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Abstract

Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM)
and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe
form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite
the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain
incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated
over the past 35 years. In this review, we discuss three broad areas which have been explored that may be
responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive
accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and
procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly
significant interplay will occur amongst these pathways in patients with this disease.
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Introduction
Pulmonary fibrosis is a chronic lung disease character-
ized pathologically by excessive accumulation of extra-
cellular matrix (ECM) and remodeling of the lung
architecture, and additionally characterized by
recognizable clinical, physiologic, and radiographic find-
ings. Though some descriptions of fibrous diseases of
the lungs can be found as early as the 5th century BC by
Hippocrates [1,2], more modern descriptions of pulmon-
ary fibrosis occurred in the early part of the 20th century
with reports by Hamman and Rich of four patients with
rapidly progressive diffuse interstitial fibrosis of the
lungs [3,4]. Although the prognosis of patients with dif-
fuse pulmonary fibrosis is poor, it was subsequently rea-
lized that many patients did not have the extremely
rapid deteriorating course that was described by Ham-
man and Rich. With further pathologic analysis, several
distinct types of pulmonary fibrosis were described, and
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the terms diffuse fibrosing alveolitis, diffuse interstitial
fibrosis, and idiopathic pulmonary fibrosis (IPF) were
introduced to describe a more insidious, yet still debili-
tating form of chronic pulmonary fibrosis [5,6]. Cur-
rently, IPF is considered the most common and severe
form of pulmonary fibrosis, with a disheartening median
survival of approximately three years, with no proven ef-
fective therapy, and with lung transplantation remaining
the only viable intervention in end-stage disease [7].
The pathologic findings in pulmonary fibrosis (exces-

sive accumulation of ECM and remodeling of the lung
architecture) are a consequence of disturbances in two
physiologically balanced processes: proliferation and
apoptosis of fibroblasts, and accumulation and break-
down of ECM. When the normal balance between ECM
deposition and turnover is shifted toward deposition or
away from breakdown, excessive ECM accumulates.
When the balance between fibroblast proliferation and
apoptosis is shifted toward accelerated proliferation or
slowed apoptosis, fibroblasts - the primary ECM produ-
cers - accumulate. Several possible origins of ECM-
producing mesenchymal cells have been described, and
have included accumulation of resident lung fibroblasts,
homing and fibroblastic differentiation of bone marrow-
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derived cells such as circulating fibrocytes or monocytes
[8-11], or epithelial-mesenchymal transition (EMT) [12].
Independent of the source of fibroblast expansion in the
lungs (resident or systemic), it seems agreed upon that
the ultimate effector cell in pulmonary fibrosis is the
myofibroblast, a differentiated fibroblast which has con-
tractile properties similar to smooth muscle cells, and
which is characterized by the presence of alpha-smooth
muscle actin (α-SMA).
In addition to altered mesenchymal cells, abnormal-

ities of the alveolar epithelium in patients with pulmon-
ary fibrosis have been noted from the earliest
descriptions of the disease process [13,14]. Loss of nor-
mal type I alveolar epithelium and replacement by
hyperplastic type II cells or bronchiolar cuboidal cells is
a consistent finding in patients with IPF. In addition to
these observations, more recent mechanistic studies
have focused on the interplay, or cross-talk, between
damaged epithelial cells and lung mesenchymal cells.
This epithelial-mesenchymal interplay lends support to a
key theme in pulmonary fibrosis, in which altered lung
mesenchymal cells coupled with alveolar epithelial cell
injury result in the accumulation of ECM and remodel-
ing of the lung architecture.
An extensive body of scientific literature regarding

pulmonary fibrosis has accumulated over the past 35
years, and Figure 1 shows the accelerating pace of re-
search in this field over the past two decades. Although
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Figure 1 Cumulative number of publications using PubMed
searches for articles on pulmonary fibrosis, excluding cystic
fibrosis. Search strategy (open circles) was ‘((lung OR pulmonary)
AND (fibrosis OR fibrotic) AND english [la] AND hasabstract) NOT
cystic’, or when referred to in the title, search strategy (closed circles)
was ‘((lung [ti] OR pulmonary [ti]) AND (fibrosis [ti] OR fibrotic [ti])
AND english [la] AND hasabstract) NOT cystic [ti]’. These cumulative
numbers most likely underestimate the realistic breadth of literature
on the topic, as pulmonary fibrosis is often described using various
terms (fibrosing alveolitis, interstitial lung disease), and a large body
of literature has focused on cellular and molecular responses in cell
culture (fibroblasts, epithelial, endothelial, and inflammatory cells)
without mentioning pulmonary fibrosis in the title or the abstract
the precise mechanisms that drive the development of fi-
brosis in most patients remain incompletely understood,
three broad areas (as seen in Figure 2) have been
explored that may be responsible for the combination of
altered lung fibroblasts, loss of alveolar epithelial cells,
and excessive accumulation of ECM: (1) inflammation
and immune mechanisms: the role of acute and chronic
inflammation driven by cytokines, cells or cell surface
molecules; (2) oxidative stress and oxidative signaling:
the role of reactive oxygen species; and (3) a procoagu-
lant milieu in the lung: the role of the coagulation pro-
teinases and their tissue receptors. Each of these
processes will be considered separately to facilitate clar-
ity, but we hope the reader will appreciate the significant
interplay that may occur amongst these pathways in
patients with pulmonary fibrosis.

Inflammation and immune mechanisms
From the earliest descriptions of patients with pulmon-
ary fibrosis, cellular inflammation in the lung paren-
chyma has been a consistent pathologic finding [3-6].
Histologic analysis has shown varied accumulations of
lymphocytes, macrophages, plasma cells, eosinophils and
neutrophils, and the presence of lymphoid follicles with
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Figure 2 Schematic diagram representing three broad
mechanisms (inflammation, oxidative stress, and coagulation
disturbances) that alone or in combination may be responsible
for alterations in mesenchymal cells, epithelial cells, and
extracellular matrix (ECM) that result in pulmonary fibrosis
following lung injury.



Todd et al. Fibrogenesis & Tissue Repair 2012, 5:11 Page 3 of 24
http://www.fibrogenesis.com/content/5/1/11
germinal centers has been observed in many patients in
the lung interstitium [5,6]. The initial terms ‘diffuse
fibrosing alveolitis’ and ‘cryptogenic fibrosing alveolitis’
were used as a reflection of the inflammatory compo-
nent of the pathologic process in pulmonary fibrosis
[5,15], and most patients with usual interstitial pneumo-
nia (UIP), the pathologic hallmark of IPF, will manifest a
mild to moderate degree of chronic cellular inflamma-
tion in the lung [7,16-18].
Over the past 15 to 20 years, however, the role of in-

flammation has been questioned, and the hypothesis has
been put forward that active cellular lung inflammation
is not a major feature or requirement for the develop-
ment of IPF. Recent pathologic descriptions of patients
with UIP have emphasized the epithelial, mesenchymal,
and ECM abnormalities while de-emphasizing the cellu-
lar inflammatory features. This paradigm has thus
shifted emphasis in IPF towards a process of epithelial
cell injury coupled with exaggerated wound healing, and
inflammation has been relegated to a mechanistically
less important and bystander role in the fibrotic process
[19,20]. Probably the major supporting argument for in-
flammation playing a non-causal role stems from the ob-
servation that anti-inflammatory therapies, particularly
corticosteroids, have been uniformly ineffective in im-
proving pulmonary function or survival in patients with
IPF [21,22].
However, even though the role of inflammation in IPF

has been recently de-emphasized, the original findings of
cellular inflammation in the lung have been supplemen-
ted with an extensive accumulation of scientific studies
which have implicated numerous inflammation-related
cytokines and cell surface molecules in profibrotic
mechanisms. It is also important to note that resistance
to corticosteroids does not necessarily indicate or equate
with a lack of inflammatory involvement, as there are
several well-established diseases in which inflammation
is clearly accepted to be the predominant underlying
mechanism, but in which traditional anti-inflammatory
therapy has been poorly effective [23]. Stemming from
the observations on inflammatory cells, cytokines, che-
mokines, and cell surface molecules, the inflammation
hypothesis has dominated the field of pulmonary fibrosis
for nearly four decades, and IPF continues to be viewed
by many authorities as a chronic inflammatory disease
of the lung parenchyma [23-26].
It is difficult if not impossible to comprehensively re-

view the evidence in support of the role of inflammation
in pulmonary fibrosis. Such evidence is abundant from
mechanistic studies in cell culture, experimental re-
search in animals, and observations in human patients.
Below, we provide an overview of such evidence and
lines of thought, in hopes to provide a springboard for
continued independent studies in the field.
Role of cytokines
Over the past 40 years of research into mechanisms of
pulmonary fibrosis, an immense amount of literature
has described alterations in cytokine expression and
function in animals and patients with pulmonary fibro-
sis. Most of the findings have described a propensity for
a variety of cytokines to promote and enhance the fi-
brotic process, whereas in some instances, up-regulation
of a particular cytokine is associated with inhibition of
fibrosis. In Table 1, we have listed the cytokines which
we currently interpret as most relevant to mechanisms
of pulmonary fibrosis, and have summarized the most
pertinent in vitro, animal model, and human trial data
for each cytokine. The potential sources of these cyto-
kines in the lung are numerous, and include resident or
systemic epithelial, mesenchymal, or inflammatory cells
(T lymphocytes, B lymphocytes, macrophages, neutro-
phils, eosinophils, and platelets).
There are additional cytokines (for example, TGF-α,

IFN-α, fibroblastic growth factor, IL-6) not included in
Table 1 which have been studied in pulmonary fibrosis,
but in our judgement, their regulatory role in fibrosis
has been less clearly defined, and the high level of com-
plexity of their regulation does not allow for clear desig-
nation as profibrotic or antifibrotic. Additionally, many
small molecules (for example, serotonin, endothelin, lep-
tin, lysophosphatidic acid, histamine, angiotensin) have
also been studied in pulmonary fibrosis, but likewise
their roles in fibrosis are less clearly defined at present.

Role of inflammatory cells
T lymphocytes
A consistent finding in most fibrotic diseases of the
lungs is the presence of T lymphocytes, one of the major
inflammatory cell types. Mechanistic studies regarding
the role of T cells in pulmonary fibrosis have been per-
formed in animals which lacked T lymphocytes or had
selective attraction of T lymphocytes to the lungs. Most
of these studies used bleomycin as a model of lung in-
jury, in which fibrosis is preceded by pulmonary
inflammation.
In athymic mice lacking T cells, administration of bleo-

mycin resulted in less fibroblast proliferation and less
ECM accumulation compared to wild-type mice [123].
Mice whose T lymphocytes lacked CD28, a central co-
stimulatory cell surface molecule necessary for full T cell
activation, showed markedly attenuated fibrosis following
exposure to bleomycin, and transferring CD28-positive T
lymphocytes into these CD28-deficient animals restored
the fibrotic response to bleomycin [124]. In mice systemic-
ally depleted of T lymphocytes, exposure to bleomycin
resulted in less collagen accumulation and increased sur-
vival compared with controls [125,126]. In our mouse
model in which selective attraction of T lymphocytes to



Table 1 Cytokines involved in the regulation of pulmonary fibrosis

Mediators Effects Relevant to Pulmonary Fibrosis References

Growth Factors

Transforming growth factor-β (TGF-β) The major profibrotic growth factor. In vitro, stimulates fibroblast ECM production,
myofibroblast differentiation, resistance to apoptosis, and production of ROS.
Induces apoptosis in epithelial cells, and promotes epithelial-mesenchymal
transdifferentiation (EMT). Upregulated in animal models of fibrosis, and
overexpression in vivo induces severe fibrosis.

[12,27-36]

Connective tissue growth
factor (CTGF, CCN2)

Stimulates fibroblast proliferation and ECM production in vitro. Upregulated in the
bleomycin model, and overexpression in vivo induces mild fibrosis. Functions
in combination with TGF-β.

[37-44]

Platelet-derived growth factor (PDGF) Stimulates fibroblast proliferation and chemotaxis in vitro. Upregulated in animal
models of fibrosis, and inhibition reduces fibrosis. Upregulated in human fibrotic
diseases, but inhibition did not improve survival in patients with IPF.

[38,44-54]

Insulin-like growth factor (IGF) Stimulates fibroblast ECM production in vitro. Upregulated in the bleomycin model,
but overexpression in vivo did not induce fibrosis. Stimulates proliferation of epithelial cells.

[44,55-59]

Interleukins

Interleukin-4 (IL-4) Th-2 cytokines which stimulate fibroblast proliferation and ECM production in vitro.
Upregulated in the bleomycin model, and overexpression in vivo induces fibrosis.
Induce alternative activation of macrophages.

[24,25,60-68]

Interleukin-13 (IL-13)

Interferon-γ (IFN-γ) Pro-inflammatory Th-1 cytokine which inhibits fibroblast proliferation and ECM
production in vitro, and enhances fibroblast apoptosis. In vivo, reduces fibrosis
in the bleomycin model, but administration in patients with IPF did not improve survival.

[69-77]

Interleukin-1β (IL-1β) Pro-inflammatory cytokines which in vitro stimulate fibroblast proliferation and
chemotaxis, but inhibit collagen production. Upregulated in the bleomycin model,
and overexpression in vivo induces inflammation and fibrosis, with fibrosis likely
mediated by TGF-β. Inhibition of TNF-α in patients with IPF did not improve outcomes.

[44,78-88]

Tumor necrosis factor-α (TNF-α)

Interleukin-17 (IL-17) Pro-inflammatory cytokine which is upregulated in the bleomycin model. Exogenous
administration in vivo induced fibrosis, which was reduced by blockade of TGF-β.
Upregulated in patients with IPF.

[25,89,90]

Oncostatin M (OSM) In fibroblasts, stimulates proliferation and ECM production in vitro, and inhibits
apoptosis. Overexpression and exogenous administration in vivo induces inflammation
and fibrosis, and fibrosis occurred independently of TGF-β.

[91-96]

Interleukin-10 (IL-10) Anti-inflammatory cytokine which inhibits fibroblast ECM production in vitro, and
upregulation or overexpression in the bleomycin model reduced fibrosis. In vivo
overexpression alone, however, induced fibrosis, likely mediated by CCL2. Induces
alternative activation of macrophages.

[68,97-100]

Chemokines

CCL2 (MCP-1) Pro-inflammatory CC chemokine which stimulates fibroblast ECM production and
resistance to apoptosis in vitro. Upregulated in animal models of fibrosis, and in vivo
loss of function (chemokine or receptor) reduces fibrosis. Recruits bone-marrow
derived fibrocytes to the lung.

[98,101-108]

CCL18 (PARC) Pro-inflammatory CC chemokine which mildly stimulates fibroblast ECM
production in vitro. Overexpression in vivo induces fibrosis, however, overexpression
combined with bleomycin reduced fibrosis. Serum concentrations inversely correlated
with outcomes in patients with IPF and SSc.

[109-115]

CCL3 (MIP-1α) Pro-inflammatory CC chemokine which is upregulated in animal models of fibrosis, and
in vivo loss of function (chemokine or receptor) reduces fibrosis. Recruits bone-marrow
derived fibrocytes to the lung.

[116-119]

CXCL12 CXC chemokine which is upregulated in the bleomycin model, and is the major
chemokines responsible for recruiting bone-marrow derived fibrocytes to the lung.
Upregulated in BAL and serum in patients with IPF, and inversely correlated
with physiologic parameters.

[120-122]
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the lung was achieved by over-expressing human CCL18
(PARC), a prolonged infiltration of T cells occurred, mod-
erate collagen accumulation developed, and systemic de-
pletion of T cells prevented the collagen accumulation
despite the continuous expression of CCL18, suggesting
that T cells were indeed the driving force of fibrosis [113].
It should be noted that although human CCL18 appears
to be fully functional in mice in cell culture and in vivo
[109-113, 127], the chemokine CCL18 has not been defin-
itely identified in mice.
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There may be a complex interplay among subtypes of
T lymphocytes in pulmonary fibrosis, particularly be-
tween T effector and T regulatory cells. T regulatory
lymphocytes (T regs) are profibrotic and immunosup-
pressive, and exert their profibrotic actions primarily via
transforming growth factor-beta (TGF-β) and platelet-
derived growth factor (PDGF) [128]. In an animal model
of silica-induced pulmonary fibrosis, T regs were
recruited to the lungs, caused fibroblast proliferation,
had increased expression of TGF-β1 and PDGF, and
caused pulmonary fibrosis upon transfer into silica-
unexposed animals [45]. In silica-exposed animals
depleted of T regs, pulmonary fibrosis occurred, but
increased numbers of CD4+ T effectors were present.
These T effectors caused fibroblast proliferation, caused
pulmonary fibrosis upon transfer into T reg deficient
(but not T reg competent) animals, and neutralizing
antibody against these T effectors eliminated collagen
accumulation [45]. These results suggest a complex
interplay between lymphocyte subsets, with T regulatory
cells themselves acting profibrotically, and the role of
CD4+ T effector cells depending on the presence or ab-
sence of T regulatory cell competence.
Observational studies in humans link T cell infiltration

to fibrosis. In patients with IPF, the presence of T cells
within lung tissue and BAL of patients has been consist-
ently observed [129-134]. These T cells are activated and
antigen experienced [132,135,136], and characterization
has shown that both CD4+ and CD8+ cells are present,
with the suggestion that CD8+ T cells represent the ma-
jority [129-132,137]. Increased numbers of CD8+ T cells
in lung tissue from IPF patients was associated with
worse pulmonary outcomes [130], and in BAL fluid,
higher CD4/CD8 ratios correlated with an improved
clinical response to anti-inflammatory therapy [133]. In
patients with IPF, well-organized lymph-node-like struc-
tures with features of ‘lymphoid neogenesis’ are present,
which are composed of T cells expressing CD40L, B
cells, and mature dendritic cells [132]. These T and B
cells are activated, but not proliferating, and most are
CD45RO+ indicative of a memory phenotype [132].
These findings support the concept that organized
lymphoid tissue can persist in the lung and contribute to
chronic inflammation even in the absence of cellular
proliferation.
In other forms of interstitial pneumonia, accumulation

of T cells has been shown in BAL from patients with
scleroderma [138,139], rheumatoid arthritis [140], and
polymyositis/dermatomyositis [141,142]. In general, it
appears that although both CD4+ and CD8+ T cells are
associated with pulmonary fibrosis, CD8+ T cells appear
to be associated with a worse prognosis. In patients with
sarcoidosis [143], beryliosis [144], rheumatoid arthritis
[140], and hypersensitivity pneumonitis [145], CD4+ T
cells were predominant in the lungs, consistent with the
better prognosis of these diseases compared with IPF.
Thus, there are numerous observations in animal

models and in patients which describe an association of
pulmonary fibrosis with T lymphocytic infiltration. The
preponderance of evidence suggests that such associ-
ation is reflective of T cell profibrotic action, but de-
pending on cell phenotype and the nature of the
pulmonary milieu, T cells may promote or diminish the
pulmonary fibrotic process. Two broad mechanisms by
which T cells may influence the fibrotic process include
production of Th-1 or Th-2 cytokines (as seen in Table 1)
and cell surface molecule interactions with epithelial or
mesenchymal cells, which will be described subsequently
below.

Macrophages
Macrophages constitute the majority of cells recovered
from BAL of normal individuals, and have essential roles
in phagocytosis, innate and adaptive immunity, and sur-
factant homeostasis [146]. A pathogenic role for macro-
phages in pulmonary fibrosis has been postulated for
many years, and described mechanisms have included
overexpression of reactive oxygen species [147-151],
proteinase-activated receptors [152-154], Fas ligand
[155], and profibrotic cytokines [97,154,156-162].
One feature regarding a potential role of macrophages

in pulmonary fibrosis relates to the concept of alterna-
tive activation. Classical activation of macrophages is
induced by interferon-γ, and is characterized by macro-
phage expression of IL-1β, IL-6, TNF-α, and nitric oxide.
Alternative activation of macrophages is induced most
notably by the Th-2 cytokines IL-4 and IL-13, and is
characterized by macrophage expression of mannose
receptor-1 (CD206), arginase-1, the lectin-binding pro-
tein Ym1, the resistin-like protein Fizz1, and the chemo-
kine CCL18 [60,161,162].
Several animal models of pulmonary fibrosis have

demonstrated that alveolar macrophages (AM) display a
phenotype consistent with alternative activation. In the
silica-induced model, mRNA expression of Ym1 in the
lung increased significantly in wild-type mice consistent
with alternative activation, but did not increase in silica-
exposed IL-4R null mice, indicating that a Th-2 milieu
was necessary for alternative activation and fibrosis
[162]. In the herpes virus-induced and transgenic TGF-β
models of fibrosis, AM accumulated in the lungs and
expressed the alternative activation markers Ym1/2,
Fizz1 and arginase-1 [163-165].
Likewise, in patients with pulmonary fibrosis, the pre-

ponderance of data suggests that AM display an alterna-
tively activated phenotype. In patients with IPF
compared to healthy controls, AM showed increased ex-
pression of CD206, and spontaneously generated higher
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levels of the proinflammatory cytokines CCL17, CCL18,
and CCL22 [97,161]. Co-culture of cell supernatants
from alternatively activated AM of IPF patients with
normal lung fibroblasts generated higher amounts of
collagen production than supernatants from AM of
healthy controls [161]. In patients with IPF, expression
of arginase-1 was increased compared with healthy con-
trols, as demonstrated by immunostaining of AM,
immunostaining of lung tissue in areas of interstitial fi-
brosis, and by higher levels of arginase-1 protein in lung
tissue lysates [163].
The above constellation of findings indicate that alter-

native activation of macrophages may play a mechanistic
role in pulmonary fibrosis. Blocking alternative macro-
phage activation may prove therapeutic, and develop-
ment of such new approaches to therapies for
pulmonary fibrosis is under way. For example, serum
amyloid P inhibited bleomycin and TGF-β induced pul-
monary fibrosis at least partially through attenuation of
alternative macrophage accumulation [164,165].

B lymphocytes
Though most literature regarding potential lymphocyte
involvement in mechanisms of fibrosis has referenced T
cells, a role for B cells has been suggested for many
years. As mentioned previously, patients with IPF often
have well-organized lymph-node-like structures in the
lung composed of activated T and B cells [132]. Produc-
tion of antibody is a major function of B cells, and pro-
duction of autoantibodies has been demonstrated
against alveolar epithelial cell antigens such as vimentin
and cytokeratins in patients with IPF [166-171]. Most re-
cently, autoantibodies against periplakin, a component
of desmosomes within epithelium, were identified in
patients with IPF, and were associated with worse
physiologic parameters [172].
A mechanistic role for B cells in pulmonary fibrosis is

also supported by animal and patient data regarding
CD19, a crucial cell-surface signaling molecule which is
expressed on B cells and regulates B cell function. In
patients with systemic sclerosis (SSc), an autoimmune
disease in which pulmonary fibrosis is a major cause of
morbidity and mortality, systemic B cells overexpress
CD19 compared to healthy controls, and polymorphisms
in CD19 are associated with an increased susceptibility
to SSc [173,174]. In an animal model of SSc, mice defi-
cient in CD19 showed attenuated pulmonary and dermal
fibrosis in response to subcutaneous bleomycin com-
pared with wild-type controls [175]. In the intratracheal
bleomycin model, overexpression of CD19 correlated
with increased histologic lung fibrosis, increased lung
hydroxyproline content, and reduced survival compared
to wild-type controls, and mice deficient in CD19 had
reduced fibrosis and improved survival compared to
controls [176]. The number of B cells in BAL correlated
with CD19 expression, and CD19 expression was neces-
sary for B cell accumulation [176]. Since it has been
demonstrated that the presence of CD19 alters B cell
phenotype, the above results suggest that CD19 may have
a mechanistic role in fibrosis by skewing B cells towards
profibrotic cytokine expression.
Conversely, the presence of B cells in fibrosis may be

protective. In the silica-induced model, overexpression
of the anti-inflammatory cytokine IL-9 was accompanied
by an expansion of B cells within the lungs and with
reduced lung fibrosis [177,178]. The presence of B cells
was necessary for the protective effect of IL-9, demon-
strated by lack of reduction in fibrosis in B cell-deficient
mice, and by a restoration of the reduction in fibrosis by
B cell reconstitution [178]. The concept of conflicting
roles for B cells in fibrosis is similar to that postulated
for T cells, in which depending on cell phenotype and
the nature of the pulmonary milieu, lymphocytes may
promote or diminish the pulmonary fibrotic process.

Fibrocytes
Bone-marrow-derived cells that produce collagen and
express markers of leukocytes (CD45) and stem cells
(CD34) normally circulate at low frequencies, below 1%
of circulating cells. These cells were termed fibrocytes in
a seminal study [9]. In response to local and systemic in-
juries, including pulmonary insults, fibrocytes are
released from bone marrow in higher numbers, and
home to sites of injury, where they differentiate into
myofibroblasts and contribute to ECM deposition
[8,9,120,121]. Additionally, circulating monocytes may
home to sites of injury and differentiate into mesenchy-
mal cells [10,11]. Recruitment of bone-marrow-derived
mesenchymal progenitors is driven by several cytokines
that are produced by injured tissues, including CXCL12,
CCL2, CCL3, and IL-10 [98,101,116,122]. These obser-
vations indicate that anti-fibrotic therapies should be
limited not only to the organ affected by the disease, but
have systemic mechanisms of action as well.

Role of cell surface molecules
CD40-CD40L
CD40 ligand (CD40L or CD154) and CD40, members of
the TNF family of cytokines and receptors, respectively,
are cell surface molecules first identified as co-stimulatory
molecules involved in the process of immune cell activa-
tion, with activated CD4+ T cells expressing CD40L, and
activated antigen presenting cells expressing CD40. It was
subsequently demonstrated that CD40 may also be
expressed on several non-hematopoietic cell types [179],
including human lung fibroblasts [180], which raised the
possibility that CD40/CD40L interactions may affect fibro-
blast function. Subsequent work showed that engagement
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of CD40 on fibroblasts by CD40L or by agonistic antibody
caused cell proliferation [61,181], mobilization of NF-κB
[179,182], production of IL-6 and IL-8 [179,181,182], and
expression of ICAM-1 and VCAM-1 [181]. Combined
stimulation with IL-4, a potent stimulant for fibroblast
proliferation, and ligation of CD40 had synergistic effects
on enhancing fibroblast proliferation [61]. In animals, dis-
ruption of the engagement of CD40 by antibody against
CD40L protected against radiation-induced, oxygen-
induced, and autoimmune models of pulmonary injury
and fibrosis [183-185].
In patients with IPF, areas of lymphocyte aggregates

are often present which contain large numbers of acti-
vated T cells expressing CD40L [132]. Additional sources
of CD40L include platelets, which are present in areas of
lung injury due to the increased procoagulant milieu,
and dendritic cells, which are present in lymphocyte
aggregates in patients with IPF [132,186,187]. Interest-
ingly, CD40L expression was also found in primary
human fibroblasts, and found to be expressed and ele-
vated in fibroblasts from patients with IPF compared to
normal controls [188].
The constellation of findings suggests that the CD40/

CD40L system may be an important pathway by which
several cell types rich in CD40L may promote and per-
petuate fibrosis through engagement of CD40 on fibro-
blasts [182,189]. The finding that lung fibroblasts also
express CD40L suggests that fibroblasts themselves may
be able to perpetuate fibrosis in an autocrine and para-
crine fashion via the CD40/CD40L pathway [188].

Fas-FasL
Fas (Fas antigen, Fas receptor, or CD95) is a member of
the TNF family of cell surface receptors, is expressed in
numerous cell types, and induces cellular apoptosis once
engaged by FasL. FasL (Fas ligand or CD178) is a trans-
membrane protein belonging to the TNF family, is pre-
dominantly expressed on activated T lymphocytes and
natural killer cells, and induces apoptosis in Fas-bearing
cells. The role of the Fas-FasL pathway in pulmonary fi-
brosis has been examined in both epithelial and mesen-
chymal cells.
Bronchiolar and alveolar epithelial cell apoptosis has

been a consistent finding in the bleomycin model, along
with up-regulation of Fas mRNA and Fas pathway genes
in epithelial cells, and up-regulation of FasL in lung tis-
sue and infiltrating lymphocytes [190,191]. In mice, in-
halation of agonistic anti-Fas antibody alone caused
apoptosis of bronchiolar and alveolar epithelial cells,
increased inflammation in BAL and lung tissue,
increased collagen content, and increased lung tissue
TGF-β mRNA similar to that observed with bleomycin
[192,193]. Inhalation or injection of soluble Fas (aimed
at binding and neutralizing inherent FasL) along with
bleomycin reduced epithelial cell apoptosis, tissue in-
flammatory cell infiltration, and collagen accumulation
[194]. Mice deficient in Fas (lpr) or FasL (gld) had sub-
stantially reduced tissue inflammatory cells, epithelial
cell apoptosis, and collagen accumulation compared to
controls in response to bleomycin challenge [191,194].
Conversely, selective inactivation of Fas in T lympho-
cytes (via Cre-mediated recombination) led to up-
regulation of T cell FasL, massive infiltration of inflam-
matory cells in the lungs, and development of pulmonary
fibrosis [195]. Treatment with neutralizing anti-FasL
antibody completely prevented the accumulation of lym-
phocytes in the lung [195].
In mesenchymal cells, the preponderance of mechanistic

data suggests inherent resistance to Fas-mediated apop-
tosis. In primary lung fibroblasts, ligation of cell surface
Fas by agonistic antibody was unable to induce apoptosis,
and resulted in increased levels of the anti-apoptotic pro-
teins X-linked inhibitor of apoptosis (ILP) and FLICE-like
inhibitor protein (FLIPL) [27]. Similarly, fibroblasts from
patients with pulmonary fibrosis demonstrated resistance
to apoptosis when exposed to recombinant FasL, and
demonstrated prominent signals for ILP and FLIPL in
lung tissue [27,196]. Despite inherent resistance to Fas-
mediated apoptosis, several studies have shown that TNF-
α and IFN-γ, particularly in combination, increase Fas ex-
pression in fibroblasts and increase susceptibility to apop-
tosis [27,69,196,197]. Attenuation of Fas expression in
fibroblasts by small interfering RNA (siRNA) inhibited the
ability of TNF-α and IFN-γ to increase susceptibility to
apoptosis, whereas transduction of fibroblasts with Fas-
expressing adenovirus-enhanced apoptosis when engaged
with agonistic antibody [69]. The ability of TNF-α and
IFN-γ to sensitize fibroblasts to apoptosis suggests that
altered pro-inflammatory cytokine milieus may contribute
to the development of pulmonary fibrosis.
It appears that enhanced apoptosis in epithelial cells

coupled with resistance to apoptosis in mesenchymal
cells affects the cross-talk between these two cell types.
This altered cross-talk is often mediated by TGF-β. In
the bleomycin model, myofibroblasts demonstrated over-
expression of FasL and induced epithelial cell apoptosis
in vitro [191]. In epithelial cells, TGF-β induced apop-
tosis in vitro, and low concentrations of TGF-β, which
were unable to induce epithelial cell apoptosis alone,
increased apoptosis in epithelial cells stimulated with ag-
onistic anti-Fas antibody or soluble FasL [28]. In vivo ad-
ministration of TGF-β along with agonistic anti-Fas
antibody increased epithelial cell apoptosis to a degree
greater than with either agent alone, and the induction of
epithelial cell apoptosis by soluble FasL was inhibited by
antibodies against TGF-β [28].
Observational studies in patients with IPF have demon-

strated up-regulation of Fas and Fas-signaling molecules
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in epithelial cells compared to normal controls
[69,198,199]. Mesenchymal cells within fibroblastic foci
demonstrated minimal or absent expression of Fas, and
fibroblasts from patients with pulmonary fibrosis had
lower expression of surface bound Fas, but higher levels of
soluble Fas in the supernatant [196]. In regards to FasL,
there was increased expression of soluble FasL in BAL
and serum in patients with active IPF and connective tis-
sue disease-interstitial pneumonia [198,200,201]. In lung
tissue from patients with IPF, increased FasL protein was
demonstrated in infiltrating granulocytes and T cells, and
strong expression of FasL was seen in myofibroblasts
[191,198]. In non-smoking patients with IPF, BAL showed
increased percentages of alveolar macrophages and CD8+
cells expressing FasL along with increased levels of soluble
FasL, and these findings were inversely correlated with
vital capacity [155]. The summative observations in cell
culture, animal models, and patients support a mechanis-
tic role for disturbances in Fas and FasL in the develop-
ment of pulmonary fibrosis.

Integrins
Integrins are heterodimeric, transmembrane cell surface
molecules which primarily mediate cell-cell and cell-
ECM adhesion, but also play major roles in cell migra-
tion, growth, and survival [202-205]. Currently, eighteen
α-subunits and eight β-subunits have been identified
which associate to form 24 known integrins. Mechanistic
roles for integrins in the pathogenesis of pulmonary fi-
brosis have been described in epithelial, inflammatory,
and mesenchymal cells.
The integrin αvβ6, which is expressed principally in

epithelial cells, is one of the αv-integrins which has the
ability to activate latent TGF-β by binding to the tripep-
tide RGD sequence on TGF-β latency-associated peptide
(LAP). In a landmark study, αvβ6 activated latent TGF-β
by binding to the RGD sequence, and in the bleomycin
model, mice lacking β6 developed increased pulmonary
inflammation, but were protected from pulmonary fibro-
sis [206]. In the animal model of radiation-induced fi-
brosis, β6 was up-regulated following injury, and lack of
β6 or mutation of integrin binding site on TGF-β LAP
significantly reduced pulmonary fibrosis [207]. In the
radiation-induced or bleomycin model, antibody against
αvβ6 reduced histologic evidence of fibrosis, hydroxy-
proline content, and phosphorylation of nuclear Smad 2/
3 [207,208]. In patients with IPF, αvβ6 was overex-
pressed within alveolar epithelial cells compared with
normal controls, and in patients with systemic sclerosis,
was overexpressed to a greater extent in patients with a
UIP vs. NSIP pathologic pattern [208].
The integrin αvβ8 is also expressed in epithelial cells

and fibroblasts. In fibroblasts, αvβ8 contributes to TGF-β
activation, fibrosis, and regulation of immune processes
including dendritic cell function [209]. In airway epithe-
lial cells, the β8 subunit was highly expressed, active
TGF-β was produced, and airway proliferation was min-
imal [210]. Antibody against β8 or TGF-β reduced active
TGF-β production and resulted in enhanced airway pro-
liferation, indicating that β8 activation of latent TGF-β
was regulating epithelial cell proliferation. In an epithelial
wounding model, administration of TGF-β delayed
wound closure, and antibody against αvβ8 reduced acti-
vation of latent TGF-β and enhanced epithelial wound
closure [211]. Both of these studies suggest that activa-
tion of latent TGF-β by αvβ8 may contribute to the
broad mechanism of impaired epithelial cell regeneration
coupled with mesenchymal cell proliferation in patients
with pulmonary fibrosis.
The integrin α3β1 is an epithelial cell integrin and

laminin receptor. Specific loss of α3 expression in lung
epithelial cells of mice exposed to bleomycin resulted in
typical findings of acute inflammation and lung injury,
but had reduced accumulation of myofibroblasts and
type I collagen [212]. Specific loss of α3 expression
resulted in an inability to form β-catenin/Smad2 com-
plexes, a process implicated in the development of
epithelial-mesenchymal transition (EMT), suggesting
that the α3β1 integrin may play a central role in EMT
[212,213].
Several integrins have been examined in inflammatory

cells in pulmonary fibrosis. First, in our animal model of
CCL18 overexpression, T lymphocytes accumulated in
the lungs, expressed αvβ3 and αvβ5 integrins, and ad-
ministration of neutralizing antibody against αv or gen-
etic deficiency of β3 significantly reduced pulmonary T
cell infiltration and collagen accumulation [214]. Trans-
formed T cells that overexpressed αvβ3 and αvβ5 stimu-
lated collagen accumulation in co-cultured fibroblasts,
which was mediated by TGF-β, and pulmonary T cells
from patients with systemic sclerosis expressed αvβ3 and
αvβ5 integrins [214]. Second, many T cells express αEβ7,
which is up-regulated by TGF-β, and binds to E-cadherin
on epithelial cells [215]. In the bleomycin model, the ma-
jority of CD8+ and γδ T cells in BAL expressed αEβ7
[216], and in patients with IPF, a significantly higher per-
centage of CD4+ and CD8+ T cells in BAL expressed
αEβ7 when compared to peripheral blood [217]. Third,
lymphocytes and eosinophils may express α4 integrin,
which binds to vascular cell adhesion molecule-1
(VCAM-1) on endothelium [218]. In the bleomycin
model, treatment with neutralizing antibody against α4
resulted in reduced cellular inflammation, lipid peroxida-
tion, hydroxyproline content, histologic fibrosis, and α-
SMA compared with controls [219]. Though the precise
role of T cells in the pathogenesis of pulmonary fibrosis
remains incompletely understood, T cell expression of
several integrins which bind epithelium or ECM skew
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the pulmonary milieu towards a pro- or anti-phenotype
depending on the T cell phenotype.
Integrins expressed on fibroblasts have been shown to

activate latent TGF-β and promote fibrosis. The α2β1 in-
tegrin is a major type I collagen receptor [220]. In normal
fibroblasts, exposure to polymerized collagen inhibited
proliferation, whereas fibroblasts from patients with IPF
demonstrated abnormal proliferation due to activation of
the PI3K-Akt-S6K1 pathway and low activity of the
tumor suppressor phosphatase and tensin homologue
(PTEN) [221]. Protein expression of PTEN was pre-
served, but there was defective regulation of PTEN func-
tion by the α2β1-polymerized collagen interaction.
Consistent with these in-vitro experiments, mice hap-
loinsufficient for PTEN showed an exaggerated fibropro-
liferative response and increased collagen deposition in a
cutaneous and bleomycin injury model, and immunohis-
tochemistry in patients with IPF showed activation of
Akt in fibroblastic foci [221].
Myofibroblast contraction has been shown to activate

TGF-β by inducing conformational changes in LAP
mediated by integrin binding. Contraction of myofibro-
blasts along with mechanically-resistant ECM activated
latent TGF-β via αvβ5 binding, and blocking antibodies
against αvβ5 prevented this TGF-β activation [222].
Thy-1, a cell surface glycoprotein which inhibits a fibro-
genic phenotype in fibroblasts and is associated with
decreased fibrosis in the bleomycin model [223,224],
may have a role in cell contraction-mediated TGF-β ac-
tivation. Several studies have shown that Thy-1 can bind
to integrins, and specifically, Thy-1 bound αvβ5 in a
cell-free system and on the surface of lung fibroblasts
[225]. Upon exposure to cell contraction agonists, fibro-
blasts either lacking Thy-1 or in which Thy-1/αvβ5 bind-
ing was prevented were able to activate latent TGF-β
and promote myofibroblast differentiation, whereas
these effects were absent in fibroblasts expressing Thy-1
[225]. Thesis data suggested that Thy-1 is able to bind
αvβ5 on the cell surface, and prevent myofibroblast
contraction-induced integrin-dependent activation of la-
tent TGF-β.
In patients with localized or diffuse scleroderma, fibro-

blasts demonstrated increased expression of αvβ5, and ex-
posure to exogenous latent TGF-β increased collagen
production [226,227]. Overexpression of αvβ5 on normal
fibroblasts recruited latent TGF-β on the cell surface,
increased collagen promoter activity, and resulted in dif-
ferentiation to a myofibroblastic phenotype, with each of
these reduced or reversed with antibody against αvβ5
[226-228]. Thesis data in aggregate from patients with
scleroderma showed that up-regulation of αvβ5 expression
in fibroblasts increased ECM production and promoted
myofibroblastic differentiation through enhanced autocrine
TGF-β signaling.
Potential mechanistic role of inflammation
Absence of cellular infiltration does not equate with lack of
inflammation
As mentioned previously, recent pathologic descriptions
of patients with IPF have emphasized the epithelial, mes-
enchymal, and ECM abnormalities, while de-
emphasizing the possible contributions of inflammation
to mechanisms of the disease. Most patients with IPF will
manifest a mild to moderate degree of chronic cellular
inflammation in the lung pathologically, but it is true that
some patients with end-stage lung disease and advanced
UIP on biopsy will have minimal evidence of chronic in-
flammatory cells in the lung parenchyma. Although infil-
tration with inflammatory cells is an overall common
feature of inflammation, the degree of cellular infiltration
may vary significantly depending on the particular tissue
which is involved. In disease of tendons (tendinopathies),
the presence of inflammatory cells is rather limited, due
most likely to tissue architecture constraints, but an ac-
tive inflammatory process is present based on levels of
cytokines, growth factors, prostaglandins, and neuropep-
tides [229,230]. In the spatially confined brain, often con-
sidered an “immune-privileged” organ, cellular
infiltration following injuries or autoimmune processes is
minor, but the brain is fully capable of an active inflam-
matory response, with cytokines playing key roles [231-
233]. Molecular rather than cellular inflammation
appears to drive the response to injury in tendons and
brain, and the lack of inflammatory cells does not equate
with lack of inflammation.

Resistance to corticosteroids does not equate with lack of
inflammation
An additional concept that should not be equated with
lack of inflammation is resistance to corticosteroids.
There are several well-established diseases in which in-
flammation is clearly accepted to be the predominant
underlying mechanism, but traditional anti-inflammatory
therapy has been poorly or completely ineffective in
groups or subgroups of patients [23]. Chronic obstructive
pulmonary disease (COPD) is a chronic inflammatory
disease of the lungs, with high levels of pro-inflammatory
cells and cytokines, but most studies have shown that
inhaled or systemic corticosteroids do not significantly
reduce cellular or molecular markers of inflammation,
and do not improve long-term lung function or survival
in patients [234-241]. Asthma is also a prototypical in-
flammatory lung disease of the airways, and although
most patients with asthma respond well to corticoster-
oids, a subset of patients have steroid-resistant asthma,
manifested clinically by a poor response to treatment,
and mechanistically by continued expression of pro-
inflammatory and profibrotic cytokines in alveolar
macrophages and T cells despite exposure to
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corticosteroids [242-247]. In the autoimmune inflamma-
tory diseases rheumatoid arthritis (RA) and systemic
lupus erythematosis (SLE), a subset of patients will re-
spond poorly to corticosteroids, and mononuclear and T
cells from these patients showed less inhibition of prolif-
eration and less apoptosis when exposed to corticoster-
oids [248,249]. Similarly, a proportion of patients with
inflammatory bowel disease (IBD) will have a poor or ab-
sent response to corticosteroids, and peripheral blood T
cells from these patients showed less inhibition of prolif-
eration when exposed to corticosteroids [250,251].
The normal mechanisms by which corticosteroids re-

duce inflammation have been reviewed in detail [235].
Several mechanisms have been postulated by which
patients with inflammatory diseases may manifest resist-
ance to corticosteroid therapy, and these have included
abnormalities in bone morphogenetic protein receptor
[252], increased phosphorylation and subsequent
reduced nuclear translocation of the activated gluco-
corticoid receptor (GR) [253], reduced expression of the
anti-inflammatory protein MKP-1 resulting from
increased p38 mitogen-activated protein kinase activity
[254], reduced binding affinity of GR for corticosteroids
due to nitrosylation of GR by inducible nitric oxide syn-
thase [255], or excessive activation of the transcription
factor AP-1 which prevents GR interaction with DNA
glucocorticoid response elements [256]. One other par-
ticularly noteworthy cause of corticosteroid-resistant in-
flammation in chronic lung disease results from
decreased histone deacetylase activity. Corticosteroids
normally reduce inflammation by decreasing transcrip-
tion of activated inflammatory genes, which occurs at
least in part by recruitment of histone deacetylase-2
(HDAC2) [235]. In epithelial cells, inhibition of histone
deacetylase activity promoted corticosteroid resistance,
and this resistance was reversed by HDAC2 overexpres-
sion [257]. Reduced levels of histone deacetylase-2
(HDAC2) have been observed in patients with COPD
and refractory asthma [258,259], and one mechanism of
reduced deacetylase activity is inactivation of HDAC2 by
oxidative stress, which has been demonstrated in epithe-
lial cells, animal models, and patients with COPD [260-
262].
Based on all the available mechanistic, animal model,

and observational data regarding inflammation and im-
mune mechanisms, it may be a reasonable conclusion
that IPF is a chronic inflammatory disease of the lung,
but cellular infiltration is minor compared to the sub-
stantial changes in pulmonary cytokines, and the ab-
sence of clinical improvement in treated patients may be
a manifestation of resistance to conventional anti-
inflammatory therapies. The fact that oxidative stress
has been found capable of promoting steroid-resistant
inflammation is certainly a thought provoking concept,
given the large amount of data demonstrating high levels
of oxidative stress in patients with pulmonary fibrosis,
which will be discussed below.

Oxidative stress and oxidative signaling
Molecular oxygen is central to aerobic metabolism, is
critically required for vertebrates, and must be con-
stantly supplied to ensure survival. However, oxygen is a
strong oxidant, and has damaging effects on cells and
biologic macromolecules due to formation of reactive
oxygen species (ROS). Oxidative stress occurs when
there is an imbalance between the generation of ROS
and the capacity to detoxify these intermediates, which
occurs when generation of ROS is excessive, antioxidant
defenses are reduced, or both disturbances occur to-
gether. Additionally, extensive evidence suggests that
ROS may be also involved with post-translational pro-
cessing of proteins and intracellular signaling mechan-
isms in health and disease, including activation or
deactivation of signaling factors, regulation of gene ex-
pression, and cell differentiation. Over many years, there
has been accumulating evidence that oxidative stress
and/or oxidative signaling may play a major role in the
pathogenesis of pulmonary fibrosis [263-266].

Overview of reactive oxygen species and antioxidant
defenses
Reactive oxygen species are formed by single electron
reductions of molecular oxygen, leading to formation of
superoxide anion (O2

.–), hydrogen peroxide (H2O2), and
the hydroxyl radical (.OH) [267]. Due to their powerful
oxidizing capability, ROS can lead to generation of
advanced oxidation molecular products and induce dam-
age to cellular and subcellular structures within the lung,
including DNA, proteins, cell membranes, and mito-
chondria. Reactive oxygen species production may result
from several sources in the lung, including the mito-
chondrial electron transport chain, myeloperoxidase,
xanthine oxidase, and NADPH oxidases [263,266].
The enzyme system in the lung that has recently

gained the most attention for its ability to produce ROS
is the NADPH oxidase family of enzymes, also termed
the NOX family of enzymes [268]. The primary function
of these enzymes was originally viewed as host defense
in phagocytic cells against invading microbes, however,
NADPH oxidases have now been found in virtually all
tissues, and ROS generated by the NADPH oxidases
have been shown to have numerous diverse roles in cel-
lular function [268,269]. Seven isoforms of the NADPH
oxidases have been described in mammals, and the iso-
form NOX4 is the major NADPH oxidase up regulated
by TGF-β1 [29,270].
The detrimental effect of ROS is expected to be

uniquely most profound in the lung due to its constant
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exposure to the high oxygen tension of the ambient at-
mosphere. Consequently, the lung has evolved signifi-
cant defense mechanisms against cellular damage from
reactive oxygen species, which most notably include the
family of superoxide dismutases (SOD), the peroxidase
catalase, and reduced glutathione [263]. Superoxide dis-
mutase has three isoforms and catalyzes the breakdown
of superoxide anion to hydrogen peroxide, and catalase
accelerates the breakdown of hydrogen peroxide to
water. Reduced glutathione (GSH) is a tripeptide con-
taining the amino acid cysteine, and with its sulfhydryl
group, acts as one of the major antioxidants present in
the lung [271].

Observations in humans
Most of the observational data suggest that an oxidant/
antioxidant imbalance exists in cells and lung tissue of
patients with pulmonary fibrosis. Alveolar inflammatory
cells (macrophages, lymphocytes, neutrophils, and eosi-
nophils) and fibroblasts from patients with IPF spontan-
eously generated higher amounts of ROS than normal
controls [147,148]. The amount of myeloperoxidase in
the alveolar epithelial lining fluid from patients with IPF
was also significantly higher than controls, and within
the IPF group, those patients with higher levels of mye-
loperoxidase had a more rapidly deteriorating clinical
course than those with lower levels [147]. Whereas al-
veolar epithelial lining fluid of normal controls con-
tained high levels of GSH [272], patients with IPF had
substantially decreased levels of GSH in epithelial lining
fluid, BAL fluid, and BAL cells, and had a decreased
ratio of reduced to oxidized glutathione (GSH/GSSG)
[273-276]. In patients with IPF, immunoreactivity of
gamma-glutamylcysteine synthetase, the rate limiting en-
zyme in reduced glutathione synthesis, was high in areas
of regenerating bronchiolar epithelium, but low in fi-
brotic areas and fibroblastic foci [277]. Extracellular
superoxide dismutase (EC-SOD), the major enzyme re-
sponsible for inactivating superoxide anion in the extra-
cellular matrix, was absent by immunohistochemistry in
fibrotic areas and fibroblastic foci of patients with IPF
[278]. Histopathologic sections of lung tissue from
patients with IPF showed high expression of the
NADPH oxidase isoform NOX4 in fibroblastic foci and
in hyperplastic type II cells [270,279,280]. The constella-
tion of these findings together suggests a significant oxi-
dant/antioxidant imbalance in the lungs of patients with
IPF.

Studies in animal models
The role of antioxidant defenses or effects of antioxidant
therapy have been examined animal models of lung injury
and fibrosis. The oxidant/antioxidant balance in the lung
may be shifted through administration of the antioxidant
n-acetylcysteine (NAC), a synthetic precursor of reduced
glutathione. Intraperitoneal, oral, or aerosolized NAC
lead to reduced inflammation (BAL inflammatory cells
and acute inflammatory cytokines) and reduced collagen
deposition (hydroxyproline and histology) in the bleo-
mycin model [281-283]. Intraperitoneal administration of
the antioxidant MnTBAP, a metalloporphyrin, attenuated
lung fibrosis in the bleomycin model as assessed by
hydroxyproline content, airway dysfunction, and histo-
pathology [284]. Mice who were germline-deficient for
extracellular superoxide dismutase (EC-SOD) and
received bleomycin demonstrated a significant increase
in inflammation and fibrosis (hydroxyproline and histo-
pathology) compared to wild type controls [285], whereas
mice that were transgenic for EC-SOD had less acute
lung injury and less fibrosis than wild-type controls [286].
Mice that were genetically deficient of Nrf2, a transcrip-
tion factor which contributes to GSH homeostasis, had
increased inflammation, increased epithelial cell death,
and increased indices of lung fibrosis (hydroxyproline
content, collagen accumulation, histopathologic score)
compared with wild-type controls in response to bleo-
mycin challenge [287].
Additional animal models have examined the role of

the NADPH oxidase isoform NOX4. In wild-type mice,
administration of bleomycin increased protein expres-
sion of NOX4 in a time dependent manner, and instilla-
tion of small interfering RNA (siRNA) against NOX4 or
pharmacologic inhibition of NOX4 reduced histopatho-
logic evidence of fibrosis, lung homogenate hydroxypro-
line content, and α-SMA production compared with
controls [270]. In NOX4-deficient mice, administration
of bleomycin resulted in decreased amounts of Smad 2
phosphorylation, α-SMA, procollagen mRNA, total col-
lagen content, and histologic fibrosis compared to con-
trols [280]. Although fibrosis was reduced as a result of
NOX4 deficiency, the robust pulmonary inflammation in
response to bleomycin was not altered, suggesting that
inflammation by itself is not sufficient to drive
bleomycin-induced fibrosis. Notably, this decreased fi-
brosis was associated with less alveolar epithelial cell
death compared to controls [280]. These results in com-
bination suggest that oxidative stress may be contribut-
ing to both alveolar epithelial cell death and lung
fibroblast proliferation in pulmonary fibrosis.

Mechanistic in vitro studies
Many in vitro studies have examined a variety of oxidant
and antioxidant mechanisms in lung cells that involve
ROS, glutathione, and cysteine. Alveolar inflammatory
cells and alveolar epithelial lining fluid from IPF patients
are cytotoxic to primary pulmonary epithelial cells; this
cytotoxic effect was reduced by the antioxidant enzyme
catalase, and did not occur from exposure to cells and
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epithelial fluid from normal controls [147]. Lung fibro-
blasts exposed to GSH had substantially suppressed cel-
lular proliferation, whereas oxidized glutathione disulfide
(GSSG) had no suppressive effect on proliferation [288].
Exposure of lung fibroblasts to the oxidized thiol/disul-
fide couple cysteine/cystine (Cys/CySS) resulted in
enhanced fibroblast proliferation, expression of fibronec-
tin, expression of TGF-β1, and expression of Smad3
[289]; these effects did not occur with exposure to
reduced Cys/CySS.
Much of the recent mechanistic work regarding oxi-

dative mechanisms in pulmonary fibrosis has centered
around the two-way interplay between TGF-β1 and
ROS mediated processes. ROS have been shown to acti-
vate latent TGF-β1 [290], and TGF-β1 increases pro-
duction of ROS in human lung fibroblasts [291].
Exposure of epithelial cells and fibroblasts to TGF-β1
decreased levels of GSH, decreased levels of the antioxi-
dant enzymes glutathione reductase and catalase, and
increased cell cytoxicity mediated by hydrogen peroxide
[292-294]. Inhibiting the synthesis of intracellular GSH
content in vitro increased TGF-β1 mediated collagen
production [293]. TGF-β1 markedly decreased expres-
sion of gamma-glutamylcysteine synthetase [277,292],
whereas the acute inflammatory cytokine TNF-alpha
caused a mild induction of this enzyme [277]. Lung
fibroblasts from patients with IPF that were exposed to
TGF-β1 generated H2O2; these fibroblasts were cyto-
toxic to pulmonary epithelial cells in co-cultures, and
this cytotoxic effect was inhibited by the addition of
catalase, or by blockade of H2O2 generation [295].
TGF-β1has been shown to promote epithelial-
mesenchymal transition (EMT), one of the possible
sources of increased resident mesenchymal cells in pul-
monary fibrosis [12] . The addition of glutathione,
NAC, or ROS inhibitors prevented TGF-β1-augmented
EMT in alveolar epithelial cells [294], suggesting that
oxidative stress mediated by TGF-β1stimulation plays a
role in epithelial-mesenchymal transdifferentiation.
Additionally, the administration of NAC along with
TGF-β1 blocked TGF-β1-augmented collagen gel con-
traction, expression of α-SMA, and release of fibronec-
tin, vascular endothelial growth factor (VEGF), and
collagen [293,296]. The mechanisms by which NAC
may affect TGF-β1 signaling appear diverse, as NAC
decreased TGF-β1-induced reporter gene activity,
decreased phosphorylation of Smad 2/3, reduced active
TGF-β1 dimer to an inactive TGF-β1 monomer, and
interfered with TGF-β1 receptor signaling [297,298].
These findings suggest that NAC may directly interfere
with TGF-β1 signaling and function, in addition to its
well-established ability to function as a precursor to
glutathione synthesis and as a non-specific scavenger of
ROS.
In addition to the well-established observations that
TGF-β1 alters cellular oxidant/antioxidant balance,
TGF-β1 also specifically induces the expression of the
NADPH oxidase isoform NOX4 in numerous mesenchy-
mal cell types. These have included pulmonary artery
smooth muscle cells [299,300], cardiac fibroblasts [29],
kidney fibroblasts [301], human fetal lung mesenchymal
cells [270], and mesenchymal cells from patients with
IPF [270]. Furthermore, there has been accumulating
evidence that TGF-β1-induced expression of NOX4 is
closely tied to myofibroblastic differentiation, and that
myofibroblast differentiation is dependent on the gener-
ation of ROS by NOX4 [29,270].
Exposure of fibroblasts to TGF-β1 increased expres-

sion of NOX4, superoxide anion, α-SMA, and ECM-
related proteins (connective tissue growth factor, fibro-
nectin and collagen) [29]. Attenuation of NOX4 expres-
sion by siRNA significantly reduced production of
superoxide anion, phosphorylation of Smad 2/3, expres-
sion of α-SMA, and production of the ECM-related pro-
teins. A similar effect was achieved by inhibiting ROS
production with ROS species inhibitors. These findings
suggested that TGF-β1 stimulation of NOX4 and gener-
ation of ROS were essential for Smad 2/3 phosphoryl-
ation and for the full manifestation of the myofibroblast
phenotype.
Similarly, in human lung mesenchymal cells, TGF-β1

induced NOX4 expression, induced extracellular release
of hydrogen peroxide (H2O2), upregulated production of
α-SMA, and caused collagen gel contraction [270].
Pharmacological inhibition of TGF-β1 receptor signaling
or attenuation of Smad-3 expression by specific siRNA
inhibited the induction of NOX4 and the release of
H2O2. The TGF-β1-stimulated upregulation of α-SMA
and collagen gel contraction was inhibited by catalase
and by siRNA-mediated inhibition of NOX4. These find-
ings indicated that H2O2 production from the upregula-
tion of NOX4 was required for TGF-β1 to induce
differentiation to a myofibroblast phenotype.

Antioxidant therapy in patients with IPF
Administration of n-acetylcysteine (NAC) to patients
with IPF increased intracellular GSH content and GSH
levels in BAL fluid [274,276,292], and the spontaneous
oxidative activity of BAL cells decreased following NAC
treatment [274]. One multicenter study has been per-
formed looking at antioxidant therapy in patients with
IPF [302]. In this study, patients were randomly assigned
to receive either prednisone and azathioprine, or the
combination of prednisone, azathioprine and NAC.
Patients who received NAC had a better preservation of
the vital capacity and the diffusing capacity for carbon
monoxide at one year, although there was no demon-
strated improvement in survival. Despite the extensive
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amount of data regarding alterations in the oxidant/anti-
oxidant balance in lungs with pulmonary fibrosis, ad-
ministration of antioxidant therapy to patients has not
yet been shown to provide clear-cut clinical benefit [7].
Procoagulant milieu in the lung
Essential in the process of wound healing in response to
tissue injury are procoagulant signaling mechanisms. Ac-
tivation of the coagulation cascade by tissue injury con-
tributes to both cessation of bleeding as well as tissue
repair. Over the past 15 years, there has been an accu-
mulation of evidence in humans and animal models that
imbalances in procoagulant or antifibrinolytic activity
are present in the lungs of patients with pulmonary fi-
brosis. Most of the descriptions of these imbalances have
centered on abnormalities of tissue factor, factor Xa,
thrombin, or proteinase-activated receptors.
Overview of coagulation
Coagulation is most often initiated at sites of tissue in-
jury, at which time tissue factor (TF), a transmembrane
glycoprotein widely expressed on vascular interstitial
cells, becomes exposed to plasma serine proteinases
[303,304]. As TF binds to activated factor VIIa in
plasma, the extrinsic coagulation pathway begins and
continues with the activation of factor X to factor Xa,
conversion of prothrombin to thrombin, and conversion
of fibrinogen to fibrin, the main component of a mature
thrombus. Additional activation of the intrinsic coagula-
tion pathway by thrombin results in the desired effect of
sustained hemostasis at sites of tissue injury [305]. The
coagulation process is normally opposed by fibrinolysis,
the process of cleaving fibrin into degradation products,
which is initiated when plasminogen is converted to
plasmin by plasminogen activators [305]. The activity of
plasminogen activators is balanced by the presence of
plasminogen activator inhibitors, and additional natur-
ally occurring anticoagulants include tissue factor path-
way inhibitor, which inactivates the TF/VIIa complex,
and activated protein C, which inactivates factor V and
PAI-1 [305,306].
In addition to promoting hemostasis, thrombin and

several of the activated coagulation proteinases bind to
members of a family of proteinase-activated receptors
(PARs). PARs are transmembrane G-protein coupled
receptors that have a unique mechanism of activation in
which a portion of the receptor (the tethered ligand) is
cleaved by proteolysis and then functions as the ligand
for the receptor [305]. Binding of ligand to the major
thrombin receptor PAR-1 has been shown to cause mul-
tiple downstream effects related broadly to wound heal-
ing and repair, and specifically to inflammation,
epithelial and mesenchymal cell function, and TGF-β.
Observations in humans
Epidemiologic clues
Epidemiologic observations in humans have suggested a
relationship between disorders of the coagulation system
and the development of pulmonary fibrosis. In a large
cohort of patients in Denmark, patients who were
homozygous for a mutation in factor V (factor V Leiden)
had abnormalities of several respiratory indices when
compared to non-carriers, which included an increase in
severe dyspnea, lower forced expiratory volume in one
second (FEV1) and forced vital capacity (FVC), and
increased rate of annual decline in the FEV1 and FVC
[307]. In another large cohort of patients from Denmark,
the relationship between a history of deep venous
thrombosis or pulmonary embolism was correlated with
the presence of interstitial lung disease or idiopathic
interstitial pneumonia [308]. The incidence rates of idio-
pathic interstitial pneumonia and interstitial lung disease
were higher in patients with a history of venous
thromboembolism or pulmonary embolism than control
patients.

Tissue factor (TF)
Elevated levels of TF in BAL fluid have been found in
patients with IPF compared with normal controls, and in
patients with an acute exacerbation of IPF, BAL levels of
TF were markedly elevated [309]. Immunohistochemical
analyses revealed large amounts of TF in cuboidal epi-
thelial cells in patients with IPF [309], and in type II
pneumocytes of patients with IPF, systemic sclerosis, and
cryptogenic organizing pneumonia [310]. Increased TF
mRNA and protein were seen in fibroblasts from IPF
patients compared with normal lung fibroblasts, and ex-
pression of TF assessed by qRT-PCR was up-regulated
in fibroblastic foci of these IPF patients [311]. Procoagu-
lant activity was increased in patients with IPF and other
forms of diffuse parenchymal lung disease, and this in-
crease in procoagulant activity was TF-dependent [312].
Interestingly, this TF-dependent increase in procoagu-
lant activity correlated with a reduction in lung compli-
ance, which is well-known to occur in patients with IPF.

Factor VII and Factor X
Increases in factor VII antigen in BAL fluid and mRNA
in alveolar type II epithelial cells were detected in the
lungs of patients with IPF compared with normal lung
tissue [311]. Similarly, increased expression of factor X
mRNA was seen in alveolar septa in the lungs of patients
with IPF, whereas there was no significant expression of
factor X in normal healthy lung tissue [152].

Anti-fibrinolytic activity
Contributing to the balance between procoagulant and
anticoagulant mechanisms in the lung are the fibrinolytic
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plasminogen activators (urokinase-type and tissue-type)
and the anti-fibrinolytic plasminogen activator inhibitors
(plasminogen activator inhibitor 1 [PAI-1] and plasmino-
gen activator inhibitor 2 [PAI-2]). BAL levels of PAI-1 and
PAI-2 were elevated in patients with IPF vs control
patients, accompanied by no difference in urokinase-type
plasminogen activator levels, suggesting an imbalance
shifted towards anti-fibrinolytic (or procoagulant) activity
in the lungs of patients with IPF [309].

