
J
H
E
P
0
9
(
2
0
1
5
)
1
4
6

Published for SISSA by Springer

Received: June 27, 2015

Accepted: August 26, 2015

Published: September 22, 2015

Confinement in the q-state Potts model:

an RG-TCSA study

M. Lencsésa,b and G. Takácsa,c
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Abstract: In the ferromagnetic phase of the q-state Potts model, switching on an exter-

nal magnetic field induces confinement of the domain wall excitations. For the Ising model

(q = 2) the spectrum consists of kink-antikink states which are the analogues of mesonic

states in QCD, while for q = 3, depending on the sign of the field, the spectrum may also

contain three-kink bound states which are the analogues of the baryons. In recent years

the resulting “hadron” spectrum was described using several different approaches, such as

quantum mechanics in the confining linear potential, WKB methods and also the Bethe-

Salpeter equation. Here we compare the available predictions to numerical results from

renormalization group improved truncated conformal space approach (RG-TCSA). While

mesonic states in the Ising model have already been considered in a different truncated

Hamiltonian approach, this is the first time that a precision numerical study is performed

for the 3-state Potts model. We find that the semiclassical approach provides a very accu-

rate description for the mesonic spectrum in all the parameter regime for weak magnetic

field, while the low-energy expansion from the Bethe-Salpeter equation is only valid for

very weak fields where it gives a slight improvement over the semiclassical results. In ad-

dition, we confirm the validity of the recent predictions for the baryon spectrum obtained

from solving the quantum mechanical three-body problem.
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1 Introduction

In this work we consider the scaling field theory corresponding to the q-state Potts model

in the vicinity of the critical point separating the paramagnetic and ferromagnetic phases.

In the absence of external magnetic field, the field theory in the ferromagnetic phase has

a spectrum consisting of kinks (domain wall excitations) and is integrable with a known

factorized S matrix [1]. Switching on a weak external magnetic field induces a linear

potential between the kinks, leading to their confinement.

In the case of the Ising model (q = 2) this scenario was proposed in [2], and has been

investigated using several methods since then. One approach consists of a numerical Hamil-

tonian truncation method [3], which allows the numerical determination of the resulting
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meson spectrum. On the other hand, there are several approaches allowing predictions for

the spectrum, with the first prediction already made in [2], which is in fact equivalent to

finding the spectrum of quantum mechanical bound states in a linear potential. Form factor

perturbation theory which treats the strength of integrability breaking (such as introduced

by the magnetic field) as a small parameter can also be used to establish confinement [4, 5].

The meson spectrum can also be computed using the WKB method [6, 7], and a low-energy

expansion can be obtained from the Bethe-Salpeter equation [3, 6–9]. The validity of these

approaches and their consistency has been established not only on the qualitative, but also

at a quantitative level to high precision.

In the q = 3 case the spectrum is expected to be richer and contain baryonic three-kink

bound states besides the mesonic kink-antikink ones [10]. For the 3-state Potts model, the

Hamiltonian truncation method used in [3, 7] is not available, since it requires the knowl-

edge of exact finite volume form factors of the magnetization operator in the off-critical

theory in zero magnetic field. However, an alternative is provided by the truncated confor-

mal space approach (TCSA) introduced in [11]. Since construction of low-energy spectrum

in the TCSA does not depend on the assumption of integrability, nor on the existence

of small parameters, it can be readily applied to non-integrable models, as performed for

the q = 2 and 3 cases in [12] and [13], respectively; for more recent applications to other

non-integrable quantum field theories cf. [14, 15]. In the case of the 3-state Potts model

predictions for the meson masses were obtained in [16], and a previous study [13] has

already confirmed qualitatively the expected mesonic and baryonic spectra.

More recently quantum mechanical predictions for the baryon mass spectrum have

also been obtained [17]; the results obtained in [16, 17] make it possible to investigate

the spectra in more detail to make a precise quantitative verification of the theoretical

predictions. For this purpose a more advanced implementation of TCSA is needed, which

is based on the renormalization group improvements recently introduced and developed

in [18–23]. In this work we discuss the application of this RG-TCSA method to the Ising

and 3-state Potts models and compare it to the theoretical predictions.

The outline of the present paper is as follows. In section 2 we review the known results

about confinement in the scaling q-state Potts field theory. In section 3 we briefly describe

our TCSA implementation. Section 4 contains our results, starting with the Ising case as a

testing ground for our numerical procedures and then turning to the 3-state Potts model.

In section 5 we draw our conclusions.

2 Confinement in q-state Potts field theory

2.1 Brief overview

In this section we briefly overview the phenomenology of the q-state model based on [10].

The q-state Potts field theory is the scaling field theory of the q-state Potts model which

is the generalization of the Ising model with q different values (colours) of the lattice
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variables [24]. The lattice Hamiltonian can be written as

H = − 1

T

∑
〈x,y〉

δs(x),s(y) −H
∑
x

δs(x),q (2.1)

The first term is the standard nearest-neighbour interaction and second term is a general-

ized magnetic field in the “direction” of the q-th colour. Without magnetic field (H = 0)

the theory has Sq permutation symmetry and has a critical temperature T = Tc, below

which the system is in the ordered (ferromagnetic) phase while above Tc the system is in

the disordered (paramagnetic) phase.

In this work we consider the ferromagnetic phase, in which there are q degenerate

ground states (with all sites having the same colour), and the elementary excitations are

kinks corresponding to domain walls. The action of the scaling field theory of the system

can be written as a perturbation of the conformal field theory (CFT) corresponding to the

critical point:

S = S
(q)
CFT + τ

ˆ
d2xε(x) + h

ˆ
d2xσ(x) (2.2)

where the couplings τ and h are related to the lattice couplings

τ ∼ T − Tc (2.3)

h ∼ H (2.4)

and x = (x1, x2) are Euclidean time and space coordinates. The corresponding CFT [25]

is defined for q ≤ 4 and has the central charge [26]

c(q) = 1− 6

t(t+ 1)
(2.5)

where the parameter t is related to q via the relation

√
q = 2 sin

π(t− 1)

2(t+ 1)
(2.6)

and the thermal and magnetic fields ε and σ are identified with spinless relevant primaries

Φ2,1 and Φ(t−1)/2,(t+1)/2 of the CFT and have scaling dimensions [26, 27]

2h(q)
ε = X(q)

ε =
1

2

(
1 +

3

t

)
(2.7)

2h(q)
σ = X(q)

σ =
(t− 1)(t+ 3)

8t(t+ 1)
(2.8)

The thermal operator preserves the Sq symmetry while adding the magnetic field breaks

the permutation symmetry according to Sq → Sq−1.

In absence of the magnetic field the theory is integrable and the complete scattering

theory is known [1, 28, 29]. In the ferromagnetic phase there exist q degenerate ground

states and the elementary excitations are kinks interpolating between them, with their

mass m related to the coupling τ via the mass gap relation [30]

τ = κ(q)m2−2h
(q)
ε (2.9)
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where

κ(2) =
1

2π
(2.10)

κ(3) =
Γ
(

3
10

)[
Γ
(

2
3

)
Γ
(

5
6

)]6/5
4× 21/5π8/5Γ

(
7
10

) √Γ
(
− 1

5

)
Γ
(

7
5

)
Γ
(
− 2

5

)
Γ
(

6
5

) = 0.1643033 . . . (2.11)

In a magnetic field h in the direction of the q-th colour the degeneracy between the

q ground states is lifted. For h < 0 there is a single true vacuum and q − 1 metastable

ones, while for h > 0 their roles are exchanged. The expectation values of the magnetic

field operator in the direction of the γ-th colour is in the α-th ground state of the zero field

theory is written as

〈σγ〉α ≡ 〈0α|σγ(x)|0α〉 =
v(q)

q − 1
(qδγ,α − 1) (2.12)

where v(q) can be calculated using the formulas in [31]:

v(2) = 1.3578383417 · · · ×m1/8 (2.13)

v(3) = 1.9382577836 · · · ×m2/15 (2.14)

As a result, the difference of the energy density between the false and the true vacua is

given by [10]

∆ε = δεα − δεq ' h
(
〈σq〉α − 〈σq〉q

)
= − v

(q)q

q − 1
h α 6= q (2.15)

The combination v(q)q/(q−1) is denoted by β(q) and called the string tension; β(q)|h| gives

the slope of the linear potential induced by the magnetic field.

2.2 Mesonic and baryonic mass estimations

Here we present the various known estimations for the masses in the confinement spectrum

for the case of the Ising and the 3-state Potts model.

2.2.1 Meson masses in the Ising model

The first mass estimation is the one obtained by McCoy and Wu [2]

mAi
n = m(2 + λ2/3zn) (2.16)

where −zn is the nth zero of the Airy function and λ is the dimensionless ratio

λ =
β(2)|h|
m2

(2.17)

This solution can be derived from the quantum mechanical system of two kinks in a linear

potential. The quantum mechanical system also allows solutions corresponding to the

zeros for the derivative of the Airy function; however, the corresponding wave-functions

are symmetric and so forbidden due to the fermionic nature of the kinks.
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The WKB mass spectrum can be obtained by solving the quantization condition

sinh(2ϑn)− 2ϑn
λ

= 2π(n− 1/4)

mWKB
n = 2m cosh(ϑn) (2.18)

It can be improved further by adding higher corrections in λ:

sinh(2ϑn)− 2ϑn = 2π(n− 1/4)λ+

∞∑
k=1

λk+1Sk(ϑn)

miWKB
n = 2m cosh(ϑn) (2.19)

The first term in this expansion is given in [7] and it is

S1(ϑ) =
1

sinh(2ϑ)

(
− 1

6
sinh2(ϑ) +

5

24 sinh2(ϑ)
+

1

4 cosh2(ϑ)
− 1

12

)
The Bethe-Salpeter equation (with various improvements) leads to a low energy expansion

of the form
(mle

n )2

4m2
= 1 +

∞∑
k=1

µkt
k (2.20)

with the parameter t = λ2/3. Different approximations of the µk coefficients taking into

account multi-quark corrections (such as quark mass renormalization and renormalization

of the short range quark-antiquark interaction), and string tension renormalization can be

found in [3, 6–8]. The low-energy expansion for the meson mass m̃n from the Bethe-Salpeter

equation has the form [7]

m̃2
n

4m2
= 1 + znt

2 +
z2
n

5
t4 −

(
3z3
n

175
+

57

280

)
t6 +

(
23z4

n

7875
+

1543zn
12600

)
t8

+
13

1120π
t9 +

(
− 1894z5

n

3031875
− 23983z2

n

242550

)
t10 +

3313zn
10080

t11 + . . . (2.21)

while the radiative corrections modify this expression according to

mle
n − m̃n

m
= a2t

2 +
zn
6

(4c2 − a2)t8 − B2

4
t9 +O(t10) (2.22)

where

a2 = 0.0710809 . . . c2 = −0.003889 . . . (2.23)

are the leading order quark mass and string tension renormalization corrections computed

in [7] and

B2 = 0.8 (2.24)

is the leading order interaction renormalization correction obtained in [8, 9].

2.2.2 Mesonic states in the 3-state Potts model

For this latter model, the Bethe-Salpeter has not been carried out (albeit the setting was

established in [16]), so we quote the linear potential quantum mechanics and the WKB

results.
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h < 0. For this sign of the magnetic field there is a single stable vacuum and two

metastable ones. The two-kink configurations are

K3α(ϑ1)Kα3(ϑ2)

where 3 is the stable vacuum, while α = 1, 2 are metastable vacua. Due to the presence

of this degree of freedom allowed by α both antisymmetric and symmetric solutions are

allowed. From the simple quantum mechanical picture of two-kink configurations it is clear

that in the sector of zero total momentum the charge conjugation (C) parity of kink-antikink

and therefore also meson states is equal to their parity under spatial reflections.

The spectrum predicted by quantum mechanics in the linear potential is [16]

m
(Ai)
−,n = m(2 + λ2/3zn) +O(λ4/3) (2.25)

m
(Ai)
+,n = m(2 + λ2/3z′n) +O(λ4/3) (2.26)

where λ is the dimensionless ratio

λ =
β(3)|h|
m2

(2.27)

and −zn is the n-th zero of the Airy function, while −z′n is the n-th zero of its derivative.

For this case, the WKB quantization is given by [16]

sinh(2ϑn)−2ϑn
λ

= 2π

(
n− 1

4

)
+ 2 arctan

(
tanh 2ϑn√

3

)
+ iA(2ϑn) +O(λ) odd (2.28)

sinh(2ϑn)−2ϑn
λ

= 2π

(
n− 3

4

)
+ 2 arctan

(
tanh 2ϑn√

3

)
+ iA(2ϑn) +O(λ) even (2.29)

A(ϑ) = log

(
sinh(iπ/3 + ϑ)

sinh(iπ/3− ϑ)

)
(2.30)

mWKB
±,n = 2m cosh(ϑn) (2.31)

This includes effects of nontrivial kink-antikink scattering, and therefore despite being

semiclassical it goes beyond the simple quantum mechanical result above.

h > 0. For this sign of the magnetic field there are two stable vacua and one metastable.

The allowed two-kink configurations are

Kα3(ϑ1)K3β(ϑ2)

Charged meson states correