrecher and Hipp (2007), the optimal threshold level which maximizes the
expected discounted tax payments before ruin was considered when γ (.) ≡ γ and
c(.) ≡ c under Eq. 4.1. The authors showed that the optimal threshold level is
independent of the initial surplus and identified some conditions for the existence
of this optimal threshold level. Inspired by Dickson and Waters (2004) and Gerber
et al. (2006a), we aim here at maximizing the function

η�b (u; b) = W1,�b (u; b) − m�b (u; b), 0 ≤ u ≤ b , (4.5)
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w.r.t. b for the more general surplus process {U�b (t)}t≥0 under the tax structure γb (.),
where m�b (u; b) is a special case of φ�b (u; b) with w∗(.) ≡ 1. We remark that the
maximization problem (4.5) under w(x, y) = y was first proposed by Dickson and
Waters (2004), and was later referred to as the Dickson–Waters modif ication by
Gerber et al. (2006b). This maximization problem was later generalized by Gerber
et al. (2006a) to allow for an arbitrary penalty function w(., .), and Cheung and
Drekic (2008) refer to this as the Gerber–Lin–Yang modif ication.

Since no tax is payable until the surplus process {U�b (t)}t≥0 hits level b for the first
time (avoiding ruin in the interim), one has

W1,�b (u; b) = χδ(u; b)W1,�(b), 0 ≤ u ≤ b . (4.6)

Substituting Eq. 4.2 (with w∗(.) ≡ 1) and Eq. 4.6 into Eq. 4.5 followed by an
application of Eq. 2.19 leads to

η�b (u; b) = χδ(u; b)W1,�(b) − [
l(u; b) + χδ(u; b)m�(b)

]

= χδ(u; b)W1,�(b) − [
m0(u) − χδ(u; b)m0(b) + χδ(u; b)m�(b)

]

= χδ(u; b)
[
W1,�(b) − m�(b) + m0(b)

] − m0(u), (4.7)

for 0 ≤ u ≤ b . Using Eq. 2.11, Eq. 4.7 can be rewritten as

η�b (u; b) = vδ(u)��(b) − m0(u), 0 ≤ u ≤ b , (4.8)

where

��(b) = W1,�(b) − m�(b) + m0(b)

vδ(b)
. (4.9)

In order to identify the optimal threshold level, it is clear from Eq. 4.8 that
maximizing η�b (u; b) w.r.t. b (for a given u ≥ 0) comes down to maximizing ��(b)

on b ≥ u. Hence, let b ∗ be such that ��(b) ≤ ��(b ∗) for all b ≥ 0. Then, for any
0 ≤ u ≤ b ∗, the optimal threshold level that maximizes η�b (u; b) w.r.t. b is b ∗ which
is independent of the initial surplus level u.

A necessary condition for a positive (i.e. non-zero) b ∗ to maximize ��(b) on
b ≥ 0 is

� ′
�

(
b ∗) = 0. (4.10)

Using Eq. 4.9, the condition (4.10) becomes

v′
δ

(
b ∗)

vδ

(
b ∗) = W ′

1,�

(
b ∗) − m′

�

(
b ∗) + m′

0

(
b ∗)

W1,�

(
b ∗) − m�

(
b ∗) + m0

(
b ∗) . (4.11)

From Eqs. 2.16 and 3.8, we also have that

m′
�(b) = 1

1 − γ (b)

v′
δ(b)

vδ(b)
m�(b) + 1

1 − γ (b)

[

m′
0(b) − v′

δ(b)

vδ(b)
m0(b)

]

, (4.12)

and

W ′
1,�(b) = 1

1 − γ (b)

v′
δ(b)

vδ(b)
W1,�(b) − γ (b)

1 − γ (b)
, (4.13)
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respectively. Capitalizing on Eqs. 4.12 and 4.13, one easily sees that

W ′
1,�(b) − m′

�(b) + m′
0(b) = 1

1 − γ (b)

v′
δ(b)

vδ(b)

[
W1,�(b) − m�(b) + m0(b)

]

− γ (b)

1 − γ (b)

[
1 + m′

0(b)
]

,

and therefore

W ′
1,�(b) − m′

�(b) + m′
0(b)

W1,�(b) − m�(b) + m0(b)
= 1

1−γ (b)

v′
δ(b)

vδ(b)
− γ (b)

1−γ (b)

1 + m′
0(b)

W1,�(b) − m�(b) + m0(b)
.

