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Abstract
In this paper, the Jacobi spectral method for ordinary differential equations, which is
based on the Jacobi approximation with negative integer, is proposed. This method is
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1 Introduction
Many practical problems arising in science and engineering require us to solve the initial
value problems of first-order ODEs. There have been fruitful results on their numerical
solutions (see, e.g., Butcher [, ], Hairer et al. [], Hairer and Wanner [], Higham [] and
Stuart and Humphries []). For Hamiltonian systems, we refer to the powerful symplectic
difference method of Feng [], also see [, ] and the references therein.

In the past four decades, the spectral-collocation algorithm has been developed rapidly
[–]. Compared with the finite-difference method, its merit is high accuracy. But the
main approach used there is the spectral-collocation method which is similar to the finite-
difference approach. It makes use of values of interpolation points to present coefficients
of expanded form of the numerical solution, and as a result its computing scheme is com-
plex and the corresponding error analysis is tedious. However, with a finite-element type
approach, as shown in this paper, it is natural to put the approximation scheme under the
general inner product type framework. We take advantage of the property of orthogo-
nal polynomials sufficiently, and the results are that the computing scheme is simple and
that the relevant convergence theory, as will be seen from Section , is cleaner and more
reasonable than the collocation method.

In this paper, a kind of novel algorithm, which is called Jacobi spectral method, is pro-
posed to solve the initial value problem of the equation du

dx = f (u, x), and it differs from the
collocation method and has several advantages. Firstly, although both the spectral method
and the collocation algorithm possess high accuracy, the spectral method is simpler in
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computing scheme and easier to be implemented, especially for nonlinear systems. Sec-
ondly, compared with the difference method, the spectral method possesses high accuracy.
Finally, the numerical solution is represented in the form of continuous function, so it can
more entirely simulate the global property of exact solution and provide more information
about the structures of exact solution than the collocation algorithm. Sometimes, this is
very important in many practical problems. Theoretical analysis of the spectral method is
simpler than that of the collocation method.

The paper is organized as follows. In the next section, we investigate the Jacobi approx-
imation. In Section , we propose a kind of new algorithm by using the Jacobi approxima-
tion with negative integer. We present numerical results in Section , which demonstrate
the spectral accuracy of the proposed method and coincide well with the theoretical anal-
ysis. The final section is conclusion.

2 Orthogonal approximation
In this section, we investigate some results about the Jacobi approximation. Let � = {x |
– < x < } and χ (α,β)(x) = ( – x)α( + x)β , α,β > – be a certain weight function. We define
the weighted space

L
χ (α,β) (�) =

{
v | v is measurable on � and ‖v‖χ (α,β) < ∞}

,

with the following inner product and norm:

(u, v)χ (α,β) =
∫

�

u(x)v(x)χ (α,β)(x) dx, ‖v‖χ (α,β) = (v, v)


χ (α,β) .

For any integer m ≥ , we define the weighted Sobolev space

Hm
χ (α,β) (�) =

{
v
∣∣∣

dkv
dxk ∈ L

χ (α,β) (�),  ≤ k ≤ m
}

,

equipped with the following inner product, semi-norm and norm:

(u, v)m,χ (α,β) =
∑

≤k≤m

(
dku
dxk ,

dkv
dxk

)

χ (α,β)
,

|v|m,χ (α,β) =
∥∥∥∥

dmv
dxm

∥∥∥∥
χ (α,β)

, ‖v‖m,χ (α,β) = (v, v)/
m,χ (α,β) .

For any r > , the space Hr
χ (α,β) (�) and its norm ‖v‖r,χ (α,β) are defined by space interpolation

as in []. In particular, H
χ (α,β) (�) = {v ∈ H

χ (α,β) (�) | v(–) = }.
Let χ (α,β)(x) = ( – x)α( + x)β , α,β > –. The Jacobi polynomials of degree l are defined

by

( – x)α( + x)β J (α,β)
l (x) =

(–)l

ll!
dl

dxl

(
( – x)l+α( + x)l+β

)
, l = , , , . . . .

