
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 47580, 22 pages
doi:10.1155/2007/47580

Research Article
A SystemC-Based DesignMethodology for
Digital Signal Processing Systems

Christian Haubelt, Joachim Falk, Joachim Keinert, Thomas Schlichter, Martin Streubühr, Andreas Deyhle,
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Digital signal processing algorithms are of big importance in many embedded systems. Due to complexity reasons and due to the
restrictions imposed on the implementations, new design methodologies are needed. In this paper, we present a SystemC-based
solution supporting automatic design space exploration, automatic performance evaluation, as well as automatic system generation
for mixed hardware/software solutions mapped onto FPGA-based platforms. Our proposed hardware/software codesign approach
is based on a SystemC-based library called SysteMoC that permits the expression of different models of computation well known
in the domain of digital signal processing. It combines the advantages of executability and analyzability of many important models
of computation that can be expressed in SysteMoC. We will use the example of an MPEG-4 decoder throughout this paper to
introduce our novel methodology. Results from a five-dimensional design space exploration and from automatically mapping
parts of the MPEG-4 decoder onto a Xilinx FPGA platform will demonstrate the effectiveness of our approach.
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1. INTRODUCTION

Digital signal processing algorithms, as for example real-time
image enhancement, scene interpretation, or audio and vi-
deo coding, have gained enormous popularity in embedded
system design. They encompass a large variety of different
algorithms, starting from simple linear filtering up to en-
tropy encoding or scene interpretation based on neuronal
networks. Their implementation, however, is very laborious
and time consuming, because many different and often con-
flicting criteria must be met, as for example high throughput
and low power consumption. Due to this rising complexity of
these digital signal processing applications, there is demand
for new design automation tools at a high level of abstraction.

Many design methodologies are proposed in the litera-
ture for exploring the design space of implementations of
digital signal processing algorithms (cf. [1, 2]), but none of
them is able to fully automate the design process. In this pa-
per, we will close this gap by proposing a novel approach
based on SystemC [3–5], a C++ class library, and state-of-
the-art design methodologies. The proposed approach per-
mits the design of digital signal processing applications with

minimal designer interaction. The major advantage with re-
spect to existing approaches is the combination of executabil-
ity of the specification, exploration of implementation alter-
natives, and the usability of formal analysis techniques for
restricted models of computation. This is achieved through
restricting SystemC such that we are able to automatically
detect the underlying model of computation (MoC) [6]. Our
designmethodology comprises the automatic design space ex-
ploration using state-of-the-art multiobjective evolutionary
algorithms, the performance evaluation by automatically gen-
erating efficient simulation models, and automatic platform-
based system generation. The overall design flow as proposed
in this paper is shown in Figure 1 and is currently imple-
mented in the framework SystemCoDesigner.

Starting with an executable specification written in Sys-
temC, the designer can specify the target architecture tem-
plate as well as the mapping constraints of the SystemC
modules. In order to automate the design process, the Sys-
temC application has to be written in a synthesizable sub-
set of SystemC, called SysteMoC [7], and the target architec-
ture template must be built from components supported by
our component library. The components in the component
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Figure 1: SystemCoDesigner design flow: for a given executable
specification written in SystemC, the designer has to specify the ar-
chitecture template as well as mapping constraints. The design space
exploration is performed automatically using multiobjective evolu-
tionary algorithms and is guided by an automatic simulation-based
performance evaluation. Finally, any selected implementation can
be automatically mapped efficiently onto an FPGA-based platform.

library are either written by hand using a hardware descrip-
tion language or can be taken from third party vendors. In
this work, we will use IP cores especially provided by Xilinx.
Furthermore, it is also possible to synthesize SysteMoC ac-
tors to RTL Verilog or VHDL using high-level synthesis tools
as Mentor CatapultC [8] or Forte Cynthesizer [9]. However,
there are limitations imposed on the actors given by these
tools. As this is beyond the scope of this paper, we will omit
discussing these issues here.

With this specification, the SystemCoDesigner design
process is automated as much as possible. Inside SystemCo-
Designer, a multiobjective evolutionary optimization (MO-
EA) strategy is used in order to perform design space ex-
ploration. The exploration is guided by a simulation-based
performance evaluation. Using SysteMoC as a specification
language for the application, the generation of the simula-
tion model inside the exploration can be automated. Then,
the designer can carry out the decision making and select a
design point for implementation. Finally, the platform-based
implementation is generated automatically.

The remainder of this paper is dedicated to the different
issues arising during our proposed design flow. Section 3 dis-
cusses the input format based on SystemC called SysteMoC.
SysteMoC is a library based on SystemC that allows to de-
scribe and simulate communicating actors. The particular-
ity of this library for actor-based design is to separate actor
functionality and communication behavior. In particular, the
separation of actor firing rules and communication behavior

is achieved by an explicit finite state machine model associ-
ated with each actor. This finite state machine permits the
identification of the underlying model of computation of the
SystemC application and, hence, if possible, allows to ana-
lyze the specification with formal techniques for properties
such as boundedness of memory, (periodic) schedulability,
deadlocks, and so forth.

Section 4 presents the model and the tasks performed
during design space exploration. As the SysteMoC descrip-
tion only models the specified behavior of our system, we
need additional information in order to perform system-level
synthesis. Following the Y-chart approach [10, 11], a formal
model of architecture (MoA) must be specified by the de-
signer as well as mapping constraints for the actors in the
SysteMoC description. With this formal model the system-
level synthesis task is twofold: (1) determine the allocation
of resources from the architecture template and (2) deter-
mine a binding of SystemC modules (actors) onto the al-
located resources. During design space exploration, many
implementations are constructed by the system-level explo-
ration tool SystemCoDesigner. Each resulting implementa-
tion must be evaluated regarding different properties such
as area, power consumption, performance, and so forth.
Especially the performance evaluation, that is, latency and
throughput, is critical in the context of digital signal process-
ing applications. In our proposed methodology, we will use,
beside others, a simulation-based approach. We will show
how SysteMoCmight help to automatically generate efficient
simulation models during exploration.

In Section 5 our approach to automatic platform-based
system synthesis will be presented targeting in our exam-
ples a Xilinx Virtex-II Pro FPGA-based platform. The key
idea is to generate a platform, perform software synthesis, and
provide efficient communication channels for the implemen-
tation. The results obtained by the synthesis will be com-
pared to the simulation models generated during a five-
dimensional design space exploration in Section 6. We will
use the example of an MPEG-4 decoder throughout this pa-
per to present our methodology.

2. RELATEDWORK

In this section, we discuss some tools which are available
for the design and synthesis of digital signal processing al-
gorithms onto mixed and possibly multicore system-on-a-
chip (SoC). Sesame (simulation of embedded system archi-
tectures for multilevel exploration) [12] is a tool for perfor-
mance evaluation and exploration of heterogeneous archi-
tectures for the multimedia application domain. The appli-
cations are given by Kahn process networks modeled with a
C++ class library. The architecture is modeled by architec-
ture building blocks taken from a library. Using a SystemC-
based simulator at transaction level, performance evaluation
can be done for a given application. In order to cosimulate
the application and the architecture, a trace-driven simula-
tion approach technique is chosen. Sesame is developed in
the context of the Artemis project (architectures and meth-
ods for embedded media systems) [13].
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TheMILAN (model-based integrated simulation) frame-
work is a design space exploration tool that works at dif-
ferent levels of abstraction [14]. Following the Y-chart ap-
proach [11], MILAN uses hierarchical dataflow graphs in-
cluding function alternatives. The architecture template can
be defined at different levels of detail. The hierarchical design
space exploration starts at the system level and uses rough
estimation and symbolic methods based on ordered binary
decision diagrams to prune the search space. After reducing
the search space, a more fine grained estimation is performed
for the remaining designs, reducing the search space even
more. At the end, at most ten designs are evaluated by cycle-
accurate trace-driven simulation. MILAN needs user inter-
action to perform decision making during exploration.

In [15], Kianzad and Bhattacharyya propose a framework
called CHARMED (cosynthesis of hardware-software mul-
timode embedded systems) for the automatic design space
exploration for periodic multimode embedded systems. The
input specification is given by several task graphs where each
task graph is associated to one ofM modes. Moreover, a pe-
riod for each task graph is given. Associated with the ver-
tices and edges in each task graph, there are attributes like
memory requirement and worst case execution time. Two
kinds of resources are distinguished, processing elements and
communication resources. Kianzad and Bhattacharyya use
an approach based on SPEA2 [16] with constraint domi-
nance, a similar optimization strategy as implemented by our
SystemCoDesigner.

Balarin et al. [17] propose Metropolis, a design space ex-
ploration framework which integrates tools for simulation,
verification, and synthesis. Metropolis is an infrastructure to
help designers to cope with the difficulties in large system
designs by allowing the modeling on different levels of de-
tail and supporting refinement. The applications are mod-
eled by a metamodel consisting of sequential processes com-
municating via the so-called media. A medium has variables
and functions where the variables are only allowed to be
changed by the functions. From the application model a se-
quence of event vectors is extracted representing a partial
execution order. Nondeterminism is allowed in application
modeling. The architecture again is modeled by the meta-
model, where media are resources and processes represent-
ing services (a collection of functions). Deriving the sequence
of event vectors results in a nondeterministic execution or-
der of all functions. The mapping is performed by intersect-
ing both event sequences. Scheduling decisions on shared
resources are resolved by the so-called quantity managers
which annotate the events. That way, quantity managers
can also be used to associate other properties with events,
like power consumption. In contrast to SystemCoDesigner,
Metropolis is not concerned with automatic design space
exploration. It supports refinement and abstraction, thus
allowing top-down and bottom-up methodologies with a
meet in the middle approach. As Metropolis is a frame-
work based on a metamodel implementing the Y-chart ap-
proach, many system-level design methodologies, includ-
ing SystemCoDesigner, may be represented in Metropo-
lis.

Finally, some approaches exist to map digital signal pro-
cessing algorithms automatically to an FPGA platform. Com-
paan/Laura [18] automatically converts a Matlab loop pro-
gram into a KPN network. This process network can be
transformed into a hardware/software system by instan-
tiating IP cores and connecting them with FIFOs. Spe-
cial software routines take care of the hardware/software
communication.

Whereas [18] uses a computer system together with a
PCI FPGA board for implementation, [19] automates the
generation of a SoC (system on chip). For this purpose, the
user has to provide a platform specification enumerating
the available microprocessors and communication infras-
tructure. Furthermore, a mapping has to be provided speci-
fying which process of the KPN graph is executed on which
processor unit. This information allows the ESPAM tool to
assemble a complete system including different communica-
tion modules as buses and point-to-point communication.
The Xilinx EDK tool is used for final bitstream generation.

Whereas both Compaan/Laura/ESPAM and System-
CoDesigner want to simplify and accelerate the design
of complex hardware/software systems, there are signifi-
cant differences. First of all, Compaan/Laura/ESPAM uses
Matlab loop programs as input specification, whereas
SystemCoDesigner bases on SystemC allowing for both sim-
ulation and automatic hardware generation using behav-
ioral compilers. Furthermore, our specification language
SysteMoC is not restricted to KPN, but allows to represent
different models of computation.

