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Abstract

Background: To understand biological diversification, it is important to account for large-scale processes that affect
the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally
clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species.
I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the
temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of
that implemented in msBayes.

Results: By reparameterizing the model, introducing more flexible priors on demographic and divergence-time
parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the
robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa.

Conclusions: The results demonstrate the improved performance of the new method is due to (1) more appropriate
priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models
with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does
not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust
estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared
evolutionary history with strong support.

Keywords: Dirichlet-process prior, Approximate-Bayesian computation, Model choice, Phylogeography,
Biogeography

Background
Understanding the processes that generate biodiversity
and regulate community assembly is a major goal of
evolutionary biology. Large-scale changes to the environ-
ment, including geological and climatic events, can affect
the evolutionary history of entire communities of co-
distributed species and their associated microbiota. For
example, by partitioning communities, such an event can
isolate groups of populations and cause a temporal clus-
ter of speciation events across co-distributed taxa. Given
the dynamic nature of our planet, such biogeographical

Correspondence: joaks1@gmail.com
1Department of Ecology and Evolutionary Biology, University of Kansas, 1200
Sunnyside Avenue, Lawrence, Kansas 66045, USA
2Department of Biology, University of Washington, Box 351800, Seattle,
Washington 98195, USA

processes likely play a significant role in determining
diversification rates and patterns. At recent timescales,
temporal clusters of diversification caused by biogeo-
graphical events can leave a signature in the genetic
variation within and among the affected lineages. Thus,
methods for accurately estimating models of shared evo-
lutionary events across co-distributed taxa from genetic
data are important for better understanding how regional
and global biogeographical processes affect biodiversity.
This inference problem is challenging due to the

stochastic nature by which mutations occur in popula-
tions and how they are inherited over generations [1,2].
Thus, a method for estimating historical patterns of diver-
gences across taxa should explicitly model the stochastic
mutational and ancestral processes that generate and fil-
ter the genetic variation we observe in present-day genetic
data. An appealing approach would be a comparative,
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Bayesian model-choice method for inferring the proba-
bility of competing divergence histories while integrating
over uncertainty in mutational and ancestral processes
via models of nucleotide substitution and lineage coa-
lescence. The sample space of such a model-choice pro-
cedure would include all models ranging from a single
divergence-time parameter (i.e., simultaneous divergence
of all co-distributed taxa) to the fully generalized model in
which each taxon diverged at a unique time.
The software package msBayes implements such

an approach in an approximate-Bayesian model-choice
framework [3,4]. The method models temporally clus-
tered divergences across taxa caused by a biogeographical
event (or a “divergence event”) as a single, instantaneous
occurrence. In other words, a divergence event causes
a set of taxa to share the same moment of divergence
along a continuous time scale (i.e., simultaneous diver-
gence). Given aligned sequence data for Y pairs of pop-
ulations, msBayes estimates the number of divergence
events shared among the pairs, the timing of the events,
and the assignment of pairs to the events, while integrat-
ing out uncertainty in demographic parameters and the
genealogical histories of the sequences. Thus, the method
samples over all possible divergence models of differing
dimensionality (i.e., all the possible partitions of Y pairs to
1, 2, . . . , Y divergence-time parameters), and, in so doing,
estimates the posterior probability of each model.
msBayes has been used to address biogeographical

questions in a variety of empirical systems. Some exam-
ples include (1) whether the rise of the Isthmus of Panama
caused co-divergence among species of echinoids co-
distributed across the Pacific and Atlantic sides of the
isthmus [3], (2) if an historical seaway across the Baja
Peninsula caused co-divergence across species of squa-
mates and mammals co-distributed both north and south
of the putative seaway [5], (3) if species of gall-wasps
and their associated parasitoids share divergences across
putative glacial refugia [6], and (4) whether repeated frag-
mentation of the oceanic Islands of the Philippines during
Pleistocene sea-level fluctuations caused diversification of
vertebrate taxa distributed across the islands [7]. Such
applications of the method often result in strong posterior
support for co-divergence among all or subsets of the taxa
investigated (e.g., [3,5-12]).
For priors on divergence-time and demographic param-

eters, msBayes uses continuous uniform probability dis-
tributions. This causes divergence models with more
divergence-time parameters to integrate over a much
greater parameter space with low likelihood yet high prior
density, which can result in small marginal likelihoods
relative to models with fewer divergence-time param-
eters [13,14]. Given that the marginal likelihood of a
model weighted by its prior is what determines its pos-
terior probability, this can cause support for models with

fewer divergence events [7,15]. This is not a critique of
Bayesian model choice in general; comparing models by
their marginal likelihoods provides a “natural” penalty
for over-parameterization and can be a great strength
of the Bayesian approach. However, given the sensitiv-
ity of marginal likelihoods to the prior, care is needed
when selecting prior distributions [14]. Selecting distri-
butions that will often place high prior density in large
regions of parameter space with low likelihood can lead to
small marginal likelihoods of parameter-rich models even
if they are correct.
Furthermore, msBayes uses a discrete uniform prior

over the number of divergence events 1, 2, . . . ,Y. Because
there are many more possible assignments of population
pairs to intermediate numbers of divergence events, this
imposes a prior on divergence models that puts most
of the prior mass on models with either very few or
very many divergence-time parameters (see Figure five of
[7]; for brevity I will refer to this prior as “U-shaped”).
Given that models with many divergence events can have
small marginal likelihoods due to the uniform priors
on divergence-time parameters, the U-shaped prior will
effectively create a strong prior preference formodels with
very few divergence events.
Recently, Oaks et al. [7,15] found via simulation that

msBayes will often strongly support models with a small
number of divergence events shared among taxa, even
when divergences were random over broad timescales.
They suggested this behavior was due to the combination
of uniform priors on parameters causing small marginal
likelihoods of richer models and the U-shaped prior on
divergence models. Hickerson et al. [16] suggested the
problem was caused by sampling error, and proposed
as a solution an approximate-Bayesian model averaging
approach that samples over empirically informed uniform
priors. However, Oaks et al. [15] evaluated the approach
proposed by Hickerson et al. [16] using simulations and
found that it did not mitigate the method’s propensity
to incorrectly infer clustered divergences, and often pre-
ferred priors that excluded the true values of the model’s
parameters. Here, I describe a new approach that success-
fully mitigates spurious inference of co-divergence while
avoiding negative side effects of empirically informed uni-
form priors.
In this study, I introduce a new method, implemented

in the software dpp-msbayes, that extends the model
of msBayes. I use this method to test whether alterna-
tive parameterizations and priors improve the behavior
of the approximate-Bayesian model-choice approach to
estimating shared divergence events. The new approach
uses a Dirichlet-process prior (DPP) over all possible
models of divergence, and gamma and beta probability
distributions in place of uniform priors on many of the
model’s parameters. Using simulations, I show that the
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new implementation has improved robustness, accuracy,
and power compared to the original model. The results
confirm that the improved performance of the new model
is due to a combination of (1) more flexible priors on
divergence-time and demographic parameters that avoid
placing high prior density in improbable regions of param-
eter space, and (2) a diffuse Dirichlet-process prior that
does not strongly disfavor divergence models with inter-
mediate numbers of divergence events. After reanalyzing
sequence data from 22 pairs of taxa from the Philippines
[7] under the new model, I find a large amount of pos-
terior uncertainty in the number of divergence events
shared among the taxa; a result in contrast with the orig-
inal msBayes model and congruent with intuition given
the richness of the model and the relatively small amount
of information in the data.

Methods
Themodel
In this section, I describe the model, which is a modifi-
cation of the model implemented in msBayes [4,7]. The
code implementing the newmodel is freely available in the
open-source software package dpp-msBayes (https://
github.com/joaks1/dpp-msbayes). To perform the anal-
yses described below, I used the freely avaliable,
open-source software package PyMsBayes (https://
github.com/joaks1/PyMsBayes), which provides a multi-
processing interface to msBayes and dpp-msBayes. I
performed the work described below following the prin-
ciples of Open Notebook Science. Using version-control
software, I make progress in all aspects of the work freely
and publicly available in real-time at https://github.com/
joaks1/msbayes-experiments. All information necessary
to reproduce my results is provided there. I follow much
of the notation of Oaks et al. [7], but modify it to aid in the
description of the new model. A summary of my notation
can be found in Table 1.
I assume an investigator is interested in inferring the

distribution of divergence times among Y pairs of pop-
ulations. For each pair i, ni genome copies have been
sampled, with n1,i copies sampled from population 1, and
n2,i sampled from population 2. From these genomes, let
ki be the number of DNA sequence loci collected for pop-
ulation pair i, and K be the total number of unique loci
sampled across the Y pairs of populations. I use Xi, j to
represent the multiple sequence alignment of locus j for
population pair i. X = (X1,1, . . . ,XY ,kY ) is the full dataset,
i.e., a vector of sequence alignments for all pairs and loci.
Let Gi, j represent the gene tree upon which Xi, j evolved
according to fixed HKY85 substitution model parame-
ters φi,j. The investigator must specify the parameters of
all φ = (φ1,1, . . . ,φY,kY) substitution models by which
the alignments evolved along the G = (G1,1, . . . ,GY,kY)
gene trees. Furthermore, the investigator must specify a

vector of fixed constants ρ = (ρ1,1, . . . , ρY,kY) that scale
the population-size parameters for known differences in
ploidy among loci and/or differences in generation times
among population pairs. Lastly, the investigator must also
specify a vector of fixed constants ν = (ν1,1, . . . , νY,kY)
that scale the population-size parameters for known dif-
ferences in mutation rates among loci and/or among taxa.
With X,φ, ρ, and ν in hand, the joint posterior distribu-

tion of the model is given by Bayes’ rule as

p(G,T,�,υ,α|X,φ, ρ, ν)

= p(X|G,T,�,υ,α,φ, ρ, ν)p(G,T,�,υ,α|φ, ρ, ν)

p(X|φ, ρ, ν)