They are the eigenfunctions of the Sturm-Liouville problem

d
dx

(
( – x)+α( + x)+β dv(x)

dx

)
+ λ

(α,β)
l ( – x)α( + x)βv(x) = , x ∈ � (.)
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with the corresponding eigenvalues λ
(α,β)
l = l(l + α + β + ). They fulfill the following re-

currence relations:

(l + α + β + )( – x)J (α+,β)
l (x) = (l + α + )J (α,β)

l (x) – (l + )J (α,β)
l+ (x), (.)

dJ (α,β)
l (x)
dx

=



(l + α + β + )J (α+,β+)
l– (x), (.)

J (α,β)
l (x) =

�(l + β + )
�(l + α + β + )

l∑

k=

(k + α + β)�(k + α + β)
�(k + β + )

J (α–,β)
k (x), (.)

J (α,β)
l (x) =

�(l + α + )
�(l + α + β + )

l∑

k=

(–)l–k (k + α + β)�(k + α + β)
�(k + α + )

J (α,β–)
k (x). (.)

We note that J (α,β)
l (–x) = (–)lJ (β ,α)

l (x); this, together with (.), leads to

(l + α + β + )( + x)J (α,β+)
l (x) = (l + β + )J (α,β)

l (x) + (l + )J (α,β)
l+ (x). (.)

The set of J (α,β)
l (x) is the complete L

χ (α,β) (�)-orthogonal system, namely

(
J (α,β)
l , J (α,β)

m
)
χ (α,β),� =

{
γ

(α,β)
l , l = m,

, l �= m,
(.)

where

γ
(α,β)
l =

α+β+�(l + α + )�(l + β + )
(l + α + β + )�(l + α + β + )�(l + )

.

Thus, for any v ∈ L
χ (α,β) (�),

v(x) =
∞∑

l=

v̂(α,β)
l J (α,β)

l (x)

with the coefficients

v̂(α,β)
l =


γ

(α,β)
l

(
v, J (α,β)

l
)
χ (α,β),�, l ≥ .

Now, let N be any positive integer and PN (�) be the set of all algebraic polynomials of
degree at most N . Furthermore, PN (�) = {v ∈PN (�) | v(–) = }.

In order to describe the approximation results, we introduce the Hilbert space
Hr

χ (α,β),A(�). For any nonnegative integer r,

Hr
χ (α,β),A(�) =

{
v | v is measurable on � and ‖v‖r,χ (α,β),A < ∞}

,

where

‖v‖r,χ (α,β),A =

([ r–
 ]∑

k=

∥∥∥∥
(
 – x) r

 –k dr–kv
dxr–k

∥∥∥∥
χ (α,β)

+ ‖v‖[ r
 ],χ (α,β)

) 


.
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For any real r > , we define the space Hr
χ (α,β),A(�) and its norm by space interpolation as

in [].
We also define the space Hr

χ (α,β),A(�) as

Hr
χ (α,β),A(�) =

{
v ∈ Hr

χ (α,β),A(�) | v(–) = 
}

.

For any real γ , δ > –, similar to L
χ (α,β) (�), we define the space L

χ (γ ,δ) (�).
In forthcoming discussions, we will use the following lemma.

Lemma . If

 < α ≤ γ + ,  < β ≤ δ + ,

then for any v ∈ H
χ (α,β) (�) ∩ L

χ (γ ,δ) (�),

‖v‖χ (γ ,δ) ≤ c‖v‖,χ (α,β) .

Moreover, for any v ∈ H
χ (α,β) (�) ∩ L

χ (γ ,δ) (�) with v(x) = , x ∈ �,

‖v‖χ (γ ,δ) ≤ c|v|,χ (α,β)

provided that

α ≤ γ + , β ≤ δ + .

For the proof, see Lemma . of [].
Next, we recall the Jacobi orthogonal approximation. The orthogonal projection PN ,α,β :

L
χ (α,β) (�) →PN (�) is defined by

(PN ,α,βv – v,φ)χ (α,β) = , ∀φ ∈PN (�).

We also define the projection PN ,α,β : L
χ (α,β) (�) → PN (�) as

(PN ,α,βv – v,φ)χ (α,β) = , ∀φ ∈ PN (�),

where

L
χ (α,β) (�) =

{
v | v ∈ L

χ (α,β) (�) and v(–) = 
}

.

The following results characterize the property of PN ,α,β and PN ,α,β .

Lemma . For any integers r ≥ , v ∈ Hr
χ (α,β),A(�) ∩ L

χ (α,β) (�),

‖PN ,α,βv – v‖χ (α,β) ≤ cN–r‖v‖r,χ (α,β),A.

For the proof, see [].
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Lemma . For any integers r ≥ , v ∈ Hr
χ (α,β),A(�) ∩ L

χ (α,β) (�),

‖PN ,α,βv – v‖χ (α,β) ≤ cN –r‖v‖r,χ (α,β),A.

Proof By the projection theorem,

‖PN ,α,βv – v‖χ (α,β) ≤ ‖φ – v‖χ (α,β) , ∀φ ∈ PN (�).

Take φ(x) =
∫ x

– PN–,α,βv′ dξ in the above. Clearly, φ ∈ PN (�). According to Lemma .,
we have

‖PN ,α,βv – v‖χ (α,β) ≤ c
∥∥∥∥PN–,α,β

dv
dx

–
dv
dx

∥∥∥∥
χ (α,β)

.

A combination of Lemma . and this inequality leads to the desired result. �

Lemma . For any φ ∈PN (�) ∩ Hr
χ (α,β) (�) ∩ L

χ (α,β) (�), integer r ≥ ,

‖φ‖
r,χ (α,β) ≤ cNr‖φ‖

χ (α,β) .

For the proof, see [].
For numerical solutions of ordinary differential equations, we need other orthogonal

projections. For this purpose, we introduce the space, for r ≥ n,

Hr
,n(�) =

{
v | v is measurable on � and ‖v‖Hr

,n,�
< ∞}

,

equipped with the following semi-norm and norm:

|v|Hr
,n(�) =

∥∥∥∥
drv
dxr

∥∥∥∥
χ (r,–n+r)

, ‖v‖Hr
,n(�) =

( r∑

k=

|v|Hk
,n(�)

) 


.

Accordingly, we define the space, for r ≥ n,

Hr
,n(�) =

{
φ ∈Hr

,n(�)
∣∣∣

dlφ(–)
dxl = ,  ≤ l ≤ n – 

}
.

In this paper, we shall use a specific family of Jacobi polynomials. They are defined by

L(,n)
l (x) = ( + x)nJ (,n)

l–n (x), l ≥ n, n ≥ .

The set of L(,n)
l (x) is the complete L

χ (,–n) (�)-orthogonal system, namely

(
L(,n)

l ,L(,n)
m

)
χ (,–n) ,� =

{
γ

(,n)
m–n , l = m,

, l �= m.
(.)

Let

Pn
N (�) =

{
φ ∈PN (�)

∣∣∣
dlφ(–)

dxl = ,  ≤ l ≤ n – 
}

.
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Now we define the projection operator Pn,
N : Hr

,n(�) → Pn
N (�) as

∫ 

–

dn(v – Pn,
N v)

dxn
dnφ

dxn χ (n,) dx = , ∀φ ∈ Pn
N (�).

Lemma . For any v ∈ Hr
,n(�), integer  ≤ k ≤ r ≤ N + ,

∥∥∥∥
dk

dxk

(
v – Pn,

N v
)
∥∥∥∥

χ (k,–n+k)
≤ cNk–r

∥∥∥∥
drv
dxr

∥∥∥∥
χ (r,–n+r)

.

For the proof, see Lemma . of [].
Next, we introduce a polynomial

χ–
n (x) =

n–∑

l=

dlϕ(–)
dxl

( + x)l

l!
∈PN (�),

which satisfies

dmχ–
n (–)

dxm =
dmϕ(–)

dxm ,  ≤ m ≤ n – .

For each function ϕ in Hr
,n(�), we define a function ϕ̃n in Hr

,n(�) by

ϕ̃n = ϕ – χ–
n (x). (.)

Following the same idea as in [], we define the Jacobi quasi-orthogonal projection as

P̃n
,Nϕ = Pn,

N ϕ̃n + χ–
n (x). (.)

Obviously, for any ϕ ∈ Hr
χ (r,–n+r) (�) and integer r ≥ k ≥ ,

ϕ – P̃n
,Nϕ = ϕ̃n – Pn,

N ϕ̃n.

Using Lemma . leads to

∥∥∥∥
dk

dxk

(
ϕ – P̃n

,Nϕ
)
∥∥∥∥

χ (k,–n+k)
=

∥∥∥∥
dk

dxk

(
ϕ̃n – Pn,

N ϕ̃n
)
∥∥∥∥

χ (k,–n+k)

≤ cNk–r
∥∥∥∥

drϕ

dxr

∥∥∥∥
χ (r,–n+r)

. (.)

Next, we define P̂
N as

P̂
Nϕ = PN ,α,βϕ̃ + ϕ(–). (.)

By using Lemma ., for any ϕ ∈ Hr
χ (α,β),A(�) ∩ L

χ (α,β) (�), we obtain

∥∥ϕ – P̂
Nϕ

∥∥
χ (α,β) = ‖ϕ̃ – PN ,α,βϕ̃‖χ (α,β) ≤ cN –r‖ϕ‖r,χ (α,β),A. (.)
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3 Jacobi spectral method with negative integer
In this section, we apply Jacobi approximation with negative integer to ordinary differen-
tial equation.

First, we introduce Jacobi polynomials of degree l with negative integer

L(,)
l (x) = ( + x)J (,)

l– (x), l = , , . . . . (.)

The set of L(,)
l (x) is the complete L

χ,– (�)-orthogonal system, namely

(
L(,)

l ,L(,)
m

)
χ,–,� =

{
γ

(,)
l– , l = m,

, l �= m.
(.)

Obviously,

PN (�) = span
{
L(,)

 ,L(,)
 , . . . ,L(,)

N
}

. (.)

Next, we define the projection P̃N ,,– : L
χ (,–) (�) → PN (�) as

(̃PN ,,–u – u,φ)χ,– = , ∀φ ∈ PN (�).

About this projection, we have the following theorem.

Theorem . If u ∈ L
χ (,–) (�) and dru

dxr ∈ L
χ (r,–+r) (�), integers  ≤ r ≤ N + ,

‖̃PN ,,–u – u‖χ (,–) ≤ cN–r
∥∥∥∥

dru
dxr

∥∥∥∥
χ (r,–+r)

.

The proof is similar to Lemma . of [].
Next, we consider the following problem:

{
dw
dt = f(w(t), t),  < t ≤ T ,
w() = v.

For the sake of applying the theory of orthogonal polynomials conveniently, by the linear
transformation,

t =
T( + x)


, v(x) = w

(
T( + x)



)
,

then
{

dv
dx = f (v(x), x), – < x ≤ ,
v(–) = v.

Let u = v – v,

{
du
dx = f (u(x) + v, x), – < x ≤ ,
u(–) = .

(.)
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Next, we construct the numerical scheme. To do this, we approximate u(x) by uN (x), where
uN (x) ∈ PN (�).

uN (x) can be expanded to

uN (x) =
N∑

l=

ũlL(,)
l .

By virtue of (.), (.) and (.),

( + x)
d

dx
uN (x) =

N∑

l=

( + x)ũl
d

dx
L(,)

l (x) =
N∑

l=

( + x)ũl

(
J (,)
l– + ( + x)

d
dx

J (,)
l– (x)

)

=
N∑

l=

( + x)ũl

(
J (,)
l– +

l + 
l

(
lJ (,)

l– + (l – )J (,)
l–

))

=
N∑

l=

( + x)ũl

(

J (,)
l– +

l + 
l

( l–∑

i=

(i + )J (,)
i +

l – 
l + 

l–∑

i=

(i + )J (,)
i

))

=
N∑

l=

( + x)ũl

(

J (,)
l– +

l + 
l

( l–∑

m=

mJ (,)
m– +

l – 
l + 

l∑

m=

mJ (,)
m–

))

=
N∑

l=

( + x)ũl

(

J (,)
l– + 

l–∑

m=

mJ (,)
m– + (l – )J (,)

l–

)

=
N∑

l=

( l–∑

m=

mL(,)
m + lL(,)

l

)

ũl. (.)

Due to the orthogonality of L(,)
l , we deduce that

(
( + x)

d
dx

uN (x),L(,)
k

)

χ,–
=

⎧
⎪⎨

⎪⎩

γ
(,)
 ũ, k = ,

γ
(,)
k– (kũk + k

∑N
l=k+ ũl),  ≤ k ≤ N – ,

Nγ
(,)
N– ũN , k = N .

(.)

Let

ak,j =

{
kγ

(,)
k– , j = k,  ≤ k ≤ N ,

kγ
(,)
k– , k +  ≤ j ≤ N ,  ≤ k ≤ N ,

AN = (ak,j)N×N , uN = (ũ, ũ, . . . , ũN–, ũN )�,

f̈k =
(
f
(
uN (x) + v, x

)
,L(,)

k
)
χ (,) , 
FN(

uN)
= (f̈, f̈, . . . , f̈N–, f̈N )�.

We derive the following spectral scheme for (.)

AN uN = 
FN(
uN)

. (.)

Obviously, system (.) is equivalent to
(

d
dx

uN (x),φ
)

χ (,)
=

(
( + x)

d
dx

uN (x),φ
)

χ,–
=

(
( + x)f

(
uN (x) + v, x

)
,φ

)
χ,–

=
(
f
(
uN (x) + v, x

)
,φ

)
χ (,) , ∀φ ∈ PN (�). (.)
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By the definition of P̃N ,,–, we obtain that

{
( + x) duN (x)

dx = P̃N ,,–( + x)f (uN (x) + v, x), x ≥ –,
uN (–) = .

Remark . In Section , we will see that the global errors decay exponentially as N in
(.) increases.

Next, we analyze the numerical error of (.). To do this, let EN = uN – P̂
N u. We suppose

that du
dx is continuous for x ≥ –. Let

G =
d

dx
P̂

N u(x) – P̂
N

du
dx

. (.)

Then we have that

(
d

dx
P̂

N u(x),φ
)

χ (,)
=

(
P̂

N
du
dx

,φ
)

+ (G,φ)χ (,) , ∀φ ∈ PN (�)χ (,) . (.)

Subtracting (.) from (.) yields that

{
( d

dx EN (x),φ)χ (,) = (G,φ)χ (,) – (G,φ)χ (,) , ∀φ ∈ PN (�),
EN (–) = ,

(.)

where

G = f
(
uN (x) + v, x

)
– P̂

N
du
dx

and EN (x) ∈ PN (�).

Taking φ = EN in (.) leads to


(

EN ,
d

dx
EN

)

χ (,)
= (G, EN )χ (,) – (G, EN )χ (,)

= A + A, (.)

where

A = –(G, EN ) and A = (G, EN ).

Since EN (–) = , integration by parts yields


(

EN ,
d

dx
EN

)

χ (,)
=

∣∣EN (+)
∣∣. (.)

By using the Cauchy inequality, we derive that

|A| ≤ ‖G‖χ (,)‖EN‖χ (,) ≤ ε‖EN‖
χ (,) +


ε
‖G‖

χ (,) . (.)
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Next, we assume that there exists a real number γ such that

(
f (z, x) – f (z, x)

)
(z – z) ≤ –γ (z – z), (.)

then

A = 
(

f
(
uN (x) + v, x

)
– P̂

N
du
dx

, EN

)

χ (,)

= 
(
f (uN + v, x) – f

(
P̂

N u + v, x
)
, EN

)
χ (,)

+ 
(
f
(
P̂

N u + v, x
)

– f (u + v, x), EN
)
χ (,) + 

(
du
dx

– P̂
N

du
dx

, EN

)

χ (,)
.

According to the above formula, we obtain that

A ≤ –γ ‖EN‖
χ (,) + γ

∥∥P̂
N u – u

∥∥
χ (,)‖EN‖χ (,) + 

∥∥∥∥
du
dx

– P̂
N

du
dx

∥∥∥∥
χ (,)

‖EN‖χ (,)

≤ (–γ + ε + ε)‖EN‖
χ (,) +


ε

∥∥∥∥
du
dx

– P̂
N

du
dx

∥∥∥∥



χ (,)
+

γ

ε

∥∥P̂
N u – u

∥∥
χ (,) . (.)

Substituting (.), (.), (.) into (.), we assert that

∣∣EN (+)
∣∣ ≤ (–γ + ε)‖EN‖

χ (,) +

ε
‖G‖

χ (,)

+

ε

∥∥∥∥
du
dx

– P̂
N

du
dx

∥∥∥∥



χ (,)
+

γ

ε

∥∥P̂
N u – u

∥∥
χ (,) . (.)