ESPAM provides a flexible platform using generic com-
munication modules like buses, cross-bars, point-to-point
communication, and a generic communication controller.
SystemCoDesigner currently restricts to extended FIFO com-
munication allowing out-of-order reads and writes.

Additionally our approach tightly includes automatic de-
sign space exploration, estimating the achievable system per-
formance. Starting from an architecture template, a subset of
resources is selected in order to obtain an efficient implemen-
tation. Such a design point can be automatically translated
into a system on chip.

Another very interesting approach based on UML is pre-
sented in [20]. It is called Koski and as SystemCoDesigner,
it is dedicated to the automatic SoC design. Koski fol-
lows the Y-chart approach. The input specification is given
as Kahn process networks modeled in UML. The Kahn
processes are modeled using Statecharts. The target archi-
tecture consists of the application software, the platform-
dependent and platform-independent software, and synthe-
sizable communication and processing resources. Moreover,
special functions for application distribution are included,
that is, interprocess communication for multiprocessor sys-
tems. During design space exploration, Koski uses simu-
lation for performance evaluation. Also, Koski has many
similarities with SystemCoDesigner, there are major dif-
ferences. In comparison to SystemCoDesigner, Koski has
the following advantages. It supports a network communi-
cation which is more platform-independent than the Sys-
temCoDesigner approach. It is also somehow more flexible
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by supporting a real-time operating System (RTOS) on
the CPU. However, there are many advantages when us-
ing SystemCoDesigner. (1) SystemCoDesigner permits the
specification directly in SystemC and automatically extracts
the underlying model of computation. (2) The architec-
ture specification in SystemCoDesigner is not limited to a
shared communication medium, it also allows for optimized
point-to-point communication. The main advantage of the
SystemCoDesigner is its multiobjective design space explo-
ration which allows for optimizing several objectives simul-
taneously.

The Ptolemy II project [21] was started in 1996 by the
University of California, Berkeley. Ptolemy II is a software
infrastructure for modeling, analysis, and simulation of em-
bedded systems. The focus of the project is on the integration
of different models of computation by the so-called hierar-
chical heterogeneity. Currently, supported MoCs are contin-
uous time, discrete event, synchronous dataflow, FSM, con-
current sequential processes, and process networks. By cou-
pling different MoCs, the designer has the ability to model,
analyze, or simulate heterogeneous systems. However, as dif-
ferent actors in Ptolemy II are written in JAVA, it is lim-
ited in its usability of the specification for generating ef-
ficient hardware/software implementations including hard-
ware and communication synthesis for SoC platforms.More-
over, Ptolemy II does not support automatic design space ex-
ploration.

The Signal Processing Worksystem (SPW) from Cadence
Design Systems, Inc., is dedicated to the modeling and anal-
ysis of signal processing algorithms [22]. The underlying
model is based on static and dynamic dataflow models. A
hierarchical composition of the actors is supported. The ac-
tors themselves can be specified by several different models
like SystemC, Matlab, C/C++, Verilog, VHDL, or the design
library from SPW. The main focus of the design flow is on
simulation and manual refinement. No explicit mapping be-
tween application and architecture is supported.

CoCentric System Studio is based on languages like
C/C++, SystemC, VHDL, Verilog, and so forth, [23]. It al-
lows for algorithmic and architecture modeling. In System
Studio, algorithmsmight be arbitrarily nested dataflowmod-
els and FSMs [24]. But in contrast to Ptolemy II, CoCentric
allows hierarchical as well as parallel combinations, what re-
duces the analysis capability. Analysis is only supported for
pure dataflow models (deadlock detection, consistency) and
pure FSMs (causality). The architectural model is based on
the transaction-level model of SystemC and permits the in-
clusion of other RTL models as well as algorithmic System
Studio models and models from Matlab. No explicit map-
ping between application and architecture is given. The im-
plementation style is determined by the actual encoding a de-
signer chooses for a module.

Beside the modeling and design space exploration as-
pects, there are several approaches to efficiently represent
MoCs in SystemC. The facilities for implementing MoCs
in SystemC have been extended by Herrera et al. [25] who
have implemented a custom library of channel types like ren-
dezvous on top of the SystemC discrete event simulation ker-

nel. But no constraints have imposed how these new chan-
nel types are used by an actor. Consequently, no information
about the communication behavior of an actor can be auto-
matically extracted from the executable specification. Imple-
menting these channels on top of the SystemC discrete event
simulation kernel curtails the performance of such an imple-
mentation. To overcome these drawbacks, Patel and Shukla
[26–28] have extended SystemC itself with different simu-
lation kernels for communicating sequential processes (CSP),
continuous time (CT), dataflow process networks (PN) dy-
namic as well as static (SDF), and finite state machine (FSM)
MoCs to improve the simulation efficiency of their approach.

3. EXPRESSING DIFFERENTMoCs IN SYSTEMC

In this section, we will introduce our library-based approach
to actor-based design called SysteMoC [7] which is used for
modeling the behavior and as synthesizable subset of Sys-
temC in our SystemCoDesigner design flow. Instead of a
monolithic approach for representing an executable specifi-
cation as done using many design languages, SysteMoC sup-
ports an actor-oriented design [29, 30] for many dataflow
models of computation (MoCs). These models have been ap-
plied successfully in the design of digital signal processing al-
gorithms. In this approach, we consider timing and function-
ality to be orthogonal. Therefore, our design must be mod-
eled in an untimed dataflow MoC. The timing of the design
is derived in the design space exploration phase from map-
ping of the actors to selected resources. Note that the timing
given by that mapping in general affects the execution order
of actors. In Section 4, we present a mechanism to evaluate
the performance of our application with respect to a candi-
date architecture.

On the other hand, industrial design flows often rely on
executable specifications, which have been encoded in design
languages which allow unstructured communication. In or-
der to combine both approaches, we propose the SysteMoC
library which permits writing an executable specification in
SystemC while separating the actor functionality from the
communication behavior. That way, we are able to identify
different MoCs modeled in SysteMoC. This enables us to
represent different algorithms ranging from simple static
operations modeled by homogeneous synchronous dataflow
(HSDF) [31] up to complex, data-dependent algorithms as
run-length entropy encoding modeled as Kahn process net-
works (KPN) [32]. In this paper, an MPEG-4 decoder [33]
will be used to explain our system designmethodology which
encompasses both algorithm types and can hence only be
modeled by heterogeneousmodels of computation.

3.1. Actor-orientedmodel of anMPEG-4 decoder

In actor-oriented design, actors are objects which execute
concurrently and can only communicate with each other via
channels instead of method calls as known in object-oriented
design. Actor-oriented designs are often represented by bi-
partite graphs consisting of channels c ∈ C and actors a ∈ A,
which are connected via point-to-point connections from an
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Figure 2: The network graph of an MPEG-4 decoder. Actors are
shown as boxes whereas channels are drawn as circles.

actor output port o to a channel and from a channel to an
actor input port i. In the following, we call such representa-
tions network graphs. These network graphs can be extracted
directly from the executable SysteMoC specification.

Figure 2 shows the network graph of our MPEG-4 de-
coder. MPEG-4 [33] is a very complex object-oriented stan-
dard for compression of digital videos. It not only encom-
passes the encoding of the multimedia content, but also the
transport over different networks including quality of ser-
vice aspects as well as user interaction. For the sake of clar-
ity, our decoder implementation restricts to the decompres-
sion of a basic video bit-stream which is already locally avail-
able. Hence, no transmission issues must be taken into ac-
count. Consequently, our bit-stream is read from a file by the
FileSrc actor a1, where a1 ∈ A identifies an actor from the
set of all actors A.

The Parser actor a2 analyzes the provided bit-stream
and extracts the video data including motion compensation
vectors and quantized zig-zag encoded image blocks. The lat-
ter ones are forwarded to the reconstruction actor a3 which
establishes the original 8 × 8 blocks by performing an in-
verse zig-zag scanning and a dequantization operation. From
these data blocks the two-dimensional inverse cosine trans-
form actor a4 generates the motion-compensated difference
blocks. They are processed by the motion compensation ac-
tor a5 in order to obtain the original image frame by taking
into account the motion compensation vectors provided by
the Parser actor. The resulting image is finally stored to an
output file by the FileSnk actor a6. In the following, we will
formally present the SysteMoC modeling concepts in detail.

3.2. SysteMoC concepts

The network graph is the usual representation of an actor-
oriented design. It consists of actors and channels, as seen in
Figure 2. More formally, we can derive the following defini-
tion.

Definition 1 (network graph). A network graph is a directed
bipartite graph gn = (A,C,P,E) containing a set of ac-
tors A, a set of channels C, a channel parameter function
P : C → N∞ × V∗ which associates with each channel c ∈ C
its buffer size n ∈ N∞ = {1, 2, 3, . . . ,∞}, and also a pos-
sibly nonempty sequence v ∈ V∗ of initial tokens, where

Functionality a.F

a|Scale
fscale

i1(1)&o1(1) / fscale ActionActivation pattern
t1

i1 sstart
o1

Input port a.I = {i1} Output port a.O = {o1}
Firing FSM a.R of actor instance a

Figure 3: Visual representation of the Scale actor as used in the
IDCT2D network graph displayed in Figure 4. The Scale actor is
composed of input ports and output ports, its functionality, and the
firing FSM determining the communication behavior of the actor.

V∗ denotes the set of all possible finite sequences of tokens
v ∈ V [6]. Additionally, the network graph consists of di-
rected edges e ∈ E ⊆ (C × A.I) ∪ (A.O × C) between actor
output ports o ∈ A.O and channels as well as channels and
actor input ports i ∈ A.I . These edges are further constraints
such that each channel can only represent a point-to-point
connection, that is, exactly one edge is connected to each ac-
tor port and the in-degree and out-degree of each channel in
the graph are exactly one.

Actors are used to model the functionality. An actor a is
only permitted to communicate with other actors via its ac-
tor ports a.P .1 Other forms of interactor communication are
forbidden. In this sense, a network graph is a specialization of
the framework concept introduced in [29], which can express
an arbitrary connection topology and a set of initial states.
Therefore, the corresponding set of framework states Σ is
given by the product set of all possible sequences of all chan-
nels of the network graph and the single initial state is derived
from the channel parameter function P. Furthermore, due to
the point-to-point constraint of a network graph, two frame-
work actions λ1, λ2 referenced in different framework actors
are constrained to only modify parts of the framework state
corresponding to different network graph channels.

Our actors are composed from actions supplying the ac-
tor with its data transformation functionality and a firing
FSM encoding, the communication behavior of the actor, as
illustrated in Figure 3. Accordingly, the state of an actor is
also divided into the functionality state only modified by the
actions and the firing state only modified by the firing FSM.
As actions do not depend on or modify the framework state

1 We use the “.”-operator, for example, a.P , for denoting member access,
for example, P , of tuples whose members have been explicitly named in
their definition, for example, a ∈ A from Definition 2. Moreover, this
member access operator has a trivial pointwise extension to sets of tuples,
for example, A.P = ⋃a∈A a.P , which is also used throughout this paper.
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their execution corresponds to a sequence of internal transi-
tions as defined in [29].