(4.14)

By Gerber et al. (2006a, equation (11)), we know that

1 + m′
0(b) = v′

δ(b)

vδ(b)

[
V(b ; b) − m(b ; b) + m0(b)

]
. (4.15)

Upon substitution of Eq. 4.15 into Eq. 4.14, one deduces from Eq. 4.11 that the
necessary condition for a positive b ∗ to maximize ��(b) is given by

V (b ∗; b ∗) − m (b ∗; b ∗) + m0
(
b ∗)

W1,�

(
b ∗) − m�

(
b ∗) + m0

(
b ∗) = 1,

or equivalently

W1,�

(
b ∗) − m�

(
b ∗) = V

(
b ∗; b ∗) − m

(
b ∗; b ∗). (4.16)

Interestingly, using Eqs. 4.12 and 4.13, a positive b ∗ satisfying Eq. 4.16 also implies
that

W ′
1,�

(
b ∗) − m′

�

(
b ∗) = 1

1 − γ
(
b ∗)

v′
δ

(
b ∗)

vδ

(
b ∗)

[
W1,�

(
b ∗) − m�

(
b ∗)] − γ

(
b ∗)

1 − γ
(
b ∗)

− 1
1 − γ

(
b ∗)

[

m′
0

(
b ∗) − v′

δ

(
b ∗)

vδ

(
b ∗)m0

(
b ∗)

]

= 1
1 − γ

(
b ∗)

1
V (b ∗; b ∗)

[
V

(
b ∗; b ∗) − m

(
b ∗; b ∗)]

− γ
(
b ∗)

1 − γ
(
b ∗) + 1

1 − γ
(
b ∗)

1
V (b ∗; b ∗)

m
(
b ∗; b ∗)

= 1, (4.17)

where the second last line follows from Eqs. 2.20 and 2.21. Note that the conditions
(4.16) and (4.17) reduce to equations (18) and (16) in Albrecher and Hipp (2007)
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respectively when w(., .) ≡ 0. Furthermore, by utilizing the expression (4.5), the
condition (4.17) is indeed equivalent to

d
db

η�b (b ; b)

∣
∣
∣
∣
b=b∗

= 1 , (4.18)

which says that if tax is to be collected immediately (i.e. u = b), then at the optimal
tax threshold b ∗ the marginal gain in the value function η�b (b ; b) is identical to the
marginal increase in capital injection.

Although the necessary condition (4.17) (or equivalently (4.18)) is mathematically
interesting and allows for economic interpretation, unfortunately in general we do
not expect to be able to find explicit expression for the optimal value b ∗. This is
indeed already evident in the most simplest case where both tax rate and premium
rate are constant and claims follow exponential distribution (see Albrecher and
Hipp 2007, Example 1). In that case, W1,γ (u) is expressed in terms of a Gauss
hypergeometric series and an explicit formula for b ∗ is unlikely to be available.

5 Concluding Remarks

In the context of the compound Poisson risk model with surplus-dependent premium
rate and general tax structure, this paper extends the tax identity to a generalized
Gerber–Shiu function involving the maximum surplus prior to ruin. Moments of the dis-
counted tax payments before ruin and the optimal tax threshold level are also studied.

Some of the results in the present model such as the special case (Eq. 1.4)
of the general tax identity (Eq. 2.26), the Laplace transform of the first passage
time (Eq. 2.24) and the moments of discounted tax payments (Eq. 3.10) have an
identical counterpart in the Lévy insurance risk model with general tax structure (see
Kyprianou and Zhou 2009; Renaud 2009). It is worth pointing out that the model
considered in this paper is more general in terms of the premium income with a
surplus-dependent premium rate. However, the mathematical derivations of these
results in these two classes of risk models are quite different. This raises the natural
question as to whether the afore-mentioned results hold true in a more general class
of risk models.
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