Then it remains to estimate ‖G‖,

‖G‖
χ (,) ≤

∥∥∥∥
d(̂P

N u – u)
dx

∥∥∥∥



χ (,)
+

∥∥∥∥
du
dx

– P̂
N

du
dx

∥∥∥∥



χ (,)

≤ ∣∣̂P
N u – u

∣∣
,χ (,) +

∥∥∥∥
du
dx

– P̂
N

du
dx

∥∥∥∥



χ (,)
.

With the aid of the above formula, we obtain that

(γ – ε)‖EN‖
χ (,) ≤ c

(∥∥P̂
N u – u

∥∥
χ (,) +

∣∣̂P
N u – u

∣∣
,χ (,) +

∥∥∥∥
du
dx

– P̂
N

du
dx

∥∥∥∥



χ (,)

)

≤ c
(∥∥P̂

N u – u
∥∥

χ (,) +
∥∥∥∥

du
dx

– P̂
N

du
dx

∥∥∥∥



χ (,)

+
∣∣̂P

N u – P̃
,N u

∣∣
,χ (,) +

∣∣̃P
,N u – u

∣∣
,χ (,)

)
. (.)

By virtue of Lemma ., we derive that

∣∣̂P
N u – P̃

,N u
∣∣
,χ (,) ≤ cN∥∥P̂

N u – P̃
,N u

∥∥
χ (,)

≤ cN(∥∥P̂
N u – u

∥∥
χ (,) +

∥∥u – P̃
,N u

∥∥
χ (,)

)
.

Substituting this formula into (.), we obtain the following theorem.
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Theorem . If u belongs to Hr
χ (,),A(�) and dru

dxr belongs to L
χ (r,–+r) (�), then, by (.) and

(.),

‖EN‖χ, ≤ cN–r
(∥∥∥∥

du
dx

∥∥∥∥
r,χ (,),A

+
∥∥∥∥

du
dx

∥∥∥∥
r,χ (,),A

)
+ cN –r

∥∥∥∥
dru
dxr

∥∥∥∥
χ (r,–+r)

.

Remark . Assume that for a certain real number γ such that

(
f (z, x) – f (z, x)

)
(z – z) ≤ γ(z – z) (.)

the algorithm is still applicable. In this case, we take α such that γ – α = –γ <  and make
the variable transformation

u(x) = eαxU(x), F
(
U(x), x

)
= e–αxf

(
eαxU(x), x

)
– αU(x),

{
dU(x)

dx = F(U(x), x), x > –,
U(–) = .

(.)

We may use (.) to resolve (.) and obtain the numerical solution UN (x). Moreover,
condition (.) ensures the global accuracy of UN (x). The numerical solution of (.) is
given by uN (x) = eαxUN (x).

Remark . The proposed method is also available for solving systems of first-order
ODEs. In this case, let


u(x) =
(
u()(x), u()(x), . . . , u(m)(x)

)�,


f (
u(x), x
)

=
(
f ()(
u, x), f ()(
u, x), . . . , f (m)(
u, x)

)
.

We consider the system

{
d
u(x)

dx = 
f (
u(x), x), x > –,

u(–) = .

(.)

We approximate 
u by 
uN .We can derive a numerical algorithm which is similar. Further,
let be |
v|E the Euclidean norm of 
v. Assume that

(
f (
z, x) – 
f (
z, x)
)
(
z – 
z) ≤ –γ |
z – 
z|E .

Then we can obtain an error estimate similar to Theorem ..

4 Numerical results
In this section, we present some numerical results. We first use scheme (.) to solve the
problem

{
du
dx = – u(x)

 + F(x), x ≥ –,
u(–) = u–,

(.)
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Figure 1 The L2 error of Example (4.1).

Figure 2 The absolute error of Example (4.1).

which fulfills condition (.) with γ = – 
 . Take the test function u(x) = cos(x)(x + ).

Then a direct computation shows that

F(x) =  cos(x)(x + ) – sin(x)(x + ) +



cos(x)(x + ).

