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This paper is concerned with some oscillation criteria for the second order neutral delay
dynamic equations with mixed nonlinearities of the form (r(t)u(t))Δ + q(t)|x(τ(t))|α−1x(τ(t)) +
∑n

i=1 qi(t)|x(τi(t))|αi−1x(τi(t)) = 0, where t ∈ T and u(t) = |(x(t) + p(t)x(δ(t)))Δ|α−1(x(t) +
p(t)x(δ(t)))Δ with α1 > α2 > · · · > αm > α > αm+1 > · · · > αn > 0. Further the results obtained here
generalize and complement to the results obtained by Han et al. (2010) . Examples are provided to
illustrate the results.

1. Introduction

Since the introduction of time scale calculus by Stefan Hilger in 1988, there has been great
interest in studying the qualitative behavior of dynamic equations on time scales, see, for
example, [1–3] and the references cited therein. In the last few years, the research activity
concerning the oscillation and nonoscillation of solutions of ordinary and neutral dynamic
equations on time scales has been received considerable attention, see, for example, [4–8]
and the references cited therein. Moreover the oscillatory behavior of solutions of second
order differential and dynamic equations with mixed nonlinearities is discussed in [9–16].

In 2004, Agarwal et al. [5] have obtained some sufficient conditions for the oscillation
of all solutions of the second order nonlinear neutral delay dynamic equation

(
r(t)
((

y(t) + p(t)y(t − τ)
)Δ
)γ)Δ

+ f
(
t, y(t − δ)

)
= 0 (1.1)
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on time scale T, where t ∈ T, γ is a quotient of odd positive integers such that γ ≥ 1, r(t),
p(t) are real valued rd-continuous functions defined on T such that r(t) > 0, 0 ≤ p(t) < 1, and
f(t, u) ≥ q(t)|u|γ .

In 2009, Tripathy [17] has considered the nonlinear neutral dynamic equation of the
form

(
r(t)
((

y(t) + p(t)y(t − τ)
)Δ
)γ)Δ

+ q(t)
∣
∣y(t − δ)

∣
∣γ sgny(t − δ) = 0, t ∈ T, (1.2)

where γ > 0 is a quotient of odd positive integers, r(t), q(t) are positive real valued rd-
continuous functions on T, p(t) is a nonnegative real valued rd-continuous function on T

and established sufficient conditions for the oscillation of all solutions of (1.2) using Ricatti
transformation.

Saker et al. [18], Şahı́ner [19], and Wu et al. [20] established various oscillation results
for the second order neutral delay dynamic equations of the form

(
r(t)
((

y(t) + p(t)y(τ(t))
)Δ
)γ)Δ

+ f
(
t, y(δ(t))

)
= 0, t ∈ T, (1.3)

where 0 ≤ p(t) < 1, γ ≥ 1 is a quotient of odd positive integers, r(t), p(t) are real valued
nonnegative rd-continuous functions on T such that r(t) > 0, and f(t, u) ≥ q(t)|u|γ .

In 2010, Sun et al. [21] are concerned with oscillation behavior of the second order
quasilinear neutral delay dynamic equations of the form

(
r(t)
(
zΔ(t)

)γ)Δ
+ q1(t)xα(τ1(t)) + q2(t)xβ(τ2(t)) = 0, t ∈ T, (1.4)

where z(t) = x(t) + p(t)x(τ0(t)),γ , α, β are quotients of odd positive integers such that 0 < α <
γ < β and γ ≥ 1, r(t), p(t), q1(t), and q2(t) are real valued rd-continuous functions on T.

Very recently, Han et al. [22] have established some oscillation criteria for quasilinear
neutral delay dynamic equation

(

r(t)
∣
∣
∣xΔ(t)

∣
∣
∣
γ−1

xΔ
)Δ

+ q1(t)
∣
∣y(δ1(t))

∣
∣α−1y(δ1(t)) + q2(t)

∣
∣y(δ2(t))

∣
∣β−1y(δ2(t)) = 0, t ∈ T,

(1.5)

where x(t) = y(t) + p(t)y(τ(t)), α, β, γ are quotients of odd positive integers such that 0 < α <
γ < β, r(t), p(t), q1(t), and q2(t) are real valued rd-continuous functions on T.

Motivated by the above observation, in this paper we consider the following second
order neutral delay dynamic equation with mixed nonlinearities of the form:

(r(t)u(t))Δ + q(t)|x(τ(t))|α−1x(τ(t)) +
n∑

i=1

qi(t)|x(τi(t))|αi−1x(τi(t)) = 0, (1.6)

where T is a time scale, t ∈ T and u(t) = |(x(t) + p(t)x(δ(t)))Δ|α−1(x(t) + p(t)x(δ(t)))Δ, and
this includes all the equations (1.1)–(1.5) as special cases.
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By a proper solution of (1.6) on [t0,∞)
T
we mean a function x(t) ∈ C1

rd[t0,∞), which
has a property that r(t)(x(t) + p(t)x(τ(t)))α ∈ C1

rd[t0,∞), and satisfies (1.6) on [tx,∞)
T
.

For the existence and uniqueness of solutions of the equations of the form (1.6), refer to
the monograph [2]. As usual, we define a proper solution of (1.6) which is said to be
oscillatory if it is neither eventually positive nor eventually negative. Otherwise it is known
as nonoscillatory.

Throughout the paper, we assume the following conditions:

(C1) the functions δ, τ, τi : T → T are nondecreasing right-dense continuous and satisfy
δ(t) ≤ t, τ(t) ≤ t, τi(t) ≤ twith limt→∞δ(t) = ∞, limt→∞τ(t) = ∞, and limt→∞τi(t) =
∞ for i = 1, 2, . . . , n;

(C2) p(t) is a nonnegative real valued rd-continuous function on T such that 0 ≤ p(t) < 1;

(C3) r(t), q(t) and qi(t), i = 1, 2, . . . , n are positive real valued rd-continuous functions on
Twith rΔ(t) ≥ 0;

(C4) α, αi, i = 1, 2, . . . , n are positive constants such that α1 > α2 > · · · > αm > α > αm+1 >
· · · > αn > 0 (n > m ≥ 1).

We consider the two possibilities

∫∞

t0

1
r1/α(s)

Δs = ∞, (1.7)

∫∞

t0

1
r1/α(s)

Δs < ∞. (1.8)

Since we are interested in the oscillatory behavior of the solutions of (1.6), we may
assume that the time scale T is not bounded above, that is, we take it as [t0,∞)

T
= {t ≥ t0 : t ∈

T}.
The paper is organized as follows. In Section 2, we present some oscillation criteria

for (1.6) using the averaging technique and the generalized Riccati transformation, and in
Section 3, we provide some examples to illustrate the results.

2. Oscillation Results

We use the following notations throughout this paper without further mention:

d+(t) = max{0, d(t)}, d−(t) = max{0,−d(t)}

Q(t) = q(t)
(
1 − p(τ(t))

)α
, Qi(t) = qi(t)

(
1 − p(τi(t))

)αi , i = 1, 2, 3, . . . , n,

κ(t) =
σ(t)
t

, β(t) =
τ(t)
σ(t)

, βi(t) =
τi(t)
σ(t)

, z(t) = x(t) + p(t)x(δ(t)).

(2.1)

In this section, we obtain some oscillation criteria for (1.6) using the following lemmas.
Lemma 2.1 is an extension of Lemma 1 of [13].
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Lemma 2.1. Let αi, i = 1, 2, . . . , n be positive constants satisfying

α1 > α2 > · · · > αm > α > αm+1 > · · · > αn > 0. (2.2)

Then there is an n-tuple (η1, η2, . . . , ηn) satisfying

n∑

i=1

αiηi = α (2.3)

which also satisfies either

n∑

i=1

ηi < 1, 0 < ηi < 1, (2.4)

or

n∑

i=1

ηi = 1, 0 < ηi < 1. (2.5)

In the following results we use the Keller’s Chain rule [1] given by

(
yα(t)

)Δ = αyΔ(t)
∫1

0

[
hyσ(t) + (1 − h)y(t)

]α−1
dh, (2.6)

where y is a positive and delta differentiable function on T.