PAR-1 and PAR-2
The major thrombin receptor PAR-1 was highly expressed
in macrophages and fibroblasts within fibroproliferative
foci in patients with IPF, whereas there was only weak
staining by immunohistochemistry for PAR-1 in resident
alveolar macrophages from normal lung tissue [152,153].
Similarly, in patients with systemic sclerosis, PAR-1 ex-
pression by immunohistochemistry was elevated in areas
of inflammation and fibroproliferation, but showed only
minimal expression in normal control patients [313]. Re-
cently, PAR-1 expression was shown to be up-regulated
on activated epithelium within the fibrotic areas of IPF
patients, and additionally, was co-expressed in these epi-
thelial cells with chemokine CCL2, also known as mono-
cyte chemotactic protein-1 (MCP-1) [314].
In addition to PAR-1, increased expression of mRNA

and protein of PAR-2, which is activated by tissue factor,
factor VIIa, and factor Xa, but not by thrombin, was
found in lung homogenates and fibroblasts of patients
with IPF compared with controls [305,311]. Increased
expression of PAR-2 by immunohistochemistry was also
seen in type II alveolar epithelial cells and in fibroblastic
foci, and tissue factor (TF) co-localized with PAR-2 in
these fibroblastic foci [311].

Studies in animal models
Consistent with an overall procoagulant milieu, adminis-
tration of bleomycin has been shown to increase expres-
sion of procoagulant activity and thrombin in BAL
[315], increase PAR-1 expression in lung tissue, alveolar
epithelium, and bronchial epithelium [314,316], increase
factor X gene expression and factor X mRNA levels
[152], and decrease levels of activated protein C [306].
Administration of molecules which favor an anticoagu-
lant milieu has also been performed in the bleomycin
model. Aerosolization of heparin or urokinase-type plas-
minogen activator following bleomycin challenge
resulted in reduced soluble collagen and hydroxyproline
accumulation, reduced histologic and CT features of fi-
brosis, and improved lung compliance [317]. Intratra-
cheal administration of activated protein C along with
bleomycin resulted in less fibrosis, less hydroxyproline
content, and a higher ratio of plasminogen activator to
thrombin activity than controls [306]. Administration of
a direct thrombin inhibitor along with bleomycin
resulted in reduced lung collagen accumulation and con-
nective tissue growth factor (CTGF) mRNA compared
with controls [316]. Administration of a direct factor Xa
inhibitor along with bleomycin resulted in reduced total
lung collagen accumulation compared with bleomycin
treatment alone [152]. Adenovirus-mediated gene deliv-
ery of tissue factor pathway inhibitor along with bleo-
mycin challenge decreased procoagulant and thrombin
activity in BAL, reduced the expression of connective
tissue growth factor (CTGF) and TGF-β1 mRNA in
BAL, reduced hydroxyproline accumulation in the lungs,
and reduced histologic evidence of fibrosis [315].
The effects of gene deletion or insertion using trans-

gene technology have also been studied in the bleomycin
model. Administration of bleomycin to mice deficient in
PAR-1 resulted in reductions in inflammatory cell re-
cruitment, BAL protein, total lung collagen accumula-
tion, and pulmonary levels of MCP-1 and TGF-β1
compared with controls [153]. Administration of bleo-
mycin to mice transgenic for overexpression of PAI-1
resulted in increased lung hydroxyproline content,
whereas lung hydroxyproline content and lung histology
in PAI-1 deficient mice were not significantly different
than that of mice treated with saline alone [318].

Mechanistic in vitro studies
Activation of fibroblasts by one or more of the coagula-
tion proteinases via proteinase-activated receptors
(PARs) has been studied extensively in vitro over the last
fifteen years in relation to the ability to promote fibro-
blast proliferation and extracellular matrix production.
Thrombin is a known mitogen for human lung fibro-
blasts and inhibits fibroblast apoptosis [311,313,319-
323]. Thrombin stimulated mitogen-activated protein
(MAP) kinase activation and DNA synthesis in normal
mouse fibroblasts, and these responses were absent in
fibroblasts from thrombin receptor knockout mice [319].
In addition to its mitogenic effect, thrombin increased
production of procollagen in human lung fibroblasts in a
dose-dependent manner [324,325]. This increase in pro-
collagen was mimicked by agonist peptides for PAR-1
and abolished by inhibitors of thrombin’s proteolytic ac-
tivity, suggesting that thrombin was exerting its effects
via PAR-1 [324]. Furthermore, thrombin caused collagen
gel contraction and stimulated the production of α-SMA
in normal human lung fibroblasts in a dose- and time-
dependent manner [320], indicating fibroblast differenti-
ation to a myofibroblast phenotype. Both of these effects
were mediated via PAR-1 and subsequent protein kinase
C-mediated intracellular signaling, and both occurred in-
dependently of TGF-β1 [320]. In human fetal and adult
lung fibroblasts, thrombin increased production and
synthesis of connective tissue disease growth factor
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(CTGF), a potent fibroblast mitogen [37]. This increased
production of CTGF occurred via PAR-1 and was inde-
pendent of TGF-β1.
Similar to thrombin, factor Xa increased fibroblast

proliferation in human and mouse lung fibroblasts
[311,321,325], and stimulated procollagen-alpha 1 (I)
promoter activity and procollagen production in human
and mouse lung fibroblasts [325]. These effects on colla-
gen were mediated via PAR-1, since factor Xa had no ef-
fect on procollagen production in PAR-1 deficient
mouse lung fibroblasts [325]. Similar to thrombin, factor
Xa increased production and synthesis of CTGF mRNA
in human lung fibroblasts [37].
Although the above studies indicate that the profibro-

tic effects of thrombin and factor Xa are mediated pre-
dominantly via PAR-1, a similar role for PAR-2 in
pulmonary fibrosis has recently been suggested. Expos-
ure of human lung fibroblasts to TGF-β1 increased ex-
pression of PAR-2 mRNA and protein [311]. One of the
known ligands for PAR-2 is factor VIIa, and factor VIIa
exhibited mitogenic effects on human lung fibroblasts
[311,321]. This mitogenic effect was mediated via PAR-2
and TF, since it was inhibited by siRNAs against PAR-2
or TF, and was greatly enhanced by the simultaneous
overexpression of both receptors [311].
The proliferative and profibrotic effects of the coagula-

tion proteinases on fibroblasts may not only be direct,
but may also occur through indirect mechanisms. One
described indirect mechanism is activation of PAR-1 on
epithelial cells leading to integrin-mediated activation of
latent TGF-β1 [152,326]. Another indirect mechanism
relates to the described role of epithelial apoptosis in
pulmonary fibrosis. Activation of PAR-1 with thrombin
or a PAR-1 agonist led to apoptosis of pulmonary epi-
thelial cells, which was reduced by treatment with a
PAR-1 inhibitor and in cells with reduced PAR-1 expres-
sion via gene silencing [327]. Based on the multiple
effects of PAR-1 activation, it is interesting to note that
thrombin induced apoptosis in epithelial cells, but inhib-
ited apoptosis in lung fibroblasts. These findings are
consistent with one of the major proposed mechanisms
for IPF in which pulmonary fibrosis is driven by a com-
bination of apoptosis of epithelial cells and numerical
expansion of fibroblasts and myofibroblasts.

Anticoagulation therapy in patients with IPF
Two trials have been published examining the effects of
anticoagulation therapy in patients with IPF. In a study
of 20 patients with IPF, the safety and tolerability of
inhaled heparin were examined, and demonstrated safety
of inhaled heparin and an overall stability in pulmonary
function parameters and quality of life scores [328]. In a
randomized study of 56 patients, those who received
anticoagulation therapy along with prednisolone had an
improved overall survival compared with patients treated
with prednisolone alone [329], but this study did have
limitations which reduced the ability to make general-
ized conclusions [7]. Despite the extensive amount of
data indicating the profibrotic activity of the coagulation
proteinases and the procoagulant milieu in the fibrotic
lung, administration of anticoagulation therapy to
patients has not been shown to provide clear-cut clinical
benefit, and is not currently recommended [7].
Conclusions
Pulmonary fibrosis is a chronic condition of the lungs with
characteristic clinical, radiographic, physiologic, and patho-
logic findings. At the present time, no proven effective
therapies exist for pulmonary fibrosis. In some patients,
lung injury and subsequent fibrosis occur in which the de-
position of excess ECM seems to cease, the impairment in
lung function is mild, and the lack of effective therapies
does not adversely impact patients. In other patients such
as those with IPF, the deposition of excess ECM appears to
be progressive, impairment in lung function is severe, and
the lack of effective therapies in these patients results in
the morbidity and mortality from this disease.
One limitation to advancing our knowledge in this field

is that none of the currently accepted animal models of
pulmonary fibrosis (bleomycin, radiation, silica, trans-
genic, viral vectors) accurately mimic human IPF
[330,331]. Despite this limitation, an extensive amount of
mechanistic work has been performed using these mod-
els, with a resultant immense amount of insight gained
into epithelial and mesenchymal cell biology of pulmon-
ary fibrosis. In this review, we have attempted to provide
an overview of three broad areas which have been
explored, and which may be responsible for the observed
epithelial, mesenchymal, and ECM abnormalities: inflam-
mation and immune mechanisms, oxidative stress and
oxidative signaling, and procoagulant mechanisms. In
each of these processes, there is a preponderance of
mechanistic, animal model, and human data indicating
that disturbances in these mechanisms exist, but at
present, pharmacologic targeting of these disturbances in
patients has not resulted in improved outcomes. Contin-
ued efforts aimed at determining the precise relationship
between these disturbances and the development of fi-
brosis will hopefully lead to effective therapies for
patients in the future.
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