For description of numerical errors, we introduce the global error EN ,L = ‖uN – u‖ 
 and

the absolute error Err = |uN (x) – u(x)|.
In Figure , we plot the global errors log of EN with various values of N . They indicate

that the global errors decay exponentially as N increases. They coincide very well with
theoretical analysis.

In Figure , we compare scheme (.) with the classical four-stage explicit Runge-Kutta
methods for Example (.) with τ = ., τ = .. We find that the method (.) is
more accurate than the Runge-Kutta methods for large N .

We next use scheme (.) to solve the problem

{
dv
dx = 

 exp(cos(v(x))) + F(x), x ≥ –,
v(–) = v,

which fulfills condition (.) with γ = e
 . In this case, we take α = e

 such that γ – α =
–γ = – e

 <  and make the variable transformation

v(x) = e
e
 xu(x), f

(
u(x), x

)
= e– e

 x
(




exp
(
cos

(
e

e
 xu(x)

))
+F(x)

)
–

e


u(x),

{
du(x)

dx = f (u(x), x), x > –,
u(–) = e e

 v,
(.)
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which fulfills condition (.) with –γ = – e
 . Take the test function v(x) = e–x(x + ). Then

a direct computation shows that

F(x) = e–x(x + ) – e–x(x + ) –



exp
(
cos

(
e–x(x + ))).

Obviously, f (u, x) is a nonlinear function for u. Let

u(m)
N (x) =

N∑

l=

ũ(m)
l L(,)

l ,

then
{

( d
dx u(m)

N (x),φ)χ (,) = (f (u(m–)
N (x) + e e

 v, x),φ)χ (,) ,
u(m)

N () = , ∀φ ∈ PN (�).

Taking φ = L(,)
l ,  ≤ l ≤ N , in the equation, we get a system of equations

(
( + x)

d
dx

u(m)
N (x),L(,)

l

)

χ,–

=
(
( + x)f

(
u(m–)

N (x) + e
e
 v, x

)
,L(,)

l
)
χ,– , l = , , . . . , N .

We use the nonlinear iteration process to solve this system.
In Figure , we plot the global errors log of EN with various values of N . They indicate

that the global errors decay exponentially as N increases. They coincide very well with
theoretical analysis.

In Figure , we compare scheme (.) with the four-stage implicit Runge-Kutta method
for Example (.) with τ = ., τ = ., τ = ., τ = ., τ = ., in which we
take N = . We find again that the method (.) is more accurate than the corresponding
Runge-Kutta methods for large N .

In Table , we list the numerical errors at x = –. of the four-stage implicit Runge-Kutta
with τ = . and the Jacobi spectral method (J-M) for Example (.), and the correspond-
ing CPU elapsed time. Clearly, our methods cost nearly the same computational time for
obtaining higher numerical accuracy.

In Table , we list the numerical errors at x = . of the four-stage implicit Runge-Kutta
with τ = . and the Jacobi spectral method for Example (.), and the corresponding

Figure 3 The L2 error of Example (4.2).
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Figure 4 The absolute error of Example (4.2).

Table 1 Error and CPU elapsed time

Method Error CPU elapsed time (second)

R-K 2.401× 10–10 0.042× 100
J-M 1.284× 10–13 0.30× 100

Table 2 Error and CPU elapsed time

Method Error CPU elapsed time (second)

R-K 2.220× 10–15 3.00× 100
J-M 1.269× 10–15 1.57× 100

CPU elapsed time. Obviously, our methods cost less computational time for obtaining
higher numerical accuracy.

5 Concluding remarks
In this paper, we propose a new Jacobi spectral method for the initial problem of first-order
ordinary differential equations, which has fascinating advantages.

• The computing scheme is simple and the relevant convergence theory is cleaner and
more reasonable than the collocation method.

• The numerical solution is represented by function form, so it can simulate more
entirely the global property of exact solution.

• The numerical results demonstrate that the new Jacobi spectral method possesses the
spectral accuracy, which coincides with theoretical analysis very well.

• In this paper, we also develop a powerful framework for analyzing various spectral
methods of initial value problems of ODEs.

Although we only consider a model problem, the suggested method and technique are
also applicable to many other problems, for example infinite-dimensional nonlinear dy-
namical system.
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