Lemma 2.2 (see [23]). Let f(u) = Bu −Au(α+1)/α, where A > 0 and B are constants, γ is a positive
integer. Then f attains its maximum value on R at u∗ = (Bγ/Aγ+1)γ , and

max
u∈R

f = f(u∗) = γγ

(
γ + 1
)(γ+1)

Bγ+1

Aγ
. (2.7)

Lemma 2.3. Assume that (1.7) holds. If x(t) is an eventually positive solution of (1.6), then there

exists a T ∈ [t0,∞)
T
such that z(t) > 0, zΔ(t) > 0, and (r(t)(zΔ(t))α)

Δ
< 0 for t ∈ [T,∞)

T
.

Moreover one obtains

x(t) ≥ (1 − p(t)
)
z(t), t ≥ t1. (2.8)

Since the proof of Lemma 2.3 is similar to that of Lemma 2.1 in [6], we omit the details.

Lemma 2.4. Assume that (1.7) and

∫∞

t0

τα(s)Q(s)Δs = ∞ (2.9)
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hold. If x(t) is an eventually positive solution of (1.6), then

zΔΔ(t) < 0, z(t) ≥ tzΔ(t), (2.10)

and z(t)/t is strictly decreasing.

Proof. From Lemma 2.3, we have (r(t)(zΔ(t))α)
Δ
< 0 and

(
r(t)
(
zΔ(t)

)α)Δ
= rΔ(t)

(
zΔ(t)

)α
+ r(σ(t))

((
zΔ(t)

)α)Δ
. (2.11)

Since rΔ(t) ≥ 0, we have ((zΔ(t))α)
Δ
< 0. Now using the Keller’s Chain rule, we find that

0 <
((

zΔ(t)
)α)Δ

= αzΔΔ(t)
∫1

0

(
hzΔ(t) + (1 − h)zΔ(t)

)α−1
dh (2.12)

or zΔΔ(t) < 0. Let Z(t) := z(t) − tzΔ(t). Clearly ZΔ(t) = −σ(t)zΔΔ(t) > 0. We claim that there is
a t1 ∈ [t0,∞)

T
such that Z(t) > 0 on [t1,∞)

T
. Assume the contrary, then Z(t) < 0 on [t1,∞)

T
.

Therefore,

(
z(t)
t

)Δ

=
tzΔ(t) − z(t)

tσ(t)
= − Z(t)

tσ(t)
> 0, t ∈ [t1,∞)

T
, (2.13)

which implies that z(t)/t is strictly increasing on [t1,∞)
T
. Pick t2 ∈ [t1,∞)

T
so that τ(t) ≥ τ(t2)

and τi(t) ≥ τi(t2) for t ≥ t2. Then z(τ(t))/τ(t) ≥ z(τ(t2))/τ(t2) =: d > 0, and z(τ(t))/τ(t) ≥
z(τ(t2))/τ(t2) =: di > 0, so that z(τ(t)) > τ(t) for t ≥ t2.

Using the inequality (2.8) in (1.6), we have that

(
r(t)
(
zΔ(t)

)α)Δ
+Q(t)zα(τ(t)) +

n∑

i=1

Qi(t)zαi(τi(t)) ≤ 0. (2.14)

Now by integrating from t2 to t, we have

r(t)
(
zΔ(t)

)α − r(t2)
(
zΔ(t2)

)α
+
∫ t

t2

[

Q(s)zα(τ(s)) +
n∑

i=1

Qi(s)zαi(τi(s))

]

Δs ≤ 0, (2.15)

which implies that

r(t2)zΔ(t2) ≥ r(t)zΔ(t) +
∫ t

t2

[

Q(s)zα(τ(s)) +
n∑

i=1

Qi(s)zαi(τi(s))

]

Δs

> dα

∫ t

t2

Q(s)τα(s)Δs +
n∑

i=1

dαi

i

∫ t

t2

Qi(s)τ
αi

i (s)Δs

(2.16)
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which contradicts (2.4). Hence there is a t1 ∈ [t0,∞)
T
such that Z(t) > 0 on [t1,∞)

T
.

Consequently,

(
z(t)
t

)Δ

=
tzΔ(t) − z(t)

tσ(t)
= − Z(t)

tσ(t)
< 0, t ∈ [t1,∞)

T
, (2.17)

and we have that z(t)/t is strictly decreasing on [t1,∞)
T
.

Theorem 2.5. Assume that condition (1.7) holds. Let (η1, η2, . . . , ηn) be n-tuple satisfying (2.3) of
Lemma 2.1. Furthermore one assumes that there exist positive delta differentiable function ρ(t) and a
nonnegative delta differentiable function φ(t) such that

lim sup
t→∞

∫ t

t1

ρ(σ(s))

⎡

⎣Q∗(s) − φΔ(s) −
(
ρΔ(s)

)
+

ρσ(s)
φ(s) − κα2

(s)

(α + 1)α+1
r(s)
(
ρΔ(s)

)α+1
+

(
ρ(σ(s))

)α+1

⎤

⎦Δs = ∞,

(2.18)

for all sufficiently large t1 where Q∗(t) = Q(t)βα(t) + η
∏n

i=1Q
ηi
i (t)β

αiηi
i (t), and η =

∏n
i=1η

−ηi
i . Then

every solution of (1.6) is oscillatory.

Proof. Suppose that there is a nonoscillatory solution x(t) of (1.6). We assume that x(t) is an
eventually positive for t ≥ t0 (since the proof for the case x(t) < 0 eventually is similar). From
the definition of z(t) and Lemma 2.3, there exists t1 ≥ t0 such that, for t ≥ t1,

z(t) > 0, z(δ(t)) > 0, z(τ(t)) > 0, z(τi(t)) > 0, zΔ(t) > 0,
(
r(t)
(
zΔ(t)

)α)Δ ≤ 0.

(2.19)

Define

w(t) = ρ(t)

[
r(t)
(
zΔ(t)

)α

zα(t)
+ φ(t)

]

, t ≥ t1. (2.20)

Then from (2.19), we have w(t) > 0 and

wΔ(t) =
ρΔ(t)
ρ(t)

w(t) + ρ(σ(t))

[
r(t)
(
zΔ(t)

)α

zα(t)

]Δ

+ ρ(σ(t))φΔ(t)

≤ ρΔ(t)
ρ(t)

w(t) + ρ(σ(t))

(
r(t)
(
zΔ(t)

)α)Δ

zα(σ(t))

− ρ(σ(t))
r(t)
(
zΔ(t)

)α(zα(t))Δ

zα(t)zα(σ(t))
+ ρ(σ(t))φΔ(t).

(2.21)
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From Keller’s chain rule, we have, from Lemma 2.1,

(zα(t))Δ ≥
⎧
⎨

⎩

αzα−1(t)zΔ(t), α ≥ 1,

αzα−1(σ(t))zΔ(t), 0 < α < 1.
(2.22)

Using (2.22) and the definition of κ(t) in (2.21), we obtain

wΔ(t) ≤ − ρ(σ(t))
zα(σ(t))

[

Q(t)zα(τ(t)) +
n∑

i=1

Qi(t)zαi(τi(t))

]

+
ρΔ(t)
ρ(t)

w(t)

− αρ(σ(t))
r1/α(t)

1
κα(t)

∣
∣
∣
∣
w(t)
ρ(t)

− φ(t)
∣
∣
∣
∣

(α+1)/α

+ ρ(σ(t))φΔ(t).