Thus, we can define an actor as follows.

Definition 2 (actor). An actor is a tuple a = (P ,F ,R) con-
taining a set of actor ports P = I ∪ O partitioned into actor
input ports I and actor output ports O, the actor functionality
F and the firing finite state machine (FSM) R.

The notion of the firing FSM is similar to the concepts
introduced in FunState [34] where FSMs locally control the
activation of transitions in a Petri Net. In SysteMoC, we have
extended FunState by allowing guards to check for available
space in output channels before a transition can be executed.
The states of the firing FSM are called firing states, directed
edges between these firing states are called firing transitions,
or transitions for short. The transitions are guarded by acti-
vation patterns k = kin ∧ kout ∧ kfunc consisting of (i) predi-
cates kin on the number of available tokens on the input ports
called input patterns, for example, i(1) denotes a predicate
that tests the availability of at least one token on the actor
input port i, (ii) predicates kout on the number of free places
on the output ports called output patterns, for example, o(1)
checks if the number of free places of an output is at least
one, and (iii) more general predicates kfunc called function-
ality conditions depending on the functionality state, defined
below, or the token values on the input ports. Additionally,
the transitions are annotated with actions defining the ac-
tor functionality which are executed when the transitions are
taken. Therefore, a transition corresponds to a precise reac-
tion as defined in [29], where an input/output pattern cor-
responds to an I/O transition in the framework model. And
an activation pattern is always a responsible trigger, as actions
correspond to a sequence of internal transitions, which are
independent from the framework state.

More formally, we derive the following two definitions.

Definition 3 (firing FSM). The firing FSM of an actor a ∈ A
is a tuple a.R = (T ,Qfiring, q0firing) containing a finite set of
firing transitions T , a finite set of firing states Qfiring, and an
initial firing state q0firing ∈ Qfiring.

Definition 4 (transition). A firing transition is a tuple t =
(qfiring, k, faction, q′firing) ∈ T containing the current firing state
qfiring ∈ Qfiring, an activation pattern k = kin ∧ kout ∧ kfunc,
the associated action faction ∈ a.F , and the next firing state
q′firing ∈ Qfiring. The activation pattern k is a Boolean func-
tion which determines if transition t can be taken (true) or
not (false).

The actor functionality F is a set of methods of an ac-
tor partitioned into actions used for data transformation and
guards used in functionality conditions of the activation pat-
tern, as well as the internal variables of the actor, and their
initial values. The values of the internal variables of an actor
are called its functionality state qfunc ∈ Qfunc and their initial
values are called the initial functionality state q0func. Actions
and guards are partitioned according to two fundamental

differences between them: (i) a guard just returns a Boolean
value instead of computing values of tokens for output ports,
and (ii) a guard must be side-effect free in the sense that it
must not be able to change the functionality state. These con-
cepts can be represented more formally by the following def-
inition.

Definition 5 (functionality). The actor functionality of an ac-
tor a ∈ A is a tuple a.F = (F,Qfunc, q0func) containing a set
of functions F = Faction ∪ Fguard partitioned into actions and
guards, a set of functionality states Qfunc (possibly infinite),
and an initial functionality state q0func ∈ Qfunc.

Example 1. To illustrate these definitions, we give the formal
representation of the actor a shown in Figure 3. As can be
seen the actor has two ports, P = {i1, o1}, which are par-
titioned into its set of input ports, I = {i1}, and its set of
output ports, O = {o1}. Furthermore, the actor contains ex-
actly one method F .Faction = { fscale}, which is the action
fscale : V × Qfunc → V × Qfunc for generating token v ∈ V
containing scaled IDCT values for the output port o1 from
values received on the input port i1. Due to the lack of any in-
ternal variables, as seen in Example 2, the set of functionality
states Qfunc = {q0func} contains only the initial functionality
state q0func encoding the scale factor of the actor.

The execution of SysteMoC actors can be divided into
three phases. (i) Checking for enabled transitions t ∈ T in
the firing FSM R. (ii) Selecting and executing one enabled
transition t ∈ T which executes the associated actor func-
tionality. (iii) Consuming tokens on the input ports a.I and
producing tokens on the output ports a.O as indicated by the
associated input and output patterns t.kin and t.kout.

3.3. Writing actors in SysteMoC

In the following, we describe the SystemC representation of
actors as defined previously. SysteMoC is a C++ class library
based on SystemC which provides base classes for actors and
network graphs as well as operators for declaring firing FSMs
for these actors. In SysteMoC, each actor is represented as
an instance of an actor class, which is derived from the C++
base class smoc actor, for example, as seen in Example 2,
which describes the SysteMoC implementation of the Scale
actor already shown in Figure 3. An actor can be subdivided
into three parts: (i) actor input ports and output ports, (ii) ac-
tor functionality, and (iii) actor communication behavior en-
coded explicitly by the firing FSM.

Example 2. SysteMoC code for the Scale actor being part of
the MPEG-4 decoder specification.

00 class Scale: public smoc_actor {
01 public:
02 // Input port declaration
03 smoc_port_in<int> i1;
04 // Output port declaration
05 smoc_port_out<int> o1;
06 private:
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07 // Actor parameters
08 const int G, OS;
09
10 // functionality
11 void scale() { o1[0] = OS
12 + (G * i1[0]); }
13
14 // Declaration of firing FSM states
15 smoc_firing_state start;
16 public:
17 // The actor constructor is responsible
18 // for declaring the firing FSM and
19 // initializing the actor
20 Scale(sc_module_name name, int G, int OS)
21 : smoc_actor(name, start),
22 G(G), OS(OS) {
23 // start state consists of
24 // a single self loop
25 start =
26 // input pattern requires at least
27 // one token in the FIFO connected
28 // to input port i1
29 (i1.getAvailableTokens() >= 1) >>
30 // output pattern requires at least
31 // space for one token in the FIFO
32 // connected to output port o1
33 (o1.getAvailableSpace() >= 1) >>
34 // has action Scale::scale and
35 // next state start
36 CALL(Scale::scale) >>
37 start;
38 }
39 };

As known from SystemC, we use port declarations as
shown in lines 2-5 to declare the input and output ports a.P
for the actor to communicate with its environment. Note that
the usage of sc fifo in and sc fifo out ports as pro-
vided by the SystemC library would not allow the separation
of actor functionality and communication behavior as these
ports allow the actor functionality to consume tokens or pro-
duce tokens, for example, by calling read or write methods
on these ports, respectively. For this reason, the SysteMoC
library provides its own input and output port declarations
smoc port in and smoc port out. These ports can only be
used by the actor functionality to peek token values already
available or to produce tokens for the actual communication
step. The token production and consumption is thus exclu-
sively controlled by the local firing FSM a.R of the actor.

The functions f ∈ F of the actor functionality a.F and
its functionality state qfunc ∈ Qfunc are represented by the
class methods as shown in line 11 and by class member
variables (line 8), respectively. The firing FSM is constructed
in the constructor of the actor class, as seen exemplarily
for a single transition in lines 25–37. For each transition
t ∈ R.T , the number of required input tokens, the quantity
of produced output tokens, and the called function of the
actor functionality are indicated by the help of the methods

getAvailableTokens(), getAvailableSpace(), and
CALL(), respectively. Moreover, the source and sink state of
the firing FSM are defined by the C++-operators = and >>.
For a more detailed description of the firing FSM syntax, see
[7].

3.4. Applicationmodeling using SysteMoC

In the following, we will give an introduction to different
MoCs well known in the domain of digital signal process-
ing and their representation in SysteMoC by presenting the
MPEG-4 application in more detail. As explained earlier in
this section, MPEG-4 is a good example of today’s com-
plex signal processing applications. They can no longer be
modeled at a granularity level sufficiently detailed for de-
sign space exploration by restrictive MoCs like synchronous
dataflow (SDF) [35]. However, as restrictive MoCs offer bet-
ter analysis opportunities they should not be discarded for
subsystems which do not need more expressiveness. In our
SysteMoC approach, all actors are described by a uniform
modeling language in such a way that for a considered group
of actors it can be checked whether they fit into a given re-
stricted MoC. In the following, these principles are shown
exemplarily for (i) synchronous dataflow (SDF), (ii) cyclo-
static dataflow (CSDF) [36], and (iii) Kahn process networks
(KPN) [32].

Synchronous dataflow (SDF) actors produce and con-
sume upon each invocation a static and constant amount
of tokens. Hence, their external behavior can be determined
statically at compile time. In other words, for a group of
SDF actors, it is possible to generate a static schedule at
compile time, avoiding the overhead of dynamic schedul-
ing [31, 37, 38]. For homogeneous synchronous dataflow, an
even more restricted MoC where each actor consumes and
produces exactly one token per invocation and input (out-
put), it is even possible to efficiently compute a rate-optimal
buffer allocation [39].

The classification of SysteMoC actors is performed by
comparing the firing FSM of an actor with different FSM
templates, for example, single state with self loop corre-
sponding to the SDF domain or circular connected states cor-
responding to the CSDF domain. Due to the SysteMoC syn-
tax discussed above, this information can be automatically
derived from the C++ actor specification by simply extract-
ing the firing FSM specified in the actor.

More formally, we can derive the following condition:
given an actor a = (P ,F ,R), the actor can be classified as
belonging to the SDF domain if each transition has the same
input pattern and output pattern, that is, for all t1, t2 ∈R.T :
t1.kin ≡ t2.kin ∧ t1.kout ≡ t2.kout.

Our MPEG-4 decoder implementation contains various
such actors. Figure 3 represents the firing FSM of a scaler ac-
tor which is a simple SDF actor. For each invocation, it reads
a frequency coefficient and multiplies it with a constant gain
factor in order to adapt its range.

Cyclo-static dataflow (CSDF) actors are an extension of
SDF actors because their token consumption and produc-
tion do not need to be constant but can vary cyclically. For
this purpose, their execution is divided into a fixed number
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Figure 4: The displayed network graph is the hierarchical refinement of the IDCT2D actor a4 from Figure 2. It implements a two-dimensional
inverse cosine transformation (IDCT) on 8×8 blocks of pixels. As can be seen in the figure, the two-dimensional inverse cosine transforma-
tion is composed of two one-dimensional inverse cosine transformations IDCT-1D1 and IDCT-1D2.

of phases which are repeated periodically. In each phase, a
constant number of tokens is written to or read from each ac-
tor port. Similar to SDF graphs, a static schedule can be gen-
erated at compile time [40]. Although many CSDF graphs
can be translated to SDF graphs by accumulating the to-
ken consumption and production rates for each actor over
all phases, their direct implementation leads mostly to less
memory consumption [40].