(1)

which can be expanded using the chain rule of probability
into components that are assumed to be independent to
get

p(G,T,�,υ,α|X,φ, ρ, ν)

= p(X|G,φ), p(G|T,�,υ, ρ, ν)p(υ|α)p(α)p(T)p(�)

p(X|φ, ρ, ν)
,

(2)

where T = (T1, . . . ,TY) is a vector of population diver-
gence times for each of the Y pairs of populations, � =
(�1, . . . ,�Y) is a vector of the demographic parameters
for each of the Y population pairs, υ = (υ1, . . . υK ) is
a vector of locus-specific mutation-rate multipliers for
each of the K loci, α is the shape parameter of a gamma-
distributed prior on υ, and p(X|φ, ρ, ν), is the probability
of the data (or the marginal likelihood of the model) given
the fixed constants provided by the investigator.
To avoid calculating the likelihood terms of Equation 2,

I distill each sequence alignment X into a vector of insuf-
ficient summary statistics S, thus replacing the full dataset
X = (X1,1, . . . ,XY ,kY ) with vectors of summary statistics
for each alignment S∗ =

(
S∗
1,1, . . . , S∗

Y ,kY

)
Optionally, for

each population pair, the means of the summary statistics
can be calculated across the k loci, and the vector can be
further reduced to S∗ = (

S∗
1, . . . , S∗

Y
)
. With S∗ in hand, we

can estimate the approximate joint posterior distribution

p(G,T,�,υ,α|Bε(S∗),φ, ρ, ν)

= p(Bε(S∗)|G,φ)p(G|T,�,υ, ρ, ν)p(υ|α)p(α)p(T)p(�)

p(Bε(S∗)|φ, ρ, ν)
,

(3)

where Bε(S∗) is the multidimensional Euclidean space
around the vector of summary statistics, the radius of
which is the tolerance ε. The sources of approximation are
the insufficiency of the statistics and the ε being greater
than zero. I describe the full model in detail before delving

https://github.com/joaks1/dpp-msbayes
https://github.com/joaks1/dpp-msbayes
https://github.com/joaks1/PyMsBayes
https://github.com/joaks1/PyMsBayes
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https://github.com/joaks1/msbayes-experiments
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Table 1 Summary of the notation used throughout this work; modified fromOaks et al. [7]

Symbol Description

Y Number of population pairs.

ni The number of genome copies sampled from population pair i, with n1,i sampled from population 1, and n2,i from population 2.

ki Number of loci sampled from population pair i.

K Total number of unique loci sampled.

Xi, j Sequence alignment of locus j sampled from population pair i.

S∗i, j Population genetic summary statistics calculated from Xi, j .

X Vector containing the sequence alignments of each locus from each population pair:
(
X1,1, . . . , XY ,kY

)
.

S∗ Vector containing the summary statistics of each locus from each population pair:
(
S∗1,1, . . . , S∗Y ,kY

)
.

Bε(S∗) Multi-dimensional Euclidean space around the observed summary statistics, S∗ .
ε Radius of Bε(S∗), i.e., the tolerance of the ABC estimation.

Gi, j Gene tree of the sequences in Xi, j .

G Vector containing the gene trees of each locus from each population pair:
(
G1,1, . . . ,GY ,kY

)
.

|τ | Number of population divergence-time parameters shared among the Y population pairs.

τ Time of population divergence in 4NC generations.

τ Set of divergence-time parameters:
{
τ1, . . . , τ|τ |

}
.

ti The index of the divergence-time in τ to which population pair i is mapped.

t Vector of divergence-time indices: (t1, . . . , tY).

Ti Time of divergence in 4NC generations between the populations of pair i.

T Vector of divergence times for each of the population pairs: (T1, . . . , TY).

Ti, j Scaled time of divergence between the populations of pair i for locus j.

T Vector containing the scaled divergence times of each locus from each population pair: (T1,1, . . . ,TY ,kY ).

θD1,i , θD2,i Mutation-rate-scaled effective population size of the 1st and 2nd descendent population, respectively, of pair i.

θA,i Mutation-rate-scaled effective population size of the population ancestral to pair i.

θD1 , θD2 Vectors (θD1,1, . . . , θD1,Y) and (θD2,1, . . . , θD2,Y), respectively.

θA Vector containing the θA parameters for each population pair: (θA,1, . . . , θA,Y).

υj Mutation-rate multiplier of locus j.

υ Vector containing the locus-specific mutation-rate multipliers: (υ1, . . . , υK ).

α The shape parameter of the gamma prior distribution on υ .

ζD1,i , ζD2,i θ -scaling parameters that determine the magnitude of the population bottleneck in the 1st and 2nd descendant population of pair i,
respectively. The bottleneck in each descendant population begins immediately after divergence.

ζD1 , ζD2 Vectors (ζD1,1, . . . , ζD1,Y) and (ζD2,1, . . . , ζD2,Y), respectively.

τB,i Proportion of time between present and Ti when the bottleneck ends for the descendant populations of pair i.

τB Vector containing the τB parameters for each population pair: (τB,1, . . . , τB,Y).

mi Symmetric migration rate between the descendant populations of pair i.

m Vector containing the migration rates for each population pair: (mi , . . . ,mY).

ρi, j θ -scaling constant provided by the investigator for locus j of pair i. This constant is required to scale θ for differences in ploidy among loci
or differences in generation times among taxa.

νi, j θ -scaling constant provided by the investigator for locus j of pair i. This constant is required to scale θ for differences in mutation rates
among loci or among taxa.

ρ Vector of ploidy and/or generation-time scaling constants: (ρ1, 1, . . . , ρY,kY )

ν Vector of mutation-rate scaling constants: (ν1, 1, . . . , νY,kY )

T̄ Mean of divergence times across the Y population pairs.

s2T Variance of divergence times across the Y population pairs.

DT Dispersion index of divergence times across the Y population pairs
(
s2T/T̄

)
.

n Number of samples from the joint prior.



Oaks BMC Evolutionary Biology 2014, 14:150 Page 5 of 23
http://www.biomedcentral.com/1471-2148/14/150

Table 1 Summary of the notation used throughout this work; modified fromOaks et al. [7] (Continued)

� Vector of parameter values drawn from the joint prior.

S Vector containing the summary statistics calculated from data simulated under parameter values drawn from the prior (�).


 Random sample of �1, . . . ,�n drawn form the prior.

S Summary statistic vectors S1 , . . . , Sn for each �1, . . . ,�n drawn from the prior.

into the numerical method of estimating the approximate
model.

Likelihood and gene-tree prior terms of Equation 2
The likelihood and gene-tree prior terms of Equation 2
can be expanded out as a product over population pairs
and loci

p(X|G,φ)p (G|T,�,υ, ρ, ν)

=
Y∏
i=1

ki∏
j=1

p
(
Xi, j|Gi, j,φi, j

)
p

(
Gi, j|Ti,�i, υj, ρi,j, νi,j

)
.

(4)

The first term, p
(
Xi, j|Gi, j,φi, j

)
, is the probability of the

sequence alignment of locus j for population pair i given
the gene tree and HKY85 [17] substitution model param-
eters [18, i.e., the “Felsenstein likelihood”]. The model
allows for an intra-locus recombination rate r, which,
for simplicity, is assumed to be zero in Equation 2. If
r is non-zero, this term requires an additional product
over the columns (sites) of each sequence alignment to
allow sites to have different genealogies. The second term,
p(Gi, j|Ti,�i, υj, ρi, j, νi, j), is the probability of the gene tree
under a multi-population coalescent model (i.e., species
tree) where the ancestral population of pair i diverges
and gives rise to the two sampled descendant populations.
Each � contains the following demographic parameters:
The mutation-rate-scaled effective sizes (θ = 4Nμ) of
the ancestral, θA, and descendant populations, θD1 and
θD2; the proportion of the first, ζD1, and second pop-
ulation, ζD2, that persist during bottlenecks that begin
immediately after divergence in forward-time; the pro-
portion of time between present and divergence when
the bottlenecks end for both populations, τB; and the
symmetric migration rate between the descendant pop-
ulations, m. Thus, the probability of the ni − 1 coales-
cence times (node heights) of gene tree Gi, j is given by a
multi-population Kingman-coalescent model [19] where
the ancestral population of size θA,iρi, jνi, jυj diverges
at time Ti into two descendant populations of con-
stant size θD1,iρi, jνi, jυjζD1,i and θD2,iρi, jνi, jυjζD2,i, which,
after time TiτB,i, grow exponentially to their present
size θD1,iρi, jνi, jυj and θD2,iρi, jνi, jυj, respectively. Following
divergence, the descendant populations of pair i exchange
migrants at a symmetric rate ofmi.

Additional prior terms of Equation 2
The term p(α) is the prior density function for the shape
parameter of the gamma-distributed prior on rate hetero-
geneity among loci. This prior is α ∼ U(1, 20). The prior
probability of the vector of locus-specific mutation-rate
multipliers given α then expands out as a product over the
loci

p(υ|α) =
K∏
j=1

p(υj|α), (5)

where each υ is independently and identically distributed
(iid) as υ ∼ Gamma(α, 1/α). If the recombination rate
r is allowed to be non-zero, the prior term p(r) would
be added to Equation 2, and the prior would be r ∼
Gamma(ar, br), where ar and br are specified by the inves-
tigator.
The prior term for the demographic parameters, p(�),

expands out into its components and as a product over the
Y pairs of populations

p(�) =
Y∏
i=1

p(θA,i)p(θD1,i)p(θD2,i)p(ζD1,i)p(ζD2,i)p(τB,i)p(mi).

(6)

The priors for the demographic parameters are
θA ∼ Gamma(aθA , bθA), θD1 ∼ Gamma(aθD , bθD), θD2 ∼
Gamma(aθD , bθD), ζD1 ∼ Beta(aζD , bζD), ζD2 ∼ Beta(aζD ,
bζD), τB ∼ U(0, 1), and m ∼ Gamma(am, bm), where
the hyper-parameters of each prior distribution can be
specified by the investigator. By default, θA, θD1, and θD2
share the same prior (i.e., aθA = aθD and bθA = bθD ),
but a separate gamma-distributed prior can be assigned
to θA. Also, the ζD1, ζD2, and m parameters are optional
(i.e., the investigator can assume that there has been no
migration between populations of each pair and/or the
population size of each descendant population has been
constant through time).

Priors on divergencemodels
The prior term for the vector of divergence times for each
of the Y pairs of populations, T, can be expanded as

p(T) = p(t)p(τ |t), (7)

where τ is an ordered set of divergence-time parameters
{τ1, . . . , τ|τ |} whose length |τ | can range from 1 to Y, and
t is a vector of indices (t1, . . . , tY), where ti ∈ {1, . . . , |τ |}.
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These indices map each of the Y pairs of populations to
a divergence-time parameter in τ . Thus, T is the result of
applying the mapping function

f (τ , t, i) = τti (8)

to each population pair i, such thatT=(T1= f (τ , t, 1), . . . ,
TY = f (τ , t,Y)).
Biologically speaking, τ contains the times of divergence

events, the length of which |τ | is the number of diver-
gence events shared across the Y pairs of populations. For
example, if τ contains a single divergence-time parame-
ter τ1, all Y pairs of populations are constrained to diverge
at this time (i.e., t would contain the index 1 repeated
Y times, and T would contain the value τ1 repeated Y
times), whereas if it contains Y divergence-time parame-
ters, the model is fully generalized to allow all of the pairs
to diverge at unique times.
Unlike the model implemented in msBayes, here I

place priors on t and τ , rather than |τ | and τ . As a result,
t determines the number of divergence-time parameters
(|τ |) in the model. Below, I first describe the prior used
for τ and the timescale it imposes on the model before
discussing the priors implemented for t.
Each τ within τ is iid as τ ∼ Gamma(aτ , bτ ), where

aτ and bτ are specified by the investigator. Thus, given
the number of unique divergence-time classes in t, this
determines the probability of prior term p(τ |t). The diver-
gence times are in coalescent units relative to the size of
a constant reference population, which I denote θC , that
is equal to the expectation of the prior on the size of the
descendant populations

θC = E(θD), (9)

Given the size of the descendant populations are iid as
θD1 ∼ Gamma(aθD , bθD) and θD2 ∼ Gamma(aθD , bθD),
this becomes

θC = aθDbθD . (10)

More specifically, the τ parameters are in units of θC/μ

generations, which I denote as 4NC generations. Thus,
each τ within τ is proportional to time and can be con-
verted to the number of generations of the reference
population, which I denote τGC , by assuming a mutation
rate and multiplying by the effective size of the reference
population

τGC = τ × θC
μ

= τ × aθDbθD

μ
. (11)

Thus, for each of the divergence times in τ to be on the
same scale, the relative mutation rates among the pairs of
populations are assumed to be known and fixed according
to the user-provided values in ν.
As described by Oaks et al. [7], to get the divergence

times in units proportional to the expected number of

mutations, they must be scaled by the realized population
size for locus j of population-pair i

Ti, j = Ti × θC

θ̄D,iρi,j
, (12)

where θ̄D,i is the mean of θD1 and θD2 for pair i. This gives
us the vector of scaled divergence times T = (T1,1, . . . ,
TY,kY).
As for the prior term p(t), the total sample space of t

is all the possible partitionings of the Y pairs of popu-
lations into 1 to Y divergence-time classes, where each
partitioning consists of non-overlapping and non-empty
subsets whose union is the Y pairs. Hereinafter, I refer to
these partitionings as “ordered” divergence models or par-
titions. The total number of possible partitions is a sum of
the Stirling numbers of the second kind over all possible
numbers of categories |τ |

BY =
Y∑

|τ |=1

⎡
⎣ 1

|τ |!
|τ |−1∑
j=0

(−1)j
(|τ |

j

) (|τ | − j
)Y

⎤
⎦ , (13)

which is the Bell number [20]. The original msBayes
model samples over the unordered realizations of t, such
that the sample space is reduced to all the possible inte-
ger partitions of Y [4,7,21-23] (Additional file 1: Table S1).
I denote the set of all possible integer partitions of the
Y pairs of populations as a(Y) and the length of that set
as |a(Y)|, and I hereinafter refer to these integer parti-
tions as “unordered” divergence models or partitions. The
advantages, disadvantages, and justification of ignoring
the order of t is discussed in detail below.
I implement two prior probability distributions over the

space of all possible divergencemodels (t). The first simply
gives all possible unordered partitions of Y elements equal
probability

p(t) = 1
|a(Y)| , (14)

i.e., a discrete uniform prior over all the integer partitions
of Y (unordered divergence models). I denote this prior as
t ∼ DU{a(Y)}.
The second prior is based on the Dirichlet process,

which is a stochastic process that groups random vari-
ables into an unknown number of discrete parameter
classes [24,25]. The Dirichlet process has been used as
a non-parametric Bayesian approach to many inference
problems in evolutionary biology [26-31]. Here, I use
the Dirichlet process to place a prior over all possible
ordered partitions of Y population pairs into divergence-
time parameter classes (i.e., “divergence events”). As dis-
cussed above, the time of each divergence-time parameter
is drawn from the base distribution τ ∼ Gamma(aτ , bτ ).
The partitioning of the population pairs to divergence-
time classes is controlled by the concentration parameter
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χ , which determines how clustered the process will be. I
take a hierarchical approach and use a prior probability
distribution (i.e., hyperprior) for χ [32]. More specifically,
I use a gamma-distributed prior χ ∼ Gamma(aχ , bχ ),
where aχ and bχ are specified by the investigator. I use
t ∼ DP(χ) to denote this Dirichlet-process prior.
This provides a great deal of flexibility for specifying the

prior uncertainty regarding divergence models. The con-
centration parameter χ determines the prior probability
that any two pairs of populations i and j will be assigned
to the same divergence-time parameter

p(ti = tj) = 1
1 + χ

, (15)

and also the prior probability of the number of divergence-
time parameters

p (|τ | | χ ,Y) = c(Y, |τ |)χ |τ |∏Y
i=1 (χ + i − 1)

, (16)

where c(·, ·) are the unsigned Stirling numbers of the first
kind. Equations 15 and 16 show that smaller values of
χ will favor fewer divergence-time parameters, and thus
more clustered models of divergence, whereas larger val-
ues will favor more divergence-time parameters, and thus
less clustered models of divergence.

Differences between this model and the original msBayes
model
The prior on divergencemodels
One of the key differences between this model and that of
msBayes [4] is the prior distribution on divergence mod-
els. As discussed in Oaks et al. [7], in msBayes the prior
used for t is a combination of a discrete uniform prior
over the possible number of divergence events |τ | from
1 to Y with a multinomial distribution on the number of
times each index of τ appears in t, with the constraint
that all τ parameters are represented at least once (see
Equation two of [7]). I denote this prior used by msBayes
as t ∼ DU{1, . . . ,Y}. Oaks et al. [7] discuss how placing a
uniform prior over the number of divergence parameters
(denoted |τ | here, and as � in [4]) imposes an “U-shaped”
prior over divergence models (t; see Figure five(B) of [7]).
To avoid this, I place priors directly on the sample space
of divergence models, thus eliminating the parameter �

from the model. I introduce two priors on divergence
models: (1) a prior that is uniform over all unordered
divergence models, and (2) a Dirichlet-process prior on all
ordered divergence models. The latter provides an inves-
tigator with a great deal of flexibility in expressing their
prior beliefs about models of divergence.

Estimating ordered divergencemodels
As mentioned above, msBayes samples over unordered
divergence models (i.e., unordered partitions of the Y

pairs of populations). That is, the identity of each popu-
lation pair, and all the information associated with it, is
discarded. In my implementation, inference can be done
on either unordered or orderedmodels of divergence. This
is discussed in more detail in the description of the ABC
implementation below.

The priors on nuisance parameters
I have replaced the use of continuous uniform dis-
tributions for priors on many of the model’s param-
eters (τ , θA, θD1, θD2, ζD1, ζD2, r,m) with more flexible
parametric distributions from the exponential family.
I introduce gamma-distributed priors for rate parame-
ters that have a sample space of all positive real num-
bers (τ , θA, θD1, θD2, r,m), and beta-distributed priors for
parameters that are proportions bounded by zero and one
(ζD1 and ζD2). These priors provide an investigator with
much greater flexibility in expressing prior uncertainty
regarding the parameters of the model.
In addition, I have modified the prior on the sizes of the

descendant populations of each pair. As described byOaks
et al. [7], msBayes uses the joint prior

θD1, θD2 ∼ Beta(1, 1) × 2 × U(aθ , bθD), (17)

such that the user-specified uniform prior on descendant
population size is a prior on the mean size of the two
descendant populations of each pair. Under mymodel, the
sizes of the descendant populations of each pair are iid
as θD1 ∼ Gamma(aθD , bθD) and θD2 ∼ Gamma(aθD , bθD).
This relaxes the assumption that the sizes of the two
descendant populations are interdependent and nega-
tively correlated.

Flexibility in parameterizing themodel
In the new implementation, I provide the ability to control
the richness of themodel. For the θ parameters, by default,
the model is fully generalized to allow each population
pair to have three parameters: θA, θD1, and θD2. Further-
more, if an investigator prefers to reduce the number
of parameters, any model of θ parameters nested within
this general model can also be specified, including the
most restrictedmodel where the ancestral and descendant
populations of each pair share a single θ parameter.
I also provide the option of eliminating the parame-

ters associated with the post-divergence bottlenecks in
the descendant populations of each pair (τB, ζD1, and
ζD2), which constrains the descendant populations to be of
constant size from present back to the divergence event.
Also, rather than eliminate the bottleneck parameters, I
allow ζD1 and ζD2 to be constrained to be equal, which
removes one free parameter from the model for each of
the population pairs.
Overall, my implementation allows an investigator to

specify a model that has as many as seven parameters per
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population pair (θA, θD1, θD2, τB, ζD1, ζD2, andm) or as few
as one parameter per pair (θ ), in addition to the ni − 1
coalescence-time parameters (i.e., the node heights of the
gene tree).

Time scale
As described above, divergence times are in units of θC/μ

generations, where θC is the expectation of the prior on
descendant-population size. As described by Oaks et al.
[7], in msBayes, θC is half of the upper limit of the con-
tinuous uniform prior on the mean of the descendant
population sizes. This is only equal to the expectation of
the prior if the lower limit of the prior is zero.

ABC estimation of the posterior of the model
Sampling from the prior
To estimate the approximate posterior of Equation 3, I use
an ABC rejection algorithm. The first step of this algo-
rithm entails collecting a random sample of parameter
values from the joint prior and their associated sum-
mary statistics. Each sample is generated by (1) drawing
values of all the model’s parameters, which I denote �,
from their respective prior distributions; (2) simulating
gene trees G = (G1,1, . . . ,GY ,kY ) for each locus of each
population pair by drawing coalescent times from amulti-
population Kingman-coalescent model given the demo-
graphic parameters; (3) simulating sequence alignments
X = (X1,1, . . . ,XY ,kY ) along the gene trees under the
HKY85 substitution parameters φ = (φ1,1, . . . ,φY ,kY ) that
have the same number of sequences and sequence lengths
as the observed dataset; and (4) calculating population
genetic summary statistics S = (S1,1, . . . , SY ,kY ) from the
simulated sequence alignments. Optionally, an additional
step can be performed to reduce the summary statistics
to the means across loci for each population pair to get
S = (S1, . . . , SY ). Either way, S contains the same sum-
mary statistics as those estimated from the observed data
S∗. After repeating this procedure n times, we have a ran-
dom sample of parameter vectors 
 = (�1, . . . ,�n) from
the model prior and their associated vectors of summary
statistics S = (S1, . . . , Sn).
For all of the analyses below, I use four summary statis-

tics for each pair of populations: π [33], θW [34], πnet [35],
and SD(π − θW ) [36]. Furthermore, in addition to model
parameters, each sample � also contains four statistics
that summarize T: the mean (T̄), variance

(
s2T

)
, dispersion

index (DT = s2T/T̄), and the number of divergence time
parameters (|τ |). Previously, these have been denoted as
E(τ )Var(τ ),�, and � , respectively [3,4,7]. I use T̄ and s2T
in place E(τ ) andVar(τ ) to make clear that these values do
not represent the prior or posterior expectation/variance
of divergence times. I use DT in place of � to clarify that
this is a statistic rather than a parameter of the model.
Lastly, I use |τ | in place of � , because the number of

divergence-time parameters is no longer a parameter in
the new implementation.

Obtaining an approximate posterior from the prior samples
I use a rejection algorithm to retain an approximate poste-
rior sample of � from the prior sample 
 = (�1, . . . ,�n).
First, the observed summary statistics S∗, and the sum-
mary statistics of the prior samples S = (S1, . . . , Sn), are
standardized using the means and standard deviations of
the statistics from the prior sample (i.e., the prior mean
is subtracted from each statistic, and the difference is
divided by the prior standard deviation). After all statis-
tics are standardized, the Euclidean distance between S∗
and each S within S is calculated. The samples that fall
within a range of tolerance ε around S∗ are retained. The
range of tolerance is determined by specifying the desired
number of posterior samples to be retained. Post-hoc
adjustment of the posterior sample can also be performed
with a number of regression techniques [37-39]. For anal-
yses below, I use the general linear model (GLM) regres-
sion adjustment [39] as implemented in ABCtoolbox
v1.1 [40], which Oaks et al. [7] showed performs very
similarly to weighted local-linear regression and multi-
nomial logistic regression adjustments [37] for msBayes
posteriors.

Ordering of taxon-specific summary statistics
As alluded to in themodel description, msBayes does not
maintain the order of the taxon-specific summary statis-
tics S within each S. Rather, the summary statistics are
re-ordered by descending values of average pairwise dif-
ferences between the descendant populations (πb) [4,41].
This has the advantage of reducing the sample space of
possible divergence models t, but there are at least two
disadvantages. First, additional information in the data is
lost. By discarding the identity of the Y pairs of popula-
tions, all pair-specific information about the amount of
data (e.g., the number of gene copies collected from each
of the populations [n1 and n2], the number of loci, and
the length of the loci), and the taxon- and locus-specific
parameters (φ, ν, ρ, andυ) is lost. Second, the results are
more difficult to interpret, because divergencemodels and
parameter estimates cannot be directly associated to the
taxa under study.
The re-ordering of the summary statistic vectors also

has an important implication for the ABC algorithm.
When calculating the Euclidean distance between the
observed data and each simulated dataset, the summary
statistics being compared often represent sequence align-
ments of different taxon pairs and/or loci. More specifi-
cally, the summary statistics calculated from the observed
sequence alignments are being compared to summary
statistics calculated from datasets simulated with poten-
tially different (1) numbers of sequences (n1 and n2),
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(2) length of alignments, (3) numbers of loci (k), (4)
HKY85 model parameters (φ), (5) mutation-rate multipli-
ers (ν), and (6) ploidy multipliers (ρ).
In the original descriptions of the msBayes method

[3,4], this re-ordering is justified by the fact that the
expected value of πb is unrelated to sample size n1 and
n2 and thus exchangeable among pairs. This is incorrect
for two reasons. First, the entire vector of summary statis-
tics S for each pair of populations is re-ordered across
pairs, which implies that the justification for re-ordering
πb applies to all the statistics within each S. However,
the expectations for statistics that estimate gross diversity
(e.g., π and θW ) are not independent of sample size for
structured populations (e.g., the divergent pairs of popu-
lations modeled by msBayes), and other statistics are not
independent of sample size in general (e.g., SD(π − θW )).
Second, and more importantly, having the same expecta-
tion does not ensure random variables are exchangeable.
Rather, for variables to be exchangeable their marginal
distributions must be the same (i.e., they must be iden-
tically distributed). None of the summary statistics used
by msBayes, including πb, have this property when there
is any variation among taxa or loci in the (1) numbers
of sequences (n1 and n2), (2) length of alignments, (3)
numbers of loci (k), (4) HKY85 model parameters (φ), (5)
mutation-rate multipliers (ν), or (6) ploidymultipliers (ρ).
Whenever such variation is present (i.e., nearly all empir-
ical applications), the taxon-specific summary statistics S
are not exchangeable, and the reshuffling of the summary
statistic vectors is not mathematically valid.
The magnitude of the affect of this violation of

exchangeability is not known. Huang et al. [4] demon-
strated that the reordering of the summary statistic vec-
tors can greatly increase the method’s tendency to infer
a single divergence event. By definition, if the summary
statistic vectors were exchangeable, the reordering would
not change the likelihood or posterior (barring sampling
error). Thus, the results of Huang et al. [4] suggest the
reordering of the statistics is potentially introducing size-
able error to the analysis.

For comparability with msBayes, I maintain the option
for re-ordering taxon-specific summary statistics by πb.
However, by default, the order is preserved, and ordered
divergence models are estimated. In all of the simulation-
based analyses described below, the summary statistic
vectors are exchangeable, because the simulated datasets
have the same (1) numbers of sequences, (2) length of
sequences, (3) numbers of loci, (4) HKY85 model parame-
ters, (5) mutation-rate multipliers, and (6) ploidy multipliers.

Assessing model-choice behavior and robustness
Following the simulation-based approach of Oaks et al.
[7], I characterize the behavior of several models under
the ideal conditions where the data are generated from
parameters drawn from the same prior distributions used
for analysis (i.e., the prior is correct). I selected the follow-
ing four model priors for these analyses (Table 2).

1. TheMmsBayes model represents the original
msBayes implementation with the U-shaped prior
on unordered divergence models and uniform priors
on divergence-time and demographic parameters;
t ∼ DU{1, . . . ,Y}, τ ∼ U(0, 10), θA ∼ U(0, 0.05),
and θ̄D ∼ U(0, 0.05).

2. TheMUshaped model with the U-shaped prior of
msBayes on unordered divergence models, but with
exponential priors on divergence-time and
demographic parameters; t ∼ DU{1, . . . ,Y},
τ ∼ Exp(mean = 2.887), θA ∼ Exp(mean = 0.025),
θD1 ∼ Exp(mean = 0.025), and θD2 ∼ Exp(mean =
0.025).

3. TheMUniform model with a uniform prior over
unordered divergence models and exponential priors
on divergence-time and demographic parameters;
t ∼ DU{a(Y)}, τ ∼ Exp(mean = 2.887), θA ∼
Exp(mean = 0.025), θD1 ∼ Exp(mean = 0.025), and
θD2 ∼ Exp(mean = 0.025).

4. TheMDPP model with a Dirichlet-process prior on
ordered divergence models and exponential priors on
divergence-time and demographic parameters;

Table 2 Themodels evaluated in the simulation-based analyses

Priors

Model t τ θ

MmsBayes t ∼ DU{1, . . . , Y} τ ∼ U(0, 10 [25 MGA] ) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)

MUshaped t ∼ DU{1, . . . , Y} τ ∼ Exp(mean = 2.887[7.22MGA] ) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

MUniform t ∼ DU{a(Y)} τ ∼ Exp(mean = 2.887[7.22MGA] ) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

MDPP t ∼ DP(χ ∼ Gamma(·, ·)) τ ∼ Exp(mean = 2.887[7.22MGA] ) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

For theMDPP model, the prior on the concentration parameter, χ ∼ Gamma(·, ·), was set to Gamma(2,2) for the validation analyses and Gamma(1.5,18.1) for the
power analyses. The distributions of divergence times are given in units of 4NC generations followed in brackets by units of millions of generations ago (MGA), with
the former converted to the latter assuming a per-site rate of 1 × 10−8 mutations per generation. For modelMmsBayes , the priors for theta parameters are
θA ∼ U(0, 0.05) and θD1 , θD2 ∼ Beta(1, 1) × 2 × U(0, 0.05). The later is summarized as θ̄D ∼ U(0, 0.05). For theMDPP and MUniform , andMUshaped models, θA , θD1, and θD2
are independently and exponentially distributed with a mean of 0.025.
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t∼DP(χ ∼ Gamma(2, 2)), τ ∼Exp(mean = 2.887),
θA∼Exp(mean = 0.025), θD1∼Exp(mean = 0.025),
and θD2 ∼ Exp(mean = 0.025).

I selected the exponential prior on divergence time used
in modelsMDPP ,MUniform, andMUshaped to have the same
variance as the uniform prior inmodelMmsBayes. I selected
the exponential prior on population size used in mod-
els MDPP , MUniform, and MUniform to have the same mean
as the uniform prior in model MmsBayes, so that all four
models have the same θC and thus the same units of
time. All of the models were the same in other respects,
with three free θ parameters for each population pair, two
uniformly distributed (beta(1, 1)) ζD parameters per pair,
no migration, no recombination, and re-sorting of taxon-
specific summary statistics by πb (i.e., sampling unordered
divergence models). For all simulations, I used a data
structure of eight population pairs, with a single 1000
base-pair locus sampled from 10 individuals from each
population.
For each of the four models, I simulated 1 × 106 sam-

ples from the prior and 50,000 datasets, also drawn from
the prior. I then analyzed each of the simulated datasets,
retaining a posterior of 1000 samples from the respective
prior. A GLM-regression adjusted posterior was also esti-
mated from each of the posterior samples [39]. To assess
the robustness of each of the four models, I also ana-
lyzed the datasets simulated under the other threemodels.
Overall, for each model, I produced 200,000 posterior
estimates, 50,000 from the datasets simulated under that
model, and 150,000 from the datasets simulated under the
other three models.
For each set of 50,000 simulated datasets, I used the

posterior estimates to assess the model-choice behavior
of each model. I did this by assigning the 50,000 esti-
mates of the posterior probability of one-divergence event
to 20 bins of width 0.05, and plotted the estimated pos-
terior probability of each bin against the proportion of
replicates in that bin with a true value consistent with one
divergence event [7,42]. Ideally, the estimated posterior
probability of the one-divergence model should estimate
the probability that the one-divergence model is correct.
For large numbers of simulation replicates, the proportion
of the replicates in each bin for which the one-divergence
model is true will approximate the probability that the
one-divergence model is the correct model. Thus, if the
method has the desirable behavior such that the esti-
mated posterior probability of the one-divergence model
is an unbiased estimate of the probability that the one-
divergencemodel is correct, the points should fall near the
identity line. For example, let us say the method estimates
a posterior probability of 0.90 for 1000 datasets simu-
lated from the prior. If the method is accurately estimating
the probability that the one-divergence model is correct

given the data, then the one-divergence model should be
the true model in approximately 900 of the 1000 repli-
cates. Any trend away from the identity line indicates the
method is biased in the sense that it is not accurately esti-
mating the probability that the one-divergence model is
the correct model.
I constructed these plots using two criteria for the

one-divergence model: (1) the number of divergence-time
parameters (|τ | = 1) and (2) the dispersion index of diver-
gence times (DT < 0.01). For the latter, DT < 0.01
has been commonly used as an arbitrary criterion for
a single “simultaneous” divergence event (e.g., [3,5,6]). I
focused on the one-divergence model to assess model-
choice behavior, because it is often of biogeographic inter-
est and is easily comparable among the three different
priors used on divergence models.
In addition to the four models above, I also assessed

the behavior of a model that samples over ordered diver-
gence models (i.e., the order of the taxon-specific sum-
mary statistic vectors were maintained for the observed
and simulated datasets); all other settings were identical
to the MDPP model. I denote this model as M◦

DPP . I sim-
ulated 1 × 106 prior samples and 50,000 datasets, and
analyzed them as above. I was not able to analyze the
simulated datasets of the other models under the ordered
model, because the identity of the population pairs is not
contained in the simulations of the other models.

Assessing power
I evaluated the power of the same four models (Table 2)
to detect random variation in divergence times using
methods similar to Oaks et al. [7]. For all power simu-
lations, I used a data structure identical to that of the
empirical dataset of Philippine vertebrates analyzed by
Oaks et al. [7], which consists of 22 pairs of populations.
Due to the larger number of pairs, I used a different hyper-
prior on the concentration parameter for theMDPP model;
I used a prior of t ∼ DP(χ ∼ Gamma(1.5, 18.1)) over
divergence models for the model MDPP . All other aspects
of the four models in Table 2 were identical to those used
in the validation analyses described above. For each of the
four models, I generated 2 × 106 samples from the prior.
Next, I simulated datasets from three series of models in

which the divergence times of the 22 pairs were random
(i.e., no clustering; |τ | = 22). The models comprising each
series differ in the variance of the distribution from which
the divergence times are randomly drawn. When the vari-
ance of random divergence times is small, all of themodels
in Table 2 are expected to struggle to detect this varia-
tion and will often incorrectly estimate highly clustered
models of divergence (i.e., few divergence events). The
goal is to assess how much temporal variation in random
divergence times is necessary before the behavior of the
models of Table 2 begins to improve. This will determine
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the timescales over which the models can reliably detect
random variation in divergence times and avoid spurious
inference of clustered divergence models.
Specifically, I simulated datasets from the following

three series of six models (Table 3).

1. TheMmsBayes models are identically distributed as
MmsBayes except the divergence times for each of the
22 pairs of populations are randomly drawn from a
series of uniform distributions, U(0, τmax), where
τmax was set to: 0.2, 0.4, 0.6, 0.8, 1.0, and 2.0, in 4NC
generations.

2. TheMUniform models are identically distributed as
MUniform andMDPP except the 22 divergence times
are randomly drawn from the same series of uniform
priors as above.

3. TheMExp models are also identically distributed
asMUniform andMDPP except the 22 divergence
times are randomly drawn from a series of of
exponential distributions: Exp(mean = 0.058),
Exp(mean = 0.115), Exp(mean = 0.173),
Exp(mean = 0.231), Exp(mean = 0.289), and
Exp(mean = 0.577). These exponential distributions
have the same variance as their uniform counterparts
in the first two series of models.

For each of the six models in each of the three series
of models, I simulated 1000 datasets (18,000 datasets
in total). I then analyzed each simulated dataset under
all four prior models (Table 2), producing 72,000 poste-
rior estimates, each with 1000 samples. I also estimated
a GLM-regression adjusted posterior from each of the
posterior samples [39].

An empirical application
I also assessed the behavior of the newly implemented
models when applied to the empirical dataset of Oaks
et al. [7], which is comprised of sequence data from 22
pairs of taxa from the Philippine Islands ([43]; Dryad DOI:
10.5061/dryad.5s07m). I analyzed these data under five
different models, which are detailed in Table 4. All of these
models except one (Msimple

DPP ) have six free demographic
parameters per pair of taxa (θA, θD1, θD2, τB, ζD1, and ζD2),
in addition to the ni − 1 coalescent times. Three of
these models use a Dirichlet-process prior on divergence
models:MDPP ,M

inform
DPP , andMsimple

DPP . TheMDPP model rep-
resents the priors that Oaks et al. [7] would have selected
to reflect their prior uncertainty about the parameters
of the model if provided the more flexible distributions
that are now implemented. To assess prior sensitivity,

Table 3 Themodels used to simulate pseudo-replicate datasets for assessing the power of themodels in Table 2

Priors

Model series t τ θ

MmsBayes |τ | = 22 τ ∼ U(0, 0.2 [0.5 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)

|τ | = 22 τ ∼ U(0, 0.4 [1.0 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)

|τ | = 22 τ ∼ U(0, 0.6 [1.5 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)

|τ | = 22 τ ∼ U(0, 0.8 [2.0 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)

|τ | = 22 τ ∼ U(0, 1.0 [2.5 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)

|τ | = 22 τ ∼ U(0, 2.0 [5.0 MGA]) θA ∼ U(0, 0.05) θ̄D ∼ U(0, 0.05)

MUniform |τ | = 22 τ ∼ U(0, 0.2 [0.5 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

|τ | = 22 τ ∼ U(0, 0.4 [1.0 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

|τ | = 22 τ ∼ U(0, 0.6 [1.5 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

|τ | = 22 τ ∼ U(0, 0.8 [2.0 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

|τ | = 22 τ ∼ U(0, 1.0 [2.5 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

|τ | = 22 τ ∼ U(0, 2.0 [5.0 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

MExp |τ | = 22 τ ∼ Exp(mean = 0.058 [0.14 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

|τ | = 22 τ ∼ Exp(mean = 0.115 [0.29 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

|τ | = 22 τ ∼ Exp(mean = 0.173 [0.43 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

|τ | = 22 τ ∼ Exp(mean = 0.231 [0.58 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

|τ | = 22 τ ∼ Exp(mean = 0.289 [0.72 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

|τ | = 22 τ ∼ Exp(mean = 0.577 [1.44 MGA]) θA ∼ θD1 ∼ θD2 ∼ Exp(mean = 0.025)

The distributions of divergence times are given in units of 4NC generations followed in brackets by units of millions of generations ago (MGA), with the former
converted to the latter assuming a per-site rate of 1 × 10−8 mutations per generation. For all of theMmsBayes models, the priors for theta parameters are
θA ∼ U(0, 0.05) and θD1 , θD2 ∼ Beta(1, 1) × 2 × U(0, 0.05. The later is summarized as θ̄D ∼ U(0, 0.05). For theMUniform andMExp models, θA , θD1, and θD2 are
independently and exponentially distributed with a mean of 0.025.
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Table 4 Themodels used to analyze the data from the 22 pairs of taxa from the Philippines (M), and a subset of nine of
those pairs from the Islands of Negros and Panay (M)

Model Priors

MmsBayes t ∼ DU{1, . . . , Y} τ ∼ U(0, 34.64 [17.3 MGA]) θA ∼ U(0, 0.01) θD1, θD2 ∼ Beta(1, 1) × 2 × U(0, 0.01) ζD1 ∼ U(0, 1) ζD2 ∼ U(0, 1)

MUniform t ∼ DU{a(Y)} τ ∼ Exp(mean = 10 [5 MGA]) θA ∼ Exp(mean = 0.005) θD1 ∼ Exp(mean = 0.005) θD2 ∼ Exp(mean = 0.005)
ζD1 ∼ Beta(5, 1) ζD2 ∼ Beta(5, 1)

MDPP t ∼ DP(χ ∼ Gamma(1.5, 18.1)) τ ∼ Exp(mean = 10 [5 MGA] ) θA ∼ Exp(mean = 0.005) θD1 ∼ Exp(mean = 0.005)
θD2 ∼ Exp(mean = 0.005) ζD1 ∼ Beta(5, 1) ζD2 ∼ Beta(5, 1)

Minform
DPP t ∼ DP(χ ∼ Gamma(1.5, 18.1)) τ ∼ Exp(mean = 6 [3 MGA]) θA∼ Exp(mean = 0.005) θD1∼ Exp(mean = 0.005)

θD2∼ Exp(mean = 0.005) ζD1 ∼ Beta(5, 1) ζD2 ∼ Beta(5, 1)

Msimple
DPP t ∼ DP(χ ∼ Gamma(1.5, 18.1)) τ ∼ Exp(mean = 10 [5 MGA]) θA = θD1 = θD2 ∼ Exp(mean = 0.005) ζD1 = ζD2 = 1.0

MDPP t ∼ DP(χ ∼ Gamma(1.5, 5.0)) τ ∼ Exp(mean = 10 [5 MGA]) θA ∼ Exp(mean = 0.005) θD1 = θD2 ∼ Exp(mean = 0.005)

ζD1 = ζD2 = 1.0

In addition to the n − 1 coalescent times, theMsimple
DPP has only a single θ parameter for each taxon pair. The remainingMmodels have three θ , two ζD , and one τ B

parameter. The distributions of divergence times are given in units of 4NC generations followed in brackets by units of millions of generations ago (MGA), with the
former converted to the latter assuming a per-site rate of 1 × 10−8 mutations per generation. TheMDPP model (and itsM◦

DPP counterpart that samples over ordered
divergence models) has only two θ parameters (the descendant populations of each pair share the same θ parameter, and there are no bottleneck parameters).

the Minform
DPP model uses a more informative exponentially

distributed prior on divergence times, but otherwise is
identical to MDPP . To assess sensitivity to parameteriza-
tion, I also applied the simplest possible model under
the new implementation

(
Msimple

DPP

)
with only a single

demographic parameter (θ ) per taxon pair, in addition
to the ni − 1 coalescent times. I also applied the orig-
inal msBayes model (MmsBayes) with priors selected to
make the results directly comparable to those of theMDPP
model; the uniform prior on divergence times was selected
to have the same variance as the exponential prior of
the MDPP model, and the prior on population size was
selected to have the same mean so that the models are
on the same timescale. I also applied a model with a
uniform distribution over divergence models (MUniform).
For each of these models, I simulated 2 × 107 samples
from the prior, and retained an approximate posterior of
the 10,000 samples with the smallest Euclidean distance
from the summary statistics calculated from the empirical
sequence alignments.
To compare models that sample over ordered versus

unordered models of divergence, I also analyzed the data
from the subset of nine-taxon pairs that are sampled
from the Islands of Negros and Panay in the Philippines.
The model I used for these analyses had a Dirichlet-
process prior over divergence models and two demo-
graphic parameters (θA and (θD) for each pair of taxa, in
addition to the ni − 1 coalescent times (see Table 4 for
details). One of the models, which I denote M◦

DPP , main-
tained the identity of the taxon pairs and sampled over
ordered models of divergence, while the other (MDPP) re-
sorted the summary statistics of the pairs by πb, losing
the identity of the taxa and thus sampled over unordered
models of divergence. For both analyses, I simulated

5 × 107 samples from the prior and retained an approxi-
mate posterior of 10,000 samples.

Results
Validation analyses: Estimation accuracy
In terms of estimating the variance of divergence times
(DT ), the models with exponentially distributed priors
(MUshaped , MUniform, and MDPP) perform similarly when
applied to datasets generated under all four of the mod-
els in Table 2 (Additional file 1: Figure S1). The MmsBayes
model performs similarly to these models when applied to
its own datasets, but is sensitive to model violations and
is more biased when applied to data generated under the
other three models (Additional file 1: Figure S1). Results
are similar for the GLM-adjusted estimates of DT , albeit
the regression adjustment tends to improve estimates of
this continuous statistic for all the models (Additional
file 1: Figure S2).
The same general pattern is seen for estimates of T̄ ,

with (1) all four models performing similarly when applied
to the data generated under the MmsBayes model, (2) the
models with exponentially distributed priors perform-
ing similarly when applied to data generated under the
other three models, and (3) the MmsBayes model is sen-
sitive to model violations and is more biased whenever
applied to data generated under other models (Additional
file 1: Figure S3). Also, the regression adjustment tends to
slightly improve estimates of this continuous statistic for
all of the models (Additional file 1: Figure S4).
In terms of estimating the number of divergence events

(|τ |), the MDPP model has the lowest root mean square
error (RMSE) when applied to data generated under most
of the models of Table 2 (Additional file 1: Figure S5). The
MmsBayes model performs slightly better when applied to
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its own data, but is the worst performer when applied
to data generated under other models (Additional file 1:
Figure S5). There is a trend of MDPP > MUniform >

MUshaped > MmsBayes in terms of estimation accuracy as
measured by RMSE when the models are applied to data
generated under most of the models (Additional file 1:
Figure S5). Unlike for the continuous statistics, regression
adjustment of this discrete statistic tends to increase esti-
mation bias; all of the models tend to underestimate |τ |
after the GLM-adjustment (Additional file 1: Figure S6).

Validation analyses: Model-choice accuracy
The msBayes model, and my modification of it, is a
model-choice method with the primary purpose of esti-
mating the probabilities of models of divergence across

taxa. Thus, it is critical to assess the method’s ability to
accurately estimate the posterior probabilities of diver-
gence models. Consistent with the findings of Oaks
et al. [7], my results demonstrate that the unadjusted
estimates of divergence-model posterior probabilities are
generally more accurate than regression-adjusted esti-
mates (compare the plots along the upper-left to lower-
right diagonal for Figure 1 versus Additional file 1: Figure
S7 and Figure 2 versus Additional file 1: Figure S8).
Regression adjustment results in biased estimates of the
posterior probability of the one-divergence model when
all model assumptions are satisfied, which is well illus-
trated in Additional file 1: Figure S8. As a result, I will
focus my discussion of the results on the unadjusted
estimates.

Figure 1 Comparison of model-choice accuracy.Model-choice accuracy for models (A–D)MmsBayes , (E–H)MUshaped , (I–L)MUniform , and (M–P)
MDPP when analyzing data generated under models (A, E, I, andM)MmsBayes , (B, F, J, and N)MUshaped , (C, G, K, and O)MUniform , and (D, H, L, and
P)MDPP . The unadjusted posterior probability of a single divergence event, based on |τ | = 1, from 50,000 posterior estimates are assigned to bins
of width 0.05 and plotted against the proportion of replicates in each bin where the truth is |τ | = 1.
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Figure 2 Comparison of model-choice accuracy using DT threshold.Model-choice accuracy for models (A–D)MmsBayes , (E–H)MUshaped , (I–L)
MUniform , and (M–P)MDPP when analyzing data generated under models (A, E, I, andM)MmsBayes , (B, F, J, and N)MUshaped , (C, G, K, and O)
MUniform , and (D, H, L, and P)MDPP . The unadjusted posterior probability of a single divergence event, based on DT < 0.01, from 50,000 posterior
estimates are assigned to bins of width 0.05 and plotted against the proportion of replicates in each bin where the truth is DT < 0.01.

I find that all four models accurately estimate the poste-
rior probability of the one-divergencemodel when applied
to their own datasets (i.e., when the prior is correct; see
diagonal of Figures 1 and 2). The MUniform and MDPP
models show robustness to prior violations and perform
well when applied to data generated under other models
(Figures 1 and 2). However, both are less accurate and tend
to underestimate the probability of the one-divergence
model when applied to the data generated underMUshaped
(Figures 1 and 2). In contrast, the MmsBayes model is
biased toward overestimating the posterior probability of
the one-divergence model when applied to data gener-
ated under the other three models (Figures 1 and 2). This
bias is particularly strong whenever divergencemodels are
not distributed under its U-shaped prior (Figure 1C–D).

The other model with the U-shaped prior on divergence
models, but exponential priors on parameters (MUshaped),
performs similarly to the MmsBayes model in that it per-
forms well when applied to its own data, but overestimates
the probability of the one-divergence model when applied
to data generated by the other models (Figures 1 and 2).
However, the bias is stronger in the MmsBayes model than
MUshaped .
Overall, the results suggest that the MDPP and MUniform

models are relatively robust in terms of model-choice
accuracy, and when model violations do cause them to
be biased, they tend to under-estimate the probability of
the model with a single, shared divergence event. In con-
trast, the MmsBayes model is very sensitive to model vio-
lations, and strongly over-estimates the probability of the
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one-divergence model whenever the model is misspec-
ified. Furthermore, the results suggest that using expo-
nentially distributed priors on nuisance parameters rather
than uniform priors helps the MUshaped model perform
better than MmsBayes, but it is still hindered by the
U-shaped prior on divergence models and tends to over-
estimate the probability of the one-divergence model
whenever there are violations of the model.

Validation analyses: Ordered divergence models
The results show that themethod performs similarly when
sampling over ordered models of divergence (Additional
file 1: Figures S9 and S10). This suggests that the method
is not adversely affected by the increase in the number
of possible discrete models (from 22 unordered to 4140
orderedmodels) when there are eight pairs of populations.
This is encouraging, because, as discussed above, esti-
mating unordered models of divergence by shuffling the
summary statistic vectors calculated from the sequence
alignments is not valid for most empirical datasets.
Given these results, estimation of unordered divergence
models should be avoided for empirical applications of the
method.

Power analyses: Estimation accuracy
All of the models I evaluated (Table 2) struggle to esti-
mate the variance of divergence times DT regardless of
which of the three series of models (Table 3) the data were
generated under (Additional file 1: Figures S11–13). The
models with the U-shaped prior on divergence models
(MmsBayes and MUshaped) tend to underestimate the vari-
ance in divergence times (Plots A–L of Additional file 1:
Figures S11–13). whereas the models with Uniform or
Dirichlet-process priors over divergence models tend to
overestimate variance in divergence times (Plots M–X of
Additional file 1: Figures S11–13).
When the divergence times of the 22 population pairs

are randomly drawn from a series of exponential priors
(MExp), the MDPP model is the best estimator of DT , fol-
lowed by MUniform (Additional file 1: Figure S11). The
MmsBayes model is strongly biased toward underestimat-
ingDT , estimating values of zero for most of the replicates
across all the data models of MExp (Additional file 1:
Figure S11). The results of the MUshaped model are inter-
mediate between those of MmsBayes and the new models
MDPP andMUniform (Additional file 1: Figure S11).
Similarly, when the true divergence times are ran-

domly drawn from a series of uniform priors (MUniform),
the MDPP and MUniform models tend to over-estimate
the variance in divergence times, whereas the MmsBayes
model underestimates DT , estimating values of zero for
most replicates across all the data models of MUniform
(Additional file 1: Figure S12). Again, the performance of
theMUshaped model is intermediate between theMmsBayes

andMDPP/MUniform models (Additional file 1: Figure S12).
The results are very similar when the four models are
applied to the data simulated under theMmsBayes series of
models (Additional file 1: Figure S13).

Power analyses: Model choice
The modifications of the msBayes model decrease
the method’s bias toward clustered divergences when
applied to data generated under random divergence times
(Figure 3 and Additional file 1: Figures S14–16). The
MmsBayes model performs the worst of the four models
across all three series of data-generating models, infer-
ring a single divergence event across most of the 18,000
simulations (Figure 3A–D and plots A–F of Additional
file 1: Figures S14–16). Importantly, the MmsBayes model
tends to strongly support these estimates of one diver-
gence across most of the simulations (Figure 4A–D and
plots A–F of Additional file 1: Figures S17–19). TheMDPP
model also prefers the one-divergence model when diver-
gences are random over narrow windows of time, but
performs much better when divergences are random over
a timescale of 1–2 coalescent units (Figure 3M–P and
plots S–X of Additional file 1: Figures S14–16). How-
ever, even when MDPP infers the one-divergence model
over narrow timescales, the posterior probability support
is always low (Figure 4M–P and plots S–X of Additional
file 1: Figures S17–19). The MUniform model never infers
the one-divergence model in any of the simulation repli-
cates but still tends to infer relatively few (4–6) divergence
events when divergences are random over longer periods
(Figure 3I–L and plots M–R of Additional file 1: Figures
S14–16). Using exponential priors on divergence-time and
demographic parameters does increase the power of the
MUshaped model compared to MmsBayes across all three
series of data models, but the U-shaped prior still pre-
vents the model from performing as well as theMDPP and
MUniform models (Figure 3 and Additional file 1: Figures
S14–16).
The improved power of the new models is even more

pronounced when looking at estimates of the variance of
divergence times (DT ) across the simulations (Figure 5
and Additional file 1: Figures S20–22). The performance
among the models is so different, that the histograms of
DT estimates cannot be plotted along a shared x-axis. The
MDPP and MUniform models perform similarly across all
three series of data models, inferring values of DT con-
sistent with one divergence event (DT < 0.01) in almost
none of the replicates across all the simulations. In con-
trast, the MmsBayes model infers values consistent with a
single divergence event in most of the replicates across all
the simulations. Using exponential priors on divergence-
time and demographic parameters greatly increases the
power of the MUshaped model to detect variation in
divergence times relative to MmsBayes, but it still has less



Oaks BMC Evolutionary Biology 2014, 14:150 Page 16 of 23
http://www.biomedcentral.com/1471-2148/14/150

Figure 3 Power to avoid spurious estimation of clustered divergences when divergence times are random. The power of models (A–D)
MmsBayes , (E–H)MUshaped , (I–L)MUniform , and (M–P)MDPP to detect random variation in divergence times as simulated under theMmsBayes series of
models. The plots illustrate the estimated number of divergence events (|τ̂ |) from analyses of 1000 datasets simulated under each of theMmsBayes

models, with the the estimated probability of the model inferring one divergence event, p(|τ̂ | = 1), given for each combination. The 22 divergence
times were randomly drawn as indicated above each column of plots, where time is respresented as millions of generations ago (MGA) according to
a per-site rate of 1 × 10−8 mutations per generation. Four of the six data-generating models of theMmsBayes series are shown; please see
Additional file 1: Figure S14 for all results.

power than the models with Dirichlet-process or uniform
priors across divergence models (Figure 5 and Additional
file 1: Figure S20–22). Although the DT threshold of 0.01
is arbitrary, Oaks et al. [7] did show via simulation that
the true value of DT will almost always be greater than
0.01 when divergences are random over periods of 0.1
coalescent units or more (see Figure Sfour of [7]).
As mentioned above, the increased power of the new

models is also evident when looking at the estimated
posterior probability of the one-divergence model across
the power analyses (Figure 4 and Additional file 1:
Figures S17–19). TheMDPP andMUniform models estimate
low posterior probability of |τ | = 1 across all of

the simulations. This is in contrast to the MmsBayes
model, which infers high posterior probabilities of a
single divergence for most replicates across all simula-
tions (Figure 4 and Additional file 1: Figures S17–19). The
exponential priors on divergence-time and demographic
parameters (model MUshaped) result in lower estimates
of the probability of one divergence when compared
to MmsBayes, but higher estimates when compared to
MUniform andMDPP (Figure 4 and Additional file 1: Figures
S17–19). The MDPP and MUniform models do frequently
support the one-divergence model according to a Bayes
factor criterion of greater than 10, but still less frequently
than the MmsBayes model. This result is not surprising
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Figure 4 Power to avoid spurious support for one divergence event when divergence times are random. The tendency of models (A–D)
MmsBayes , (E–H)MUshaped , (I–L)MUniform , and (M–P)MDPP to support one divergence event when there is random variation in divergence times as
simulated under theMmsBayes series of models. The plots illustrate histograms of the estimated posterior probability of the one divergence model,
p(|τ | = 1|Bε(S∗)), from analyses of 1000 datasets simulated under each of theMmsBayes models. The 22 divergence times were randomly drawn as
indicated above each column of plots, where time is respresented as millions of generations ago (MGA) according to a per-site rate of 1 × 10−8

mutations per generation. Four of the six data-generating models of theMmsBayes series are shown; please see Additional file 1: Figure S17 for all
results.

given the extremely small prior probability of the one-
divergence model under the MDPP and MUniform models
(i.e., very few posterior samples of the one-divergence
model will result in a large Bayes factor under these mod-
els). However, the small posterior probability of the one-
divergence model estimated under MDPP and MUniform
should prevent an investigator from overinterpreting the
Bayes factor as strong support for clustered divergences.
Lastly, when looking at the estimated posterior prob-

ability of DT being consistent with one shared diver-
gence (p(DT < 0.01|Bε(S∗))), I find the same pattern
of model behavior, with MDPP and MUniform inferring
low probabilities across all simulations,MmsBayes inferring

high probabilities, and MUshaped inferring intermediate
values (Figure 6 and Additional file 1: Figures S23–25).

Empirical results
As expected based on the results of Oaks et al. [7], when
the Philippines data are analyzed under the MmsBayes
model, there is strong support for very few divergence
events shared among all 22 pairs of taxa, with a maximum
a posteriori (MAP) estimate of one-shared divergence
(Figure 7A). When these data are analyzed using mod-
els allowed by the new implementation, there is much
less support for highly clustered models and much greater
uncertainty regarding the number of divergence events
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Figure 5 Power to avoid spurious estimation of small temporal variance in divergences when divergence times are random. The power of
models (A–D)MmsBayes , (E–H)MUshaped , (I–L)MUniform , and (M–P)MDPP to detect random variation in divergence times as simulated under the
MmsBayes series of models. The plots illustrate the estimated dispersion index of divergence times (|τ̂ |) from analyses of 1000 datasets simulated
under each of theMmsBayes models, with the the estimated probability of the model inferring one divergence event, p(|τ̂ | < 0.01), given for each
combination. The 22 divergence times were randomly drawn as indicated above each column of plots, where time is respresented as millions of
generations ago (MGA) according to a per-site rate of 1 × 10−8 mutations per generation. Four of the six data-generating models of theMmsBayes

series are shown; please see Additional file 1: Figure S20 for all results.

shared among the taxa, especially under the DPP models
(Figure 7B–E). Figure 7 also shows the prior distribution
across the number of divergence events (|τ |) for each
model, as well as the average prior probability of an
unordered and ordered model of divergence (t) across |τ |.
Estimates under the new models tend to be similar to
the prior, which is expected under such a parameter-rich
model when there is limited information from the data
(four summary statistics from a single locus for each pair
of taxa).
The disparity between the results of theMmsBayes model

and the new models is even more pronounced when
looking at the 10 divergence models (t) estimated to

have the highest probability under each of the models
(Additional file 1: Figures S26–30). Again, the newmodels
estimate more divergences, a large amount of poste-
rior uncertainty, and an order of magnitude smaller
probability for their respective MAP-divergence model
when compared to the MmsBayes model (Additional file 1:
Figures S26–30).
Figure 8 shows the estimated posterior probability dis-

tribution over the number of divergence events when the
data from the nine-taxon pairs from the Islands of Negros
and Panay are analyzed under DPP models that sample
over unordered (MDPP) and ordered (M◦

DPP) models of
divergence. The results are similar under both models
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Figure 6 Power to avoid spurious support for no temporal variance in divergences (i.e.,DT < 0.01) when divergence times are random.
The tendency of models (A–D)MmsBayes , (E–H)MUshaped , (I–L)MUniform , and (M–P)MDPP to support one divergence event when there is random
variation in divergence times as simulated under theMmsBayes series of models. The plots illustrate histograms of the estimated posterior
probability of the one divergence model, p(DT < 0.01|Bε(S∗)), from analyses of 1000 datasets simulated under each of theMmsBayes models. The
22 divergence times were randomly drawn as indicated above each column of plots, where time is respresented as millions of generations ago
(MGA) according to a per-site rate of 1 × 10−8 mutations per generation. Four of the six data-generating models of theMmsBayes series are shown;
please see Additional file 1: Figure S23 for all results.

and, again, yield a large amount of uncertainty about the
number of divergence events that is similar to the prior
uncertainty.
The small difference between the results of the MDPP

and M
◦
DPP models is consistent across multiple analy-

ses, and thus could be due to error introduced to the
MDPP model by the invalid shuffling of the summary
statistic vectors. Both models estimate a similar set of 10
unordered divergence models with the highest posterior
probability (Additional file 1: Figures S31 and S32).
The main advantages of the M

◦
DPP model over the

MDPP are that (1) the incorrect shuffling of the sum-
mary statistic vectors is avoided, (2) the identity of the

taxa is maintained, and thus a fully marginalized esti-
mate of divergence times across the taxa can be obtained
(Additional file 1: Figure S33), and (3) the probability of
co-divergence among any set of taxa can be estimated
from the posterior sample.

Discussion
My results demonstrate that using alternative priors on
parameters and divergence models improved the behav-
ior of the msBayes model. In the new implementation,
model-choice estimation is more accurate and shows
greater robustness to model violations (Figures 1 and 2).
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Figure 7 Estimated number of divergence events for 22 taxa from the Philippines. The (A–E) posterior and (F–J) prior probabilities of the
number of divergence events (|τ |) when the data of the 22 pairs of taxa from the Philippines are analyzed under the five models indicated at the
top of each column of plots (Table 4). The average prior probability of an (K–O) unordered and (P–T) ordered model of divergence (t) with |τ |
divergence-time parameters is also shown. The posterior median of the dispersion index of divergence times (DT ) is also given for each model,
followed by the 95% highest posterior density interval in parentheses.

The original model is very sensitive to violations and,
when present, strongly over-estimates the probability of
one-divergence event shared across all taxa (Figures 1
and 2). When more appropriate priors are used for
divergence-time and demographic parameters, and either
a Dirichlet-process or uniform prior applied across diver-
gence models, the model is less sensitive to violations,
and, when violations do cause bias, the method tends
to underestimate the probability of models with tempo-
rally clustered divergences (Figures 1 and 2). Given that
clustered models are often of particular interest to bio-
geographers, this behavior of the new method can be
considered conservative.
The modifications also improve the method’s power to

detect random variation in divergence times, reducing the
tendency to estimate clustered divergences (Figures 3, 4, 5
and 6). My results are similar to those of Oaks et al. [7]
in that I find msBayes will often infer strong support for
clustered divergences when divergences are random over
quite broad timescales (Figures 3, 4, 5 and 6). My results
expand on this by showing that this behavior is consistent

across a range of conditions underlying the data. The new
method, dpp-msBayes, has greater power to detect ran-
dom temporal variation in divergences, is less prone to
spurious inference of clustered divergence models, and
much less likely to incorrectly infer such models with
strong support (Figures 3, 4, 5 and 6).
By evaluating a model intermediate between the old

and new implementation (MUshaped), I was able to deter-
mine the relative affects of mymodifications to the model.
Across all of the analyses, the results show that using bet-
ter priors on divergence-time and demographic parame-
ters alone does improve the performance of the method.
The magnitude of the bias toward inferring support for
the one-divergence model when there are model viola-
tions is reduced when the exponential priors are used in
place of the uniform priors (Figures 1 and 2). Furthermore,
using exponential priors improves the method’s power
to detect temporally random divergences (Figures 3, 4, 5
and 6). Throughout the analyses, the intermediate model
(MUshaped) performs better than the msBayes model,
but not as well as the models with alternative priors on
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Figure 8 Estimated number of divergence events for 9 taxa from
the Philippines. The posterior probabilities of the number of
divergence events, |τ |, when the data of the 9 pairs of taxa from
Negros and Panay Islands are analyzed under the DPP model that
samples over (A) unordered and (B) ordered models of divergence
(Table 4). Both models share the same (C) prior probability of the
number of divergence events, and the average prior probability of an
(D) unordered and (E) ordered model of divergence (t) with |τ |
divergence-time parameters. The posterior median of the dispersion
index of divergence times (DT ) is also given for each model, followed
by the 95% highest posterior density interval in parentheses.

divergence models. This suggests, as predicted by Oaks
et al. [7,15], that the tendency of msBayes to erroneously
support models of temporally clustered divergences is
caused by a combination of (1) small marginal likelihoods
of models with more τ parameters due to uniform pri-
ors on divergence-time and demographic parameters and
(2) the U-shaped prior on divergence models giving low
prior density to models with intermediate numbers of
divergence parameters. The former essentially rules out
models with many τ parameters, which causes the latter
to act like an "L-shaped" prior with a spike of prior den-
sity on the one-divergence model. Given the parameter
richness of the model and the relatively small amount of
information in the summary statistics, it is not surpris-
ing that the combination of these two factors can create a
strong tendency to infer clustered models of divergence.
While the modifications improve the behavior of the

model, I urge caution when using the method and inter-
preting its results. The method attempts to approximate
the posterior of a very parameter-rich model using rel-
atively little information from the data. For example,
when applied to the dataset of 22 taxon pairs from the
Philippines [7], the model has as many as 604–625 free
parameters (depending on |τ |), and samples over 1002
unordered divergence models. Even under the simplest
possible model allowed under the new implementation,
themodel still has 471–492 free parameters. Furthermore,
the stochastic coalescent and mutational processes being
modeled predict a large amount of variation in possi-
ble datasets even when the parameter values are known.
The richness and stochastic nature of the model makes
for a difficult inference problem, especially when using a
small number of summary statistics calculated from the
sequence alignments of each taxon pair. The population-
genetic summary statistics used by the method contain
little information about many of the free parameters in
the model. Thus, I expect the improved method will still
be sensitive to priors, and the power, while improved,
may still be low. While there is much less prior sensitiv-
ity under the new model compared to those observed by
Oaks et al. [7], there is still an effect when comparing
the results of the empirical data analyzed under a dif-
fuse (MDPP) and informative

(
Minform

DPP

)
divergence-time

prior (Figure 7C versus D). The fact that the posterior
shifts toward the prior under the informative prior sug-
gests that the shift away from the prior toward fewer
divergence events under the diffuse prior might still be
caused by small marginal likelihoods of models with more
divergence-time parameters (Figure 7).
Nonetheless, it is reassuring to see a large amount of

posterior uncertainty when the new implementation is
applied to the empirical datasets (Figures 7 and 8). Appli-
cations of the msBayesmodel often result in strong pos-
terior support for estimated scenarios (e.g., [3,5-12]), as I
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found here (Figure 7). Given the richness of the model, the
variance of the processes beingmodeled, and the relatively
small amount of information in the summary statistics
calculated from the sequence data, finding strong pos-
terior support for any scenario is unexpected. Based on
results of the empirical and power analyses (Figures 4, 6, 7
and 8), the new implementation more accurately reflects
posterior uncertainty and avoids spurious support for
biogeographical scenarios.
I also urge caution when using dpp-msBayes due

to the lack of theoretical validation of Bayesian model
choice when the full data are replaced by summary statis-
tics that are insufficient for discriminating across models
under comparison [44], which is certainly the case here.
Robert et al. [44] demonstrated that ABC estimates of
model posterior probabilities can be inaccurate when such
across-model insufficient statistics are used.
Given all of these caveats, I encourage investigators

to view this method as a means of exploring their data
for general temporal patterns of divergences across taxa,
rather than a rigorous means of evaluating hypothe-
ses. As recommended by Oaks et al. [7], any results
from the method should be accompanied by (1) analy-
ses under a variety of priors to assess the assumptions
underlying model inference and the prior sensitivity of the
results, and (2) simulation-based power analyses to pro-
vide insight into the temporal resolution of the method.
Both approaches are important to help guide the interpre-
tation of results.
Given the difficulty of this estimation problem, I antic-

ipate that full-likelihood methods that can leverage all of
the information present in the sequence data will become
increasingly important for robustly estimating shared
evolutionary history across taxa [45]. With improving
numerical methods for sampling over models of differing
dimensionality [46,47], advances in Monte Carlo tech-
niques [48], and increasing efficiency of likelihood calcu-
lations [49], analyzing rich comparative phylogeograpical
models in a full-likelihood Bayesian framework is becom-
ing computationally practical, especially when consider-
ing that simulating millions of random datasets from the
prior under the simple ABC rejection approach is ineffi-
cient and computationally nontrivial.

Conclusions
I introduced a new model for estimating shared
divergence histories across taxa from DNA sequence
data within an approximate-Bayesian model-choice
framework. The new method, dpp-msBayes, takes
a non-parametric approach to the problem by using
a Dirichlet-process prior on the temporal distribution
of divergences across taxa. The new method shows
improved robustness, accuracy, and power compared to
the existing method, msBayes. Compared to msBayes,

the new approach better estimates posterior uncertainty,
which greatly reduces the chances of incorrectly esti-
mating biogeographical scenarios of shared divergence
events. This is important, because models of shared diver-
gence events are often ofparticular interest to researchers
who employ these methods. This new tool will allow
evolutionary biologists to better leverage comparative
genetic data to assess the affects of regional and global
biogeographical processes on biodiversity.
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