(2.23)

From Lemma 2.4, we see that z(t)/t is strictly decreasing on [t1,∞)
T
, and therefore

z(τi(t))
τi(t)

≥ z(σ(t))
σ(t)

(2.24)

or

z(τi(t))
z(σ(t))

≥ τi(t)
σ(t)

, (2.25)

since τi(t) ≤ σ(t) for all i = 1, 2, . . . , n. Using (2.25) in (2.23), we have

wΔ(t) ≤ −ρ(σ(t))
[

Q(t)βα(t) +
n∑

i=1

Qi(t)β
αi

i (t)z
αi−α(σ(t))

]

+
ρΔ(t)
ρ(t)

w(t)

− αρ(σ(t))
r1/α(t)

1
κα(t)

∣
∣
∣
∣
w(t)
ρ(t)

− φ(t)
∣
∣
∣
∣

(α+1)/α

+ ρ(σ(t))φΔ(t).

(2.26)

Now let ui(t) = (1/ηi)Qi(t)β
αi

i z
αi−α(σ(t)), i = 1, 2, . . . , n. Then (2.26) becomes

wΔ(t) ≤ −ρ(σ(t))
[

Q(t)βα(t) +
n∑

i=1

ηiui(t)

]

+
ρΔ(t)
ρ(t)

w(t)

− αρ(σ(t))
r1/α(t)

1
κα(t)

∣
∣
∣
∣
w(t)
ρ(t)

− φ(t)
∣
∣
∣
∣

(α+1)/α

+ ρ(σ(t))φΔ(t).

(2.27)
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By Lemma 2.1 and using the arithmetic-geometric inequality
∑n

i=1 ηiui ≥
∏n

i=1η
ui

i in (2.27), we
obtain

wΔ(t) ≤ −ρ(σ(t))
[
Q∗(t) − φΔ(t)

]
+
ρΔ(t)
ρ(t)

w(t)

− αρ(σ(t))
r1/α(t)

1
κα(t)

∣
∣
∣
∣
w(t)
ρ(t)

− φ(t)
∣
∣
∣
∣

(α+1)/α

+ ρ(σ(t))φΔ(t)

(2.28)

or

wΔ(t) ≤ −ρ(σ(t))
[
Q∗(t) − φΔ(t)

]
+
(
ρΔ(t)

)

+
φ(t)

+
(
ρΔ(t)

)

+

∣
∣
∣
∣
w(t)
ρ(t)

− φ(t)
∣
∣
∣
∣ −

αρ(σ(t))
r1/α(t)

1
κα(t)

∣
∣
∣
∣
w(t)
ρ(t)

− φ(t)
∣
∣
∣
∣

(α+1)/α

, t ≥ t1. (2.29)

Set γ = α, A = ((αρ(σ(t)))/(r(1/α)(t)))(1/κα(t)), B = (ρΔ(t))+, and u(t) =
|(w(t)/ρ(t)) − φ(t)| and applying Lemma 2.2 to (2.29), we have

wΔ(t) ≤ −ρ(σ(t))
[
Q∗(t) − φΔ(t)

]
+
(
ρΔ(t)

)

+
φ(t) +

1

(α + 1)α+1
r(t)
(
ρΔ(t)

)α+1
+

(
ρ(σ(t))

)α κα2
(t). (2.30)

Now integrating (2.30) from t1 to t, we obtain

∫ t

t1

ρσ(s)

⎡

⎣Q∗(s) − φΔ(s) −
(
ρΔ(s)

)
+

ρσ(s)
φ(s) − 1

(α + 1)α+1
r(s)
(
ρΔ(s)

)α+1
+

(
ρ(σ(s))

)α+1 κα2
(s)

⎤

⎦Δs ≤ w(t1),

(2.31)

which leads to a contradiction to condition (2.18). The proof is now complete.