In our MPEG-4 decoder, the inverse discrete cosine
transformation (IDCT), as shown in Figure 4, is a candi-
date for static scheduling. However, due to the CSDF actor
Transpose it cannot be classified as an SDF subsystem. But
the contained one-dimensional IDCT is an example of an
SDF subsystem, only consisting of actors which satisfy the
previously given constraints. An example of such an actor is
shown in Figure 3.

An example of a CSDF actor in our MPEG-4 applica-
tion is the Transpose actor shown in Figure 4 which swaps
rows and columns of the 8 × 8 block of pixels. To expose
more parallelism, this actor operates on rows of 8 pixels re-
ceived in parallel on its 8 input ports i1–8, instead of whole
8 × 8 blocks, forcing the actor to be a CSDF actor with 8
phases for each of the 8 rows of a 8 × 8 block. Note that
the CSDF actor Transpose is represented in SysteMoC by
a firing FSM which contains exactly as many circularly con-
nected firing states as the CSDF actor has execution phases.
However, more complex firing FSMs can also exhibit CSDF
semantic, for example, due to redundant states in the fir-
ing FSM or transitions with the same input and output pat-
terns, the same source and destination firing state but dif-
ferent functionality conditions and actions. Therefore, CSDF
actor classification should be performed on a transformed

firing FSM, derived by discarding the action and functional-
ity conditions from the transitions and performing FSMmin-
imization.

More formally, we can derive the following condition:
given an actor a = (P ,F ,R), the actor can be classi-
fied as belonging to the CSDF domain if exactly one tran-
sition is leaving and entering each firing state, that is, for all
q ∈R.Qfiring : |{t ∈ R.T | t.qfiring = q}| = 1∧ |{t ∈ R.T |
t.q′firing = q}| = 1, and each state of the firing FSM is reach-
able from the initial state.

Kahn process networks (KPN) can also be modeled in
SysteMoC by the use of more general functionality condi-
tions in the activation patterns of the transitions. This al-
lows to represent data-dependent operations, for example, as
needed by the bit-stream parsing as well as the decoding of
the variable length codes in the Parser actor. This is exem-
plarily shown for some transitions of the firing FSM in the
Parser actor of the MPEG-4 decoder in order to demon-
strate the syntax for using guards in the firing FSM of an
actor. The actions cannot determine presence or absence of
tokens, or consume or produce tokens on input or output
channels. Therefore, the blocking reads of the KPN networks
are represented by the blocking behavior of the firing FSM
until at least one transition leaving the current firing state
is enabled. The behavior of Kahn process networks must be
independent from the scheduling strategy. But the schedul-
ing strategy can only influence the behavior of an actor if
there is a choice to execute one of the enabled transitions
leaving the current state. Therefore, it is possible to deter-
mine if an actor a satisfies the KPN requirement by check-
ing for the sufficient condition that all functionality con-
ditions on all transitions leaving a firing state are mutually
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exclusive, that is, for all t1, t2 ∈ a.R.T , t1.qfiring = t2.qfiring :
for all qfunc ∈ a.F .Qfunc : t1.kfunc(qfunc) ⇒ ¬t2.kfunc(qfunc) ∧
t2.kfunc(qfunc)⇒ ¬t1.kfunc(qfunc). This guarantees a determin-
istic behavior of the Kahn process network provided that all
actions are also deterministic.

Example 3. Simplified SysteMoC code of the firing FSM ana-
lyzing the header of an individual video frame in the MPEG-
4 bit-stream.

00 class Parser: public smoc actor {
01 public:

02 // Input port receiving MPEG-4 bit-stream

03 smoc port in<int> bits;

04 ...

05 private:

06 // functionality ...

07 // Declaration of guards

08 bool guard vop start() const

09 /∗ code here ∗/
10 bool guard vop done () const

11 /∗ code here ∗/
12 ...

13 // Declaration of firing FSM states
14 smoc firing state vol, ..., vop2,
15 vop3, ..., stuck;
16 public:
17 Parser(sc module name name)
18 : smoc actor(name, vol) {
19 ...
20 vop2 = ((bits.getAvailableTokens() >=
21 VOP START CODE LENGTH) &&
22 GUARD(&Parser::guard vop done)) >>
23 CALL(Parser::action vop done) >>
24 vol
25 | ((bits.getAvailableTokens() >=
26 VOP START CODE LENGTH) &&
27 GUARD(&Parser::guard vop start)) >>
28 CALL(Parser::action vop start) >>
29 vop3
30 | ((bits.getAvailableTokens() >=
31 VOP START CODE LENGTH) &&
32 !GUARD(&Parser::guard vop done) &&
33 !GUARD(&Parser::guard vop start)) >>
34 CALL(Parser::action vop other) >>
35 stuck;
36 ... // More state declarations
37 }
38 };

The data-dependent behavior of the firing FSM is im-
plemented by the guards declared in lines 8-11. These func-
tions can access the values of the input ports without
consuming them or performing any other modifications of
the functionality state. The GUARD()-method evaluates these
guards during determination whether the transition is en-
abled or not.

4. AUTOMATIC DESIGN SPACE EXPLORATION FOR
DIGITAL SIGNAL PROCESSING SYSTEMS

Given an executable signal processing network specification
written in SysteMoC, we can perform an automatic design
space exploration (DSE). For this purpose, we need ad-
ditional information, that is, a formal model for the ar-
chitecture template as well as mapping constraints for the
actors of the SysteMoC application. All these information
are captured in a formal model to allow automatic DSE.
The task of DSE is to find the best implementations ful-
filling the requirements demanded by the formal model.
As DSE is often confronted with the simultaneous opti-
mization of many conflicting objectives, there is in gen-
eral more than a single optimal solution. In fact, the re-
sult of the DSE is the so-called Pareto-optimal set of solu-
tions [41], or at least an approximation of this set. Beside
the task of covering the search space in order to guaran-
tee good solutions, we have to consider the task of evalu-
ating a single design point. In the design of FPGA imple-
mentations, the different objectives to minimize are, namely,
the number of required look-up tables (LUTs), block RAMs
(BRAMs), and flip-flops (FFs). These can be evaluated by
analytic methods. However, in order to obtain good per-
formance numbers for other especially important objec-
tives such as latency and throughput, we will propose a
simulation-based approach. In the following, we will present
the formal model for the exploration, the automatic DSE us-
ingmultiobjective evolutionary algorithms (MOEAs), as well
as the concepts of our simulation-based performance evalu-
ation.

4.1. Design space exploration usingMOEAs

For the automatic design space exploration, we provide a
formal underpinning. In the following, we will introduce
the so-called specification graph [42]. This model strictly
separates behavior and system structure: the problem graph
models the behavior of the digital signal processing al-
gorithm. This graph is derived from the network graph,
as defined in Section 3, by discarding all information in-
side the actors as described later on. The architecture tem-
plate is modeled by the so-called architecture graph. Finally,
the mapping edges associate actors of the problem graph
with resources in the architecture graph by a “can be im-
plemented by” relation. In the following, we will formal-
ize this model by using the definitions given in [42] in
order to define the task of design space exploration for-
mally.

The application is modeled by the so-called prob-
lem graph gp = (Vp,Ep). Vertices v ∈ Vp model ac-
tors whereas edges e ∈ Ep ⊆ Vp × Vp represent data de-
pendencies between actors. Figure 5 shows a part of the
problem graph corresponding to the hierarchical refine-
ment of the IDCT2D actor a4 from Figure 2. This prob-
lem graph is derived from the network graph by a one-
to-one correspondence between network graph actors and
channels to problem graph vertices while abstracting from
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Figure 5: Partial specification graph for the IDCT-1D actor as
shown in Figure 4. The upper part is a part of the problem graph
of the IDCT-1D. The lower part shows the architecture graph con-
sisting of several dedicated resources {F1, F2, AS3, AS4, AS7, AS8} as
well as aMicroBlaze CPU-core {mB1} and anOPB (open peripheral
bus [43]). The dashed lines denote the mapping edges.

actor ports, but keeping the connection topology, that is,
∃ f :gp.Vp→gn.A∪ gn.C, f is a bijection : for all v1, v2 ∈
gp.Vp : (v1, v2) ∈ gp.Ep ⇔ ( f (v1) ∈ gn.C ⇒ ∃p ∈ f (v2).I :
( f (v1), p)∈gn.E)∨( f (v2)∈gn.C⇒∃p∈ f (v1).O : (p, f (v2))∈
gn.E).

The architecture template including functional resources,
buses, and memories is also modeled by a directed graph
termed architecture graph ga = (Va,Ea). Vertices v ∈ Va

model functional resources (RISC processor, coprocessors,
or ASIC) and communication resources (shared buses or
point-to-point connections). Note that in our approach, we
assume that the resources are selected from our component
library as shown in Figure 1. These components can be either
written by hand in a hardware description language or can be
synthesized with the help of high-level synthesis tools such
as Mentor CatapultC [8] or Forte Cynthesizer [9]. This is a
prerequisite for the later automatic system generation as dis-
cussed in Section 5. An edge e ∈ Ea in the architecture graph
ga models a directed link between two resources. All the re-
sources are viewed as potentially allocatable components.

In order to perform an automatic DSE, we need informa-
tion about the hardware resources that might by allocated.
Hence, we annotate these properties to the vertices in the ar-
chitecture graph ga. Typical properties are the occupied area
by a hardware module or the static power dissipation of a
hardware module.

Example 4. For FPGA-based platforms, such as built on
Xilinx FPGAs, typical resources are MicroBlaze CPU, open
peripheral buses (OPB), fast simplex links (FSLs), or user
specified modules representing implementations of actors in
the problem graph. In the context of platform-based FPGA

designs, we will consider the number of resources a hard-
ware module is assigned to, that is, for instance, the number
of required look-up tables (LUTs), the number of required
block RAMs (BRAMs), and the number of required flip-flops
(FFs).

Next, it is shown how user-defined mapping constraints
representing possible bindings of actors onto resources can
be specified in a graph-based model.

Definition 6 (specification graph [42]). A specification graph
gs(Vs,Es) consists of a problem graph gp(Vp,Ep), an architec-
ture graph ga(Va,Ea), and a set of mapping edges Em. In par-
ticular,Vs = Vp∪Va, Es = Ep∪Ea∪Em, where Em ⊆ Vp×Va.

Mapping edges relate the vertices of the problem graph to
vertices of the architecture graph. The edges represent user-
defined mapping constraints in the form of the relation “can
be implemented by.” Again, we annotate the properties of a
particular mapping to an associated mapping edge. Proper-
ties of interest are dynamic power dissipation when execut-
ing an actor on the associated resource or the worst case ex-
ecution time (WCET) of the actor when implemented on a
CPU-core. In order to be more precise in the evaluation, we
will consider the properties associated with the actions of an
actor, that is, we annotate for each action the WCET to each
mapping edge. Hence, our approach will perform an actor-
accurate binding using an action-accurate performance evalu-
ation, as discussed next.