By different choices of ρ(t) and φ(t), we obtain some sufficient conditions for the
solutions of (1.6) to be oscillatory. For instance, ρ(t) = 1, φ(t) = 1 and ρ(t) = t, φ(t) = 1/t
in Theorem 2.5, we obtain the following corollaries:

Corollary 2.6. Assume that (1.7) holds. Furthermore assume that, for all sufficiently large T , for
T ≥ t0,

lim sup
t→∞

∫∞

T

Q∗(s)Δs = ∞, (2.32)

where Q∗(t) is as in Theorem 2.5. Then every solution of (1.6) is oscillatory.
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Corollary 2.7. Assume that (1.7) holds. Furthermore assume that, for all sufficiently large T , for
T ≥ t0,

lim sup
t→∞

∫∞

T

[

σ(s)Q∗(s) − r(t)(σ(t))α
2−α

tα2 Δs = ∞, (2.33)

where Q∗(t) is as in Theorem 2.5. Then every solution of (1.6) is oscillatory.

Next we establish some Philos-type oscillation criteria for (1.6).

Theorem 2.8. Assume that (1.7) holds. Suppose that there exists a function H ∈ Crd(D,R), where
D ≡ {(t, s)/t, s ∈ [t0,∞)

T
and t > s} such that

H(t, t) = 0, t ≥ t0, H(t, s) ≥ 0, t > s ≥ 0, (2.34)

andH has a nonpositive continuousΔ-partial derivativeHΔs with respect to the second variable such
that

HΔs(σ(t), s) +H(σ(t), σ(s))
ρΔ(s)
ρ(s)

=
h(t, s)
ρ(s)

(H(σ(t), σ(s)))α/(α+1), (2.35)

and for all sufficiently large T ,

lim sup
t→∞

1
H(σ(t), T)

∫ t

T

[

ρσ(s)Q∗(s) − (h(t, s))α+1r(s)

(α + 1)α+1
(
ρσ(s)

)α

]

Δs = ∞, (2.36)

where Q∗(t) is same as in Theorem 2.5. Then every solution of (1.6) is oscillatory.

Proof. We proceed as in the proof of Theorem 2.5 and define w(t) by (2.20). Then w(t) > 0
and satisfies (2.28) for all t ∈ [t1,∞)

T
. Multiplying (2.28) by H(σ(t), σ(s)) and integrating,

we obtain

∫ t

t1

H(σ(t), σ(s))ρσ(s)
[
Q∗(s) − φΔ(t)

]
Δs

≤ −
∫ t

t1

H(σ(t), σ(s))wΔ(s)Δs +
∫ t

t1

H(σ(t), σ(s))
ρΔ(t)
ρ(s)

w(t)Δs

−
∫ t

t1

H(σ(t), σ(s))
αρ(σ(t))

r1/α(t)ρ(α+1)/α(t)
1

κα(t)

∣
∣
∣
∣
w(t)
ρ(t)

− φ(t)
∣
∣
∣
∣

(α+1)/α

Δs.

(2.37)
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Using the integration by parts formula, we have

∫ t

t1

H(σ(t), σ(s))wΔ(s)Δs = H(t, s)w(s) |tt1 −
∫ t

t1

HΔs(σ(t), s)w(s)Δs

= −H(t, t1)w(t1) −
∫ t

t1

HΔs(σ(t), s)w(s)Δs.

(2.38)

Substituting (2.38) into (2.37), we obtain

∫ t

t1

H(σ(t), σ(s))ρσ(s)
[
Q∗(s) − φΔ(t)

]
Δs

≤ H(t, t1)w(t1)

+
∫ t

t1

[

HΔs(σ(t), s) +H(σ(t), σ(s))
ρΔ(t)
ρ(s)

]

w(s)Δs

−
∫ t

t1

H(σ(t), σ(s))
αρ(σ(t))

r1/α(t)ρ(α+1)/α(t)
1

κα(t)

∣
∣
∣
∣
w(t)
ρ(t)

− φ(t)
∣
∣
∣
∣

(α+1)/α

Δs.

(2.39)

From (2.35) and (2.39), we have

∫ t

t1

H(σ(t), σ(s))ρσ(s)Q(t, s)Δs

≤ H(t, t1)w(t1)

+
∫ t

t1

h(t, s)
ρ(s)

Hα/(α+1)(σ(t), σ(s))w(s)Δs

−
∫ t

t1

H(σ(t), σ(s))
αρ(σ(t))

r1/α(t)ρ(α+1)/α(t)
1

κα(t)

∣
∣
∣
∣
w(t)
ρ(t)

− φ(t)
∣
∣
∣
∣

(α+1)/α

Δs

(2.40)

or

∫ t

t1

H(σ(t), σ(s))Q(t, s)Δs

≤ H(t, t1)w(t1)

+
∫ t

t1

h(t, s)
ρ(s)

H(α+1)/α(σ(t), σ(s))
∣
∣
∣
∣
w(s)
ρ(s)

− φ(s)
∣
∣
∣
∣Δs

−
∫ t

t1

H(σ(t), σ(s))
αρ(σ(t))

r1/α(t)ρ(α+1)/α(t)
1

κα(t)

∣
∣
∣
∣
w(t)
ρ(t)

− φ(t)
∣
∣
∣
∣

(α+1)/α

Δs.

(2.41)

where Q(t, s) = [ρσ(s)Q(t, s) − (h(t, s))/(ρ(s)H(1/α)(σ(t), σ(s)))φ(s)].
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By setting B=(h(t, s)/ρ(s))H(α+1)/α(σ(t), σ(s)) andA=((αρ(σ(t)))/(r1/α(t)ρ(α+1)/α(t)))(1/
κα(t)) in Lemma 2.2, we obtain

∫ t

t1

H(σ(t), σ(s))

[

ρσ(s)Q(t, s) − hα+1(t, s)r(s)κα2
(t)

(α + 1)(α+1)ρα(σ(s))H(σ(t), σ(s))

]

Δs

≤ H(t, t1)w(t1),

(2.42)

which contradicts condition (2.35). This completes the proof.

Finally in this sectionwe establish some oscillation criteria for (1.6)when the condition
(1.8) holds.

Theorem 2.9. Assume that (1.8) holds and limt→∞ p(t) = p < 1. Let (η1, η2, . . . , ηn) be n-tuple
satisfying (2.3) of Lemma 2.1. Moreover assume that there exist positive delta differentiable functions
ρ(t) and θ(t) such that θΔ(t) ≥ 0 and a nonnegative function φ(t) with condition (2.30) for all t ≥ t1.
If

∫∞

t0

(
1

θ(s)r(s)

∫s

t0

θ(σ(v))Q(v)Δv

)1/α

Δs = ∞, (2.43)

where Q(t) = Q(t) +
∑n

i=1 Qi(t) holds, then every solution of (1.6) either oscillates or converges to
zero as t → ∞.

Proof. Assume to the contrary that there is a nonoscillatory solution x(t) such that x(t) > 0,
x(δ(t)) > 0, x(τ(t)) > 0, and x(τi(t)) > 0 for t ∈ [t1,∞)

T
for some t1 ≥ t0. From Lemma 2.3 we

can easily see that either zΔ(t) > 0 eventually or zΔ(t) < 0 eventually.
If zΔ(t) > 0 eventually, then the proof is the same as in Theorem 2.5, and therefore we

consider the case zΔ(t) < 0.
If zΔ(t) < 0 for sufficiently large t, it follows that the limit of z(t) exists, say a. Clearly

a ≥ 0. We claim that a = 0. Otherwise, there exists M > 0 such that zα(τ(t)) ≥ M and
zαi(τi(t)) ≥ M, i = 1, 2, . . . , n, t ∈ [t1,∞)

T
. From (1.6)we have

(
r(t)
(
zΔ(t)

)α)Δ ≤ −M
[

Q(t) +
n∑

i=1

Qi(t)

]

= −MQ(t). (2.44)

Define the supportive function

u(t) = θ(t)r(t)
(
zΔ(t)

)α
, t ∈ [t1,∞)

T
, (2.45)
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and we have

uΔ(t) = θΔ(t)r(t)
(
zΔ(t)

)α
+ θ(σ(t))

(
r(t)
(
zΔ(t)

)α)Δ

≤ θ(σ(t))
(
r(t)
(
zΔ(t)

)α)Δ

= −Mθ(σ(t))Q(t).

(2.46)

Now if we integrate the last inequality from t1 to t, we obtain

u(t) ≤ u(t1) −M

∫ t

t1

θ(σ(s))Q(s)Δs (2.47)

or

(
zΔ(t)

)α ≤ −M 1
θ(t)r(t)

∫ t

t1

θ(σ(s))Q(s)Δs. (2.48)

Once again integrate from t1 to t to obtain

M1/α
∫ t

t1

(
1

θ(s)r(s)

∫s

t1

θ(σ(ξ))Q(ξ)Δξ

)1/α

Δs ≤ z(t1), (2.49)

which contradicts condition (2.43). Therefore limt→∞z(t) = 0, and there exists a positive
constant c such that z(t) ≤ c and x(t) ≤ z(t) ≤ c. Since x(t) is bounded, lim supt→∞ x(t) = x1

and lim inft→∞ x(t) = x2. Clearly x2 ≤ x1. From the definition of z(t), we find that x1 + px2 ≤
0 ≤ x2 + px1; hence x1 ≤ x2 and x1 = x2 = 0. This completes proof of the theorem.

Remark 2.10. If qi(t) ≡ 0, i = 1, 2, . . . , n, or δ(t) = t − δ, τ(t) = t − τ , and qi(t) ≡ 0, i = 1, 2, . . . , n,
then Theorem 2.5 reduces to a result obtained in [20] or [24], respecively. If p(t) ≡ 0, or p(t) ≡
0, and α = 1, or p(t) ≡ 0, and τ(t) = τi(t) = t, i = 1, 2, . . . , n, then the results established here
complement to the results of [5, 9, 15] respectively.

3. Examples

In this section, we illustrate the obtained results with the following examples.

Example 3.1. Consider the second order delay dynamic equation

(

x(t) +
1
t2
x(δ(t))

)ΔΔ

+
λ1
t3/2

x
(√

t
)
+
λ2
t
x5/3
(√

t
)
+
λ3
t2
x1/3
(√

t
)
= 0, (3.1)
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for all t ∈ [1,∞)
T
. Here α = 1, α1 = 1/3, α2 = 5/3, p(t) = 1/t2, q(t) = λ1/t

3/2, q1(t) = λ2/t, and
q2(t) = λ3/t

2. Then η1 = η2 = 1/2. By taking ρ(t) = t, and φ(t) = 0, we obtain

lim sup
t→∞

∫ t

t1

ρσ(s)

⎡

⎣Q∗(s) − 1

(α + 1)α+1
r(s)
(
ρΔ(s)

)α+1

(
ρσ(s)

)α+1

⎤

⎦Δs

= lim sup
t→∞

∫ t

t0

[(
λ1
s

(

1 − 1
s

)

+

√
λ2λ3
s

(

1 − 1
s

))

− 1
4σ(s)

]

Δs

≥ lim sup
t→∞

∫ t

t0

([

λ1 +
√
λ2λ3 − 1

4

]
1
s
− λ1 +

√
λ2λ3

s2

)

Δs

→ ∞ if λ1 +
√
λ2λ3 > 1/4.

(3.2)

By Theorem 2.5, all solutions of (3.1) are oscillatory if λ1 +
√
λ2λ3 > 1/4.

Example 3.2. Consider the second order neutral delay dynamic equation

⎛

⎝

((

x(t) +
1
2
x(δ(t))

)Δ
)3
⎞

⎠

Δ

+
σ3(t)
t4

x3
(
t

2

)

+
σ(t)
t2

x5
(
t

3

)

+
σ(t)
t2

x1/3
(
t

3

)

= 0, (3.3)

for all t ∈ [1,∞)
T
. Here r(t) = 1, p(t) = 1/2, q(t) = (σ3(t))/t4, τ(t) = t/2, τ1(t) = τ2(t) = t/3,

α = 3, α1 = 5, α2 = 1/3. From Corollary 2.6, every solution of (3.3) is oscillatory.
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