Example 5. Figure 5 shows an example of a specification
graph. The problem graph shown in the upper part is a sub-
graph of the IDCT-1D problem graph from Figure 4. The ar-
chitecture graph consists of several dedicated resources con-
nected by FIFO channels as well as a MicroBlaze CPU-core
and an on-chip bus called OPB (open peripheral bus [43]).
The channels between the MicroBlaze and the dedicated re-
sources are FSLs. The dashed edges between the two graphs
are the additional mapping edges Em that describe the possi-
ble mappings. For example, all actors can be executed on the
MicroBlaze CPU-core. For the sake of clarity, we omitted the
mapping edges for the channels in this example. Moreover,
we do not show the costs associated with the vertices in ga
and the mapping edges to maintain clarity of the figure.

In the above way, the model of a specification graph al-
lows a flexible expression of the expert knowledge about use-
ful architectures and mappings. The goal of design space ex-
ploration is to find optimal solutions which satisfy the spec-
ification given by the specification graph. Such a solution is
called a feasible implementation of the specified system. Due
to the multiobjective nature of this optimization problem,
there is in general more than a single optimal solution.

System synthesis

Before discussing automatic design space exploration in de-
tail, we briefly discuss the notion of a feasible implementation
(cf. [42]). An implementation ψ = (α,β), being the result of
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a system synthesis, consists of two parts: (1) the allocation α
that indicates which elements of the architecture graph are
used in the implementation and (2) the binding β, that is,
the set of mapping edges which define the binding of ver-
tices in the problem graph to resources of the architecture
graph. The task of system synthesis is to determine optimal
implementations. To identify the feasible region of the de-
sign space, it is necessary to determine the set of feasible al-
locations and feasible bindings. A feasible binding guarantees
that communications demanded by the actors in the problem
graph can be established in the allocated architecture. This
property makes the resulting optimization problem hard to
be solved. A feasible allocation is an allocation α that allows at
least one feasible binding β.

Example 6. Consider the case that the allocation of vertices
in Figure 5 is given as α = {mB1,OPB,AS3, AS4}. A feasible
binding can be given by β = {(Fly1,mB1), (Fly2,mB1),
(AddSub3,AS3), (AddSub4,AS4), (AddSub7,mB1), (AddSub8,
mB1)}. All channels in the problem graph are mapped onto
the OPB.

Given the implementation ψ, some properties of ψ can
be calculated. This can be done analytically or simulation-
based.

The optimization problem

Beside the problem of determining a single feasible solu-
tion, it is also important to identify the set of optimal so-
lutions. This is done during automatic design space explo-
ration (DSE). The task of automatic DSE can be formulated
as amultiobjective combinatorial optimization problem.

Definition 7 (automatic design space exploration). The
task of automatic design space exploration is the following
multiobjective optimization problem (see, e.g., [44]) where
without loss of generality, only minimization problems are
assumed here:

minimize f (x),

subject to :

x represents a feasible implementation ψ,

ci(x) ≤ 0, ∀i ∈ {1, . . . , q},

(1)

where x = (x1, x2, . . . , xm) ∈ X is the decision vector, X is
the decision space, f (x) = ( f1(x), f2(x), . . . , fn(x)) ∈ Y is the
objective function, and Y is the objective space.

Here, x is an encoding called decision vector represent-
ing an implementation ψ. Moreover, there are q constraints
ci(x), i = 1, . . . , q, imposed on x defining the set of feasible
implementations. The objective function f is n-dimensional,
that is, n objectives are optimized simultaneously. For exam-
ple, in embedded system design it is required that the mon-
etary cost and the power dissipation of an implementation
are minimized simultaneously. Often, objectives in embed-
ded system design are conflicting [45].

Only those design points x ∈ X that represent a feasible
implementation ψ and that satisfy all constraints ci are in the
set of feasible solutions, or for short in the feasible set called
Xf = {x | ψ(x) being feasible∧ c(x) ≤ 0} ⊆ X .

A decision vector x ∈ Xf is said to be nondominated re-
garding a set A ⊆ Xf if and only if �a ∈ A : a � x with a � x
if and only if for all i : fi(a) ≤ fi(x).2 A decision vector x is
said to be Pareto optimal if and only if x is nondominated
regarding Xf. The set of all Pareto-optimal solutions is called
the Pareto-optimal set, or the Pareto set for short.

We solve this challenging multiobjective combinatorial
optimization problem by using the state-of-the-art MOEAs
[46]. For this purpose, we use sophisticated decoding of the
individuals as well as integrated symbolic techniques to im-
prove the search speed [2, 42, 47–49]. Beside the task of cov-
ering the design space using MOEAs, it is important to eval-
uate each design point. As many of the considered objectives
can be calculated analytically (e.g., FPGA-specific objectives
such as total number of LUTs, FFs, BRAMs), we need in gen-
eral more time-consuming methods to evaluate other objec-
tives. In the following, we will introduce our approach to a
simulation-based performance evaluation in order to assess
an implementation by means of latency and throughput.

4.2. Simulation-based performance evaluation

Many system-level design approaches rely on application
modeling using static dataflow models of computation for
signal processing systems. Popular dataflow models are SDF
and CSDF or HSDF. Those models of computation allow
for static scheduling [31] in order to assess the latency and
throughput of a digital signal processing system. On the
other hand, the modeling restrictions often prohibit the rep-
resentation of complex real-world applications, especially if
data-dependent control flow or data-dependent actor acti-
vation is required. As our approach is not limited to static
dataflow models, we are able to model more flexible and
complex systems. However, this implies that the performance
evaluation in general is not any longer possible through static
scheduling approaches.

As synthesizing a hardware prototype for each de-
sign point is also too expensive and too time-consuming,
a methodology for analyzing the system performance is
needed. Generally, there exist two options to assess the per-
formance of a design point: (1) by simulation and (2) by ana-
lytical methods. Simulation-based approaches permit a more
detailed performance evaluation than formal analyses as the
behavior and the timing can interfere as is the case when
using nondeterministic merge actors. However, simulation-
based approaches reveal only the performance for certain
stimuli. In this paper, we focus on a simulation-based per-
formance evaluation and we will show how to generate effi-
cient SystemC simulation models for each design point dur-
ing DSE automatically.

Our performance evaluation concept is as follows: during
design space exploration, we assess the performance of each

2 Without loss of generality, only minimization problems are considered.
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feasible implementation with respect to a given set of stimuli.
For this purpose, we also model the architecture in SystemC
by means of the so-called virtual processing components [50]:
for each activated vertex in the architecture graph, we create
such a virtual processing component. These components are
called virtual as they are not able to perform any computa-
tion but are only used to simulate the delays of actions from
actors mapped onto these components. Thus, our simulation
approach is called virtual processing components.

In order to simulate the timing of the given SysteMoC ap-
plication, the actors are mapped onto the virtual processing
components according to the binding β. This is established
by augmenting the end of all actions f ∈ a.F .Faction of each
actor a ∈ gn.A with the so-called compute function calls. In
the simulation, these function calls will block an actor un-
til the corresponding virtual processing components signal
the end of the computation. Note that this end time gener-
ally depends on (i) the WCET of an action, (ii) other actors
bound onto the same virtual processing component, as well
as (iii) the stimuli used for simulation. In order to simulate
effects of resource contention and resolve resource conflicts,
a scheduling strategy is associated with each virtual process-
ing component. The scheduling strategy might be either pre-
emptive or nonpreemptive, like first come first served, round
robin, priority based [51].

Beside modeling WCETs of each action, we are able to
model functional pipelining in our simulation approach.
This is established by distinction of WCET and the so-called
data introduction interval (DII). In this case, resource con-
tention is only considered during the DII. The difference be-
tween WCET and DII is an additional delay for the produc-
tion of output tokens of a computation and does not occupy
any resources.

Example 7. Figure 6 shows an example for modeling pre-
emptive scheduling. Two actors, AddSub7 and AddSub8, per-
form compute function calls on the instantiated MicroB-
laze processor mB1. We assume in this example that the
MicroBlaze applied a priority-based scheduling strategy for
scheduling all actor action execution requests that are bound
to the MicroBlaze processor. We also assume that the actor
AddSub7 has a higher priority than the actor AddSub8. Thus,
the execution of the action faddsub of the AddSub7 actor pre-
empts the execution of the action f ′addsub of the AddSub8 ac-
tor. Our VPC framework provides the necessary interface be-
tween virtual processing components and schedulers: the vir-
tual processing component notifies the scheduler about each
compute function call while the scheduler replies with its
scheduling decision.

The performance evaluation is performed by a combined
simulation, that is, we simulate the functionality and the
timing in one single simulation model. As a result of the
SystemC-based simulation, we get traces logged during the
simulation, showing the activation of actions, the start times,
as well as the end times. These traces are used to assess the
performance of an implementation by means of average la-
tency and average throughput. In general, this approach leads

Functional model

AddSub7 AddSub8

Architecture mapping

MicroBlaze mB1 Priority scheduler

compute

( f
′
addsub) ready

compute
( faddsub) ready

blockreturn

blockreturn

SysteMoC SystemC/XML

Figure 6: Example of modeling preemptive scheduling within the
concept of virtual processing components [50]: two actor actions
compete for the same virtual processing component by compute

function calls. An associated scheduler resolves the conflict by se-
lecting the action to be executed.

to very precise simulation results according to the level of ab-
straction, that is, action accuracy.

Compared to other approaches, we support a detailed
performance evaluation of heterogeneous multiprocessor ar-
chitectures supporting arbitrary preemptive and nonpre-
emptive scheduling strategies, while needing almost no
source code modifications. The approach given in [52, 53]
allows for modeling of real-time scheduling strategies by
introducing a real-time operating system (RTOS) module
based on SystemC. Therefore, each atomic operation, for ex-
ample, any code line, is augmented by an await() func-
tion call within all software tasks. Each of those function
calls enforces a scheduling decision, also known as cooper-
ative scheduling. On top of those predetermined breaking
points, the RTOS module emulates a preemptive schedul-
ing policy for software tasks running on the same RTOS
module. Another approach found in [54] motivates the so-
called virtual processing units (VPU) for representing pro-
cessors. Each VPU supports only a priority-based schedul-
ing strategy. Software processes are modeled as timed com-
munication extended finite state machines (tCEFSM). Each
state transition of a tCEFSM represents an atomic opera-
tion and consumes a fixed amount of processor cycles. The
modeling of time is the main limitation of this approach, be-
cause each transition of a tCEFSM requires the same number
of processor cycles. Our VPC framework overcomes those
limitations by combining (i) action-accurate, (ii) resource-
accurate, and (iii) contention- and scheduling-accurate tim-
ing simulation.

In the Sesame framework [12] a virtual processor is used
to map an event trace to a SystemC-based transaction level
architecture simulation. For this purpose, the application
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code given as a Kahn process network is annotated with
read,write, and execute statements.While executing the Kahn
application, traces of application events are generated and
passed to the virtual processor. Computational events (exe-
cute) are dispatched directly by the virtual processor which
simulates the timing and communication events (read,write)
are passed to a transaction level SystemC-based architecture
simulator. As the scheduling of an event trace in a virtual pro-
cessor does not affect the application, the Sesame framework
does not support modeling of time-dependent application
behavior. In our VPC framework, application and architec-
ture are simulated in the same simulation-time domain and
thus the blocking of a compute function call allows for sim-
ulation of time-dependent behavior. Further on, we do not
explicitly distinguish between communication and compu-
tational execution, instead both types of execution use the
compute function call for timing simulation. This abstract
modeling of computation and communication delays results
in a fast performance evaluation, but does not reveal the de-
tails of a transaction level simulation.

One important aspect of our design flow is that we can
generate these efficient simulation models automatically.
This is due to our SysteMoC library.3 As we have to control
the three phases in the simulation as discussed in Section 3.2,
we can introduce the compute function calls directly at the
end of phase (ii), that is, no additional modifications of the
source code are necessary when using SysteMoC.

In summary, the advantages of virtual processing com-
ponents are (i) a clear separation between model of compu-
tation and model of architecture, (ii) a flexible mapping of
the application to the architecture, (iii) a high level of ab-
straction, and (iv) the combination of functional simulation
together with performance simulation.

While performing design space exploration, there is a
need for a rapid performance evaluation of different alloca-
tions α and bindings β. Thus, the VPC framework was de-
signed for a fast simulation model generation. Figure 7 gives
an overview of the implemented concepts. Figure 7(a) shows
the implementation ψ = (α,β) as a result of the automatic
design space exploration. In Figure 7(b), the automatically
generated VPC simulation model is shown. The so-called
Director is responsible for instantiating the virtual process-
ing components according to a given allocation α. Moreover,
the binding β is performed by the Director, in mapping each
SysteMoC actor compute function call to the bound virtual
processing components.

Before running the simulation, the Director is config-
ured with the necessary information, that is, implementation
which should be evaluated. Finally, the Director manages the
mapping parameters, that is, WCETs and DII of the actions
in order to control the simulation times. The configuration
is performed through an .xml-file omitting unnecessary re-
compilations of the simulation model for each design point
and, thus, allowing for a fast performance evaluation of large
populations of implementations.

3 VPC can also be used together with plain SystemC modules.
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Figure 7: Approach to (i) action-accurate, (ii) resource-accurate,
and (iii) contention- and scheduling-accurate simulation-based
performance evaluation. (a) An example of one implementation as
result of the automatic DSE, and (b) the corresponding VPC sim-
ulation model. The Director constructs the virtual processing com-
ponents according to the allocation α. Additionally, theDirector im-
plements the binding of SysteMoC actors onto the virtual process-
ing components according to a specific binding β.

5. AUTOMATIC SYSTEMGENERATION

The result of the automatic design space exploration is a set
of nondominated solutions. From these solutions, the de-
signer can select one implementation according to additional
requirements or preferences. This process is known as deci-
sion making in multiobjective optimization.
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In this section, we show how to automatically generate
a hardware/software implementation for FPGA-based SoC
platforms according to the selected allocation and binding.
For this purpose, three tasks must be performed: (1) gen-
erate the allocated hardware modules, (2) generate the nec-
essary software for each allocated processor core including
action code, communication code, and finally scheduling
code, and (3) insert the communication resources establish-
ing software/software, hardware/hardware, as well as hard-
ware/software communication. In the following, we will in-
troduce our solution to these three tasks. Moreover, the effi-
ciency of our provided communication resources will be dis-
cussed in this section.

5.1. Generating the architecture

Each implementation ψ = (α,β) produced by the automatic
DSE and selected by the designer is used as input to our au-
tomatic system generator for FPGA-based SoC platforms. In
our following case study, we specify the system generation
flow for Xilinx FPGA platforms only. Figure 8 shows the gen-
eral flow for Xilinx platforms. The architecture generation is
threefold: first, the system generator automatically generates
the MicroBlaze subsystems, that is, for each allocated CPU
resource, a MicroBlaze subsystem is instantiated. Second, the
system generator automatically inserts the allocated IP cores.
Finally, the system generator automatically inserts the com-
munication resources. The result of this architecture gener-
ation is a hardware description file (.mhs-file) in case of the
Xilinx EDK (embedded development Kit [55]) toolchain. In
the following, we discuss some details of the architecture gen-
eration process.

According to these three above-mentioned steps, the re-
sources in the architecture graph can be classified to be of
typeMicroBlaze, IP core, orChannel. In order to allow a hard-
ware synthesis of this architecture, the vertices in the archi-
tecture graph contain additional information, as, for exam-
ple, the memory sizes of the MicroBlazes or the names and
versions of VHDL descriptions representing the IP cores.

Beside the information stored in the architecture graph,
information of the SysteMoC applicationmust be considered
during the architecture generation as well. A vertex in the
problem graph is either of typeActor or of type Fifo. Consider
the Fly1 actor and communication vertices between actors
shown in Figure 8, respectively. A vertex of type Actor con-
tains information about the order and values of constructor
parameters belonging to the corresponding SysteMoC actor.
A vertex of type Fifo contains information about the depth
and the data type of the communication channel used in the
SysteMoC application. If a SysteMoC actor is bound onto a
dedicated IP core, the VHDL/Verilog source files of the IP
core must be stored in the component library (see Figure 8).
For each vertex of type Actor, the mapping of SysteMoC con-
structor parameters to corresponding VHDL/Verilog gener-
ics is stored in an actor information file to avoid, for example,
name conflicts. Moreover, the mapping of SysteMoC ports to
VHDL ports has to be taken into account as they do not have
to be necessarily the same.

As the system generator traverses the architecture graph,
it starts for each vertex in the architecture graph of type Mi-
croBlaze or IP core the corresponding subsynthesizer which
produces an entry in the EDK architecture file. The vertices
which are mapped onto a MicroBlaze are determined and
registered for the automatic software generation, as discussed
in the next section.

After instantiating the MicroBlaze cores and the IP
cores, the final step is to insert the communication re-
sources. These communication resources are taken from
our platform-specific communication library (see Figure 8).
We will discuss this communication library in more de-
tail in Section 5.3. For now, we only give a brief introduc-
tion. The software/software communication of SysteMoC
actors is done through special SysteMoC software FIFOs
by exchanging data within the MicroBlaze by reads and
writes to local memory buffers. For hardware/hardware
communication, that is, communication between IP cores,
we insert the special so-called SysteMoC FIFO which al-
lows, for example, nondestructive reads. It will be dis-
cussed in more detail in Section 5.3. The hardware/software
communication is mapped on special SysteMoC hard-
ware/software FIFOs. These FIFOs are connected to instan-
tiated fast simplex link (FSL) ports of a MicroBlaze core.
Thus, outgoing and incoming communication of actors run-
ning on a MicroBlaze use the corresponding implemen-
tation which transfers data via the FSL ports of MicroB-
laze cores. In case of transmitting data from an IP core
to a MicroBlaze, the so-called smoc2fsl-bridge transfers data
from the IP core to the corresponding FSL port. The op-
posite communication direction instantiates an fsl2smoc-
bridge.

After generating the architecture and running our soft-
ware synthesis tool for SysteMoC actors mapped onto each
MicroBlaze, as discussed next, several Xilinx implementation
tools are started which produce the platform specific bit file
by using several Xilinx synthesis tools includingmb-gcc,map,
par, bitgen, data2mem, and so on. Finally, the bit file can be
loaded on the FPGA platform and the application can be run.

5.2. Generating the software

In case multiple actors are mapped onto one CPU-core, we
generate the so-called self-schedules, that is, each actor is
tested round robin if it has a fireable action. For this purpose,
each SysteMoC actor is translated into a C++ class. The actor
functionalityF is copied to the new C++ class, that is, mem-
ber variables and functions. Actor ports P are replaced by
pointers to the SysteMoC software FIFOs. Finally, for the fir-
ing FSM R, a special method called fire is generated. Thus,
the fire method checks the activation of the actor and per-
forms if possible an activated state transition.

To finalize the software generation, instances of each ac-
tors corresponding C++ class as well as instances of required
SysteMoC software FIFOs are created in a top-level file. In
our default implementation, the main function of each CPU-
core consists of a while(true) loop which tries to execute
each actor in a round robin discipline (self-scheduling).
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Figure 8: Automatic system generation: starting with the selected implementation within the automatic DSE, the system generator automat-
ically generates the MicroBlaze subsystems, inserts the allocated IP cores, and finally connects these functional resources by communication
resources. The bit file for configuring the FPGA is automatically generated by an additional software synthesis step and by using the Xilinx
design tools, that is, the embedded development kit (EDK) [55] toolchain.

The proposed software generation shows similarities to
the software generations discussed in [56, 57]. However,
in future work our approach has the potential to replace
the above self-scheduling strategy by more sophisticated
dynamic scheduling strategies or even optimized static or
quasi-static schedules by analyzing the firing FSMs.

In future work we can additionally modify the software
generation for DSPs to replace the actor functionalityF with
an optimized function provided by DSP vendors, similar as
described in [58].

5.3. SysteMoC communication resources

In this section, we introduce our communication library
which is used during system generation. The library sup-
ports software/software, hardware/hardware, as well as hard-

ware/software communication. All these different kinds of
communication provide the same interface as shown in
Table 1. This is a quite intuitive interface definition that is
similar to interfaces used in other works, like, for example,
[59]. In the following, we call each communication resource
which implements our interface a SysteMoC FIFO.

The SysteMoC FIFO communication resource provides
three different services. They store data, transport data, and
synchronize the actors via availability of tokens, respectively,
buffer space. The implementation of this communication re-
source is not limited to be a simple FIFO, it may, for exam-
ple, consist of two hardware modules that communicate over
a bus. In this case, one of the modules would implement the
read interface, the other one the write interface.

To be able to store data in the SysteMoC FIFO, it has
to contain a buffer. Depending on the implementation, this
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Table 1: SysteMoC FIFO interface.

Operation Behavior

rd tokens()
Returns howmany tokens can be read from
the SysteMoC-FIFO (available tokens).

wr tokens()
Returns how many tokens can be written
into the SysteMoC-FIFO (free tokens).

read(offset)
Reads a token from a given offset relative to
the first available token. The read token is
not removed from the SysteMoC-FIFO.

write(offset, value)
Writes a token to a given offset relative to
the first free token. The written token is not
made available.

rd commit(count)
Removes count tokens from the SysteMoC-
FIFO.

wr commit(count) Makes count tokens available for reading.

buffer may also be distributed over different modules. Of
course, it would be possible to optimize the buffer sizes for
a given application. However, this is currently not supported
in SystemCoDesigner. The network graph given by the user
contains buffer sizes.

As can be seen from Table 1, a SysteMoC FIFO is more
complex than a simple FIFO. This is due to the fact that sim-
ple FIFOs do not support nonconsuming read operations for
guard functions and that SysteMoC FIFOs must be able to
commit more than one read or written token.

For actors that are implemented in software, our com-
munication library supports an efficient software implemen-
tation of the described interface. These SysteMoC software
FIFOs are based on shared memory and thus allow actors to
use a low-overhead communication. For hardware/hardware
communication, there is an implementation for Xilinx FP-
GAs in our communication library. This SysteMoC hard-
ware FIFO uses embedded Block RAM (BRAM) and allows
to write and read tokens concurrently every clock cycle. Due
to the more complex operations of the SysteMoC hardware
FIFO, they are larger than simple native FIFOs created with,
for example, CORE Generator for Xilinx FPGAs.

For a comparison, we synthesized different 32 bit wide
SysteMoC hardware FIFOs as well as FIFOs generated by Xil-
inx’s CORE generator for an Xilinx XC2VP30 FPGA. The
CORE generator FIFOs are created using the synchronous
FIFO v5.0 generator without any optional ports and using
BRAM. Figure 9 shows the number of occupied flip-flops
(FFs) and 4-input look-up tables (LUTs) for FIFOs of differ-
ent depths. The number of used Block RAMs only depends
on the depth and the width of the FIFOs and thus does not
vary between SysteMoC and CORE Generator FIFOs.

As Figure 9 shows, the maximum overhead for 4096 to-
kens depth FIFOs is just 12 FFs and 33 4-input LUTs. Com-
pared to the required 8 BRAMs, this is a very small overhead.
Even the maximum clock rates for these FIFOs are very sim-
ilar and with more than 200MHz about 4 times higher than
typically required.

The last kind of communication resources is the Syste-
MoC hardware/software FIFOs. Our communication library
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Figure 9: Comparison of (a) flip-flops (FF) and (b) 4-input look-
up tables (LUTs) for SysteMoC hardware FIFOs and simple native
FIFOs generated by Xilinx’s CORE Generator.

supports two different types called smoc2fsl-bridge and
fsl2smoc-bridge. As the name suggests, the communication is
done via fast simplex links (FSLs). In order to provide the
SysteMoC FIFO interface as shown in Table 1 to the software,
there is a software driver with some local memory to imple-
ment this interface and access the FSL ports of the MicroB-
lazes. The smoc2fsl-bridge and fsl2smoc-bridge are required
adapters to connect hardware SysteMoC FIFOs to FSL ports.
Therefore, the smoc2fsl-bridge reads values from a connected
SysteMoC FIFO and writes them to the FSL port. On the
other side, the fsl2smoc-bridge allows to transfer data from
a FSL port to a hardware SysteMoC FIFO.
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6. RESULTS

In this section, we demonstrate first results of our design flow
by applying it to the two-dimensional inverse discrete co-
sine transform (IDCT2D) being part of the MPEG-4 decoder
model. Principally, this encompasses the following tasks. (i)
Estimation of the attributes, like number of flip-flops or ex-
ecution delays required for the automatic design space ex-
ploration (DSE). (ii) Generation of the specification graph
and performing the automatic DSE. (iii) Selection of design
points due to the designer’s preferences and their automatic
translation into a hardware/software system with the meth-
ods described in Section 5. In the following, we will present
these issues as implemented in SystemCoDesigner in more
detail using the IDCT2D example. Moreover, we will analyze
the accuracy between design parameters estimated by our
simulation model and the implementation as a first step to-
wards an optimized design flow. By restricting to the IDCT2D
with its data independent behavior, comparison between the
VPC estimates and the measured values of the real imple-
mentations can be performed particularly well. This allows
to clearly show the benefits of our approach as well as to an-
alyze the reasons for observed differences.

6.1. Determination of the actor attributes

As described in Section 4, automatic design space explo-
ration (DSE) selects implementation alternatives based on
different objectives as, for example, the number of hardware
resources or achieved throughput and latency. These objec-
tives are calculated based on the information available for a
single actor action or hardware module. For the hardware
modules, we have taken into account the number of flip-
flops (FFs), look-up tables (LUTs), and block RAM (BRAM).
As our design methodology allows for parameterized hard-
ware IP cores, and as the concrete parameter values influ-
ence the required hardware resources, the latter ones are de-
termined by generating an implementation where each actor
is mapped to the corresponding hardware IP core. A synthe-
sis run with a tool like Xilinx XST then delivers the required
values.

Furthermore, we have derived the execution time for
each actor action if implemented as hardware module.
Whereas the hardware resource attributes differ with the ac-
tor parameters, the execution times stay constant for our ap-
plication and can hence be predetermined once for each IP
core by VHDL code analysis. Additionally, the software exe-
cution time is determined for each action of each SysteMoC
actor through processing it by our software synthesis tool
(see Section 5.2) and execution on the MicroBlaze proces-
sor, stimulated by a test pattern. The corresponding execu-
tion times can then be measured using an instruction set sim-
ulator, a hardware profiler, or a simulation with, for example,
Modelsim [8].

6.2. Performing automatic design space exploration

To start the design space exploration we need to construct a
specification graph for our IDCT2D example which consists of

Table 2: Results of a design space exploration running for 14 hours
and 18 minutes using a Linux workstation with a 1800MHz AMD
Athlon XP Processor and 1GB of RAM.

Parameter Value

Population archive 500

Parents 75

Children 75

Generations 300

Individuals overall 23 000

Nondominated individuals 1 002

Exploration time 14 h 18min

Overall simulation time 3 h 18min

Simulation time 0.52 s/individual

about 45 actors and about 90 FIFOs. Starting from the prob-
lem graph, an architecture template is constructed, such that
a hardware-only solution is possible. In other words, each
actor can be mapped to a corresponding dedicated hard-
ware module. For the FIFOs, we allow two implementation
alternatives, namely, block RAM (BRAM) based and look-
up table (LUT) based. Hence, we force the automatic design
space exploration to find the best implementation for each
FIFO. Intuitively, large FIFOs should make use of BRAMs as
otherwise too many LUTs are required. Small FIFOs on the
other hand can be synthesized using LUTs, as the number of
BRAMs available in an FPGA is restricted.

To this hardware-only architecture graph, a variable
number of MicroBlaze processors are added, so that each ac-
tor can also be executed in software. In this paper, we have
used a fixed configuration for the MicroBlaze softcore pro-
cessor including 128 kB of BRAM for the software. Finally,
the mapping of the problem graph to this architecture graph
is determined in order to obtain the specification graph. The
latter one is annotated with the objective attributes deter-
mined as described above and serves as input to the auto-
matic DSE.

In our experiments, we explore a five-dimensional design
space where throughput is maximized, while latency, number
of look-up tables (LUTs), number of flip-flops (FFs), as well
as the sum of BRAM and multiplier resources are minimized
simultaneously. The BRAM and the multiplier resources are
combined to one objective, as they cannot be allocated inde-
pendently in Xilinx Virtex-II Pro devices. In general, a pair
of one multiplier and one BRAM conflict each other by us-
ing the same communication resources in a Xilinx Virtex-II
Pro device. For some special cases a combined usage of the
BRAM-multiplier pair is possible. This could be taken into
account by our design space exploration through inclusion
of BRAM access width. However, for reasons of clarity this is
not considered furthermore in this paper.

Table 2 gives the results of a single run of the design space
exploration of the IDCT2D. The exploration has been stopped
after 300 generations which corresponds to 14 hours, and 18
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Table 3: Comparison of the results obtained by estimation during exploration and after system synthesis. The last table line shows the values
obtained for an optimized two-dimensional IDCT module generated by the Xilinx CORE Generator, working on 8× 8 blocks.

SW-actors LUT FF BRAM/MUL Throughput (Blocks/s) Latency (μs/Block)

0
12 436 7 875 85 155 763.23 22.71 Estimation

11 464 7 774 85 155 763.23 22.27 Synthesis

8.5% 1.3% 0% 0% 2.0% rel. error

24
8 633 4 377 85 75.02 65 505.50 Estimation

7 971 4 220 85 70.84 71 058.87 Synthesis

8.3% 3.7% 0% 5.9% 7.8% rel. error

40
3 498 2 345 70 45.62 143 849.00 Estimation

3 152 2 175 70 24.26 265 427.68 Synthesis

11.0% 7.8% 0% 88.1% 45.8% rel. error

44
2 166 1 281 67 41.71 157 931.00 Estimation

1 791 1 122 67 22.84 281 616.43 Synthesis

23.0% 14.2% 0% 82.6% 43.9% rel. error

All
1 949 1 083 67 41.27 159 547.00 Estimation

1 603 899 67 22.70 283 619.82 Synthesis

21.6% 20.5% 0% 81.8% 43.7% rel. error

0 2 651 3 333 1 781 250.00 1.86 CORE Generator

minutes.4 This exploration run was made on a typical Linux
workstation with a single 1800MHz AMD Athlon XP Pro-
cessor and a memory size of 1GB. Main part of the time
was used for simulation and subsequent throughput and la-
tency calculation for each design point using SysteMoC and
the VPC framework. More precisely, the accumulated wall-
clock time for all individuals is about 3 hours and the ac-
cumulated time needed to calculate the performance num-
bers is about 6 hours, leading to average wall-clock time of
0.52 seconds and 0.95 seconds, respectively. The set of stim-
uli used in simulation consists of 10 blocks with size of 8× 8
pixels. In summary, the exploration produced 23 000 design
points over 300 populations, having 500 individuals and 75
children in each population.5 At the end of the design space
exploration, we counted 1,002 non-dominated individuals.
Two salient Pareto-optimal solutions are the hardware-only
solution and the software-only solution. The hardware-only
implementation obtains the best performance with a la-
tency of 22.71 μs/Block and a throughput of one block each
6.42 μs, more than 155.76 Blocks/ms. The software-only so-
lution needs the minimum number of 67 BRAMs and multi-
pliers, theminimumnumber of 1 083 flip-flops, and themin-
imum number of 1 949 look-up tables.

6.3. Automatic system generation

To demonstrate our system design methodology, we have se-
lected 5 design points generated by the design space explo-
ration, which are automatically implemented by our system
generator tool.

4 Each generation corresponds to a population of several individuals where
each individual represents a hardware/software solution of the IDCT2D
example.

5 The initial population started with 500 random generated individuals.

Table 3 shows both the values determined by the ex-
ploration tool (estimation), as well as those measured for
the implementation (synthesis). Considering the hardware
resources, the estimations obtained during exploration are
quite close to the results obtained for the synthesized FPGA
circuit. The variations can be explained by post synthesis op-
timizations as, for example, by register duplication or re-
moval, by trimming of unused logic paths, and so forth,
which cannot be taken into account by our exploration tool.
Furthermore, the size of the MicroBlaze varies with its con-
figuration, as, for example, the number of FSL links. As we
have assumed the worst case of 16 used FSL ports per Mi-
croBlaze, this effect can be particularly well seen for the
software-only solution, where the influence of the missing
FSL links is clearly visible.

Concerning throughput and latency, we have to distin-
guish two cases: pure hardware implementations and designs
including a processor softcore. In the first case, there is a quite
good match between the expected values obtained by simu-
lation and the measured ones for the concrete hardware im-
plementation. Consequently, our approach for characteriz-
ing each hardware module individually as an input for our
actor-based VPC simulation shows to be worthwhile. The
observed differences between the measured values and the
estimations performed by the VPC framework can be ex-
plained by the early communication behavior of several IP
cores as explained in Section 6.3.1.

For solutions including software, the differences aremore
pronounced. This is due to the fact that our simulation is
only an approximation of the implementation. In partic-
ular, we have identified the following sources for the ob-
served differences: (i) communication processes encompass-
ing more than one hardware resource, (ii) the scheduling
overhead caused by software execution, (iii) the execution or-
der caused by different scheduling policies, and (iv) variable
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Table 4: Overall overhead for the implementations shown in Table 3. The overhead due to scheduling decisions is given explicitly.

SW-actors Overhead Throughput (Blocks/s) Latency (μs/Block)

Overall Sched. Cor. simulation Cor. error Cor. simulation Cor. error

24 6.9% 0.9% 69.84 1.4% 70 360.36 1.0%

40 43.7% 39.9% 25.68 5.9% 255 504.44 3.7%

44 41.3% 40.2% 24.48 7.2% 269 047.70 4.5%

All 41.0% 41.0% 24.36 7.3% 270 267.58 4.7%

guard and action execution times caused by conditional code
statements.

In the following sections, we will shortly review each of
the above-mentioned points explaining the discrepancy be-
tween the VPC values for throughput and latency and the
results of our measurements.

Finally, Section 6.3.5 is dedicated to the comparison of
the optimized CORE Generator module and the implemen-
tations obtained by our automatic approach.

6.3.1. Early communication of hardware IP cores

The differences occurring for the latency values of the
hardware-only solution can be mainly explained by the com-
munication behavior of the IP cores. According to SysteMoC
semantics, communication takes only place after having ex-
ecuted the corresponding action. In other words, the con-
sumed tokens are only removed from the input FIFOs after
the actor action has been terminated. The equivalent holds
for the produced tokens.

For hardware modules, this behavior is not very com-
mon. Especially the input tokens are removed from the input
FIFOs rather than at the beginning of the action. Hence, this
can lead to earlier firing times of the corresponding source
actor in hardware than supposed by the VPC simulation.
Furthermore, some of the IP cores pass the generated val-
ues to the output FIFOs’ some clock cycles before the end
of the actor action. Examples are, for instance, the actors
block2row and transpose. Consequently, the correspond-
ing sink actor can also fire earlier. In the general case, this be-
havior can lead to variations in both throughput and latency
between the estimation performed by the VPC framework
and the measured value.

6.3.2. Multiresource communication

For the hardware/software systems, parts of the differences
observed between the VPC simulation and the real imple-
mentation can be attributed to the communication processes
between IP cores and the MicroBlaze. As our SysteMoC FI-
FOs allow for access to values addressed by an offset (see
Section 5.3), it is not possible to directly use the FSL inter-
face provided by the MicroBlaze processor. Instead, a soft-
ware layer has to be added. Hence, a communication between
both aMicroBlaze and an IP core activates the hardware itself
as well as the MicroBlaze. In order to represent this behavior
correctly in our VPC framework, a communication process
between a hardware and a software actor must be mapped

to several resources (multihop communication). As the cur-
rent version of our SystemCoDesigner does not provide this
feature, the hardware/software communication can only be
mapped to the hardware FIFO. Consequently, the time which
the MicroBlaze spends for the communication is not cor-
rectly taken into account and the estimations for throughput
and latency performed by the VPC framework are too opti-
mistic.

6.3.3. Scheduling overhead

A second major reason for the discrepancy between the VPC
estimations and the real implementations is situated in the
scheduling overhead. The latter one is the time required
for determination of the next actor which can be executed.
Whereas in our simulation performed during automatic de-
sign space exploration, this decision can be performed in
zero time (simulated time), this is not true any more for im-
plementations running on a MicroBlaze processor. This is
because the test whether an actor can be fired requires the
verification of all conditions for the next possible transitions
of the firing state machine. This results in one or more func-
tion calls.

In order to assess the overhead which is not taken
into account by our VPC simulation, we evaluated it for
each example implementation given in Table 3 by hand.
For the software-only solutions, this overhead exactly cor-
responds to the scheduling decisions, whereas for the hard-
ware/software realizations it encompasses both schedule de-
cisions and communication overhead on the MicroBlaze
processor (Section 6.3.2).

The corresponding results are shown in Table 4. It clearly
shows that most of the differences between the VPC sim-
ulation and measured results are caused by the neglected
overhead. However, inclusion of this time overhead is un-
fortunately not easy to perform, because the scheduling al-
gorithms used for simulation and for the MicroBlaze imple-
mentation differ at least in the order by which the activa-
tion patterns of the actors are evaluated. Furthermore, due
to the abbreviated conditional execution realized in modern
compilers, the verification of the transition predicate can take
variable time. Consequently, the exact value of the overhead
depends on the concrete implementation and cannot be cal-
culated by some means as clearly shown by Table 4.

For our IDCT2D example, this overhead is particularly
pronounced, because the model has a very fine granularity.
Hence, the neglected times for scheduling and communi-
cation do not differ substantially from the action execution
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times. A possible solution to this problem is to deter-
mine a quasi-static schedule [60], whereas many decisions
as possible are done during compile time. Consequently,
the scheduling overhead would decrease. Furthermore, this
would improve the implementation efficiency. Also, in a
system-level implementation of the IDCT2D as part of the
MPEG-4 decoder, one could draw the conclusion from the
scheduling overhead that the level of granularity for actors
that are explored and mapped should be increased.

6.3.4. Execution order

As shown in Table 4, most of the differences occurring be-
tween estimated and measured values are caused by the
scheduling and communication overhead. The staying dif-
ference, typically less than 10%, is due to the different actor
execution order, because it influences both initialization and
termination of the system.

Taking, for instance, the software-only implementation,
then at the beginning all FIFOs are empty. Consequently, the
workload of the processor is relatively small. Hence, the first
8 × 8 block can be processed with a high priority, leading to
a small latency. As however the scheduler will start to process
a new block before the previous one is finished, the system
load in terms of number of simultaneously active blocks will
increase until the FIFOs are saturated. In other words, differ-
ent blocks have to share the CPU, hence latency will increase.
On the other hand, when the source stops to process blocks,
the system workload gets smaller, leading to smaller latency.

These variations in latency depend on the time, when the
scheduler starts to process the next block. Consequently, as
our VPC simulation and the implementation use different
actor invocation order, also the measured performance value
can differ. This can be avoided by using a simulation where
the CPU only processes one block per time. Hence, the la-
tency of one block is not affected by the arrival of further
blocks.

A similar observation can be made for throughput. The
latter one meets its final value only after the system is com-
pletely saturated, because it is influenced by the increasing
and decreasing block latencies caused at the system startup
and termination phase, respectively.

By taking this effects into account, we have been able to
further reduce the differences between the VPC estimations
and the measured values to 1%-2%.

6.3.5. Comparison with optimized core generator module

Efficient implementation of the inverse discrete cosine trans-
form is very challenging and extensively treated in literature
(i.e., [61–64]). In order to compare our automatically built
implementations with such optimized realizations, Table 3
includes a Xilinx CORE Generator Module performing a
two-dimensional cosine transform. It is optimized to Xilinx
FPGAs and is hence a good reference for comparison.

Due to the various possible optimizations for efficient
implementations of an IDCT2D, it can be expected that au-

tomatically generated solutions have difficulties to reach the
same efficiency. This is clearly confirmed by Table 3. Even the
hardware-only solution is far slower than the Xilinx CORE
Generator module.

This can be explained by several reasons. First of all, our
current IP library is not already optimized for area and speed,
as the major intention of this paper lies in the illustration of
our overall system design flow instead of coping with details
of IDCT implementation. As a consequence, the IP cores are
not pipelined and their communication handshaking is re-
alized in a safe, but slow way. Furthermore, for the sake of
simplicity we have abstained from extensive logic optimiza-
tion in order to reduce chip area.

As a secondmajor reason, we have identified the schedul-
ing overhead. Due to the self-timed communication of the
different modules on a very low level (i.e., a clip actor just
performs a simple minimum determination), a very large
overhead occurs due to required FIFOs and communication
state machines, reducing system throughput and increasing
chip area. This is particularly true, when a MicroBlaze is in-
stantiated slowing down the whole chain. Due to the sim-
ple actions, the communication and schedule overhead play
an important role. In order to solve this problem, we cur-
rently investigate on quasi-static scheduling and actor clus-
tering for more efficient data transport. This, however, is not
in the scope of this paper.

7. CONCLUSIONS

In this paper, we have presented a first prototype of
SystemCoDesigner, which implements a seamless automatic
design flow for digital signal processing systems to FPGA-
based SoC platforms. The key advantage of our proposed
hardware/software codesign approach is the combination of
executable specifications written in SystemC with formal
methods. For this purpose, SysteMoC, a SystemC library for
actor-based design, is proposed which allows the identifica-
tion of the underlying model of computation. The proposed
design flow includes application modeling in SysteMoC, au-
tomatic design space exploration (DSE) using simulation-
based performance evaluation, as well as automatic system
generation for FPGA-based platforms. We have shown the
applicability of our proposed design flow by presenting first
results from applying SystemCoDesigner to the design of
a two-dimensional inverse discrete cosine transformation
(IDCT2D). The results have shown that (i) we are able to au-
tomatically optimize and correctly synthesize digital signal
processing applications written in SystemC and (ii) our per-
formance evaluation during DSE produces good estimations
for the hardware synthesis and less-accurate estimations for
the software synthesis.

In future work we will add support for different FPGA
platforms and extend our component and communication
libraries. Especially, we will focus on the support for non-
FIFO communication using on-chip buses. Moreover, we
will strengthen our design flow by incorporating formal
analysis methods, automatic code transformations, as well as
verification support.
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Technische Hochschule Zurich, Zurich, Switzerland, Novem-
ber 1999.

[45] M. Eisenring, L. Thiele, and E. Zitzler, “Conflicting criteria in
embedded system design,” IEEE Design and Test of Computers,
vol. 17, no. 2, pp. 51–59, 2000.

[46] K. Deb, Multi-Objective Optimization Using Evolutionary Al-
gorithms, John Wiley & Sons, New York, NY, USA, 2001.

[47] T. Schlichter, C. Haubelt, and J. Teich, “Improving EA-based
design space exploration by utilizing symbolic feasibility tests,”
in Proceedings of Genetic and Evolutionary Computation Con-
ference (GECCO ’05), H.-G. Beyer and U.-M. O’Reilly, Eds.,
pp. 1945–1952, Washington, DC, USA, June 2005.

[48] T. Schlichter, M. Lukasiewycz, C. Haubelt, and J. Teich, “Im-
proving system level design space exploration by incorporat-
ing SAT-solvers into multi-objective evolutionary algorithms,”
in Proceedings of IEEE Computer Society Annual Symposium
on Emerging VLSI Technologies and Architectures, pp. 309–314,
Klarlsruhe, Germany, March 2006.

[49] C. Haubelt, T. Schlichter, and J. Teich, “Improving automatic
design space exploration by integrating symbolic techniques
into multi-objective evolutionary algorithms,” International
Journal of Computational Intelligence Research, vol. 2, no. 3, pp.
239–254, 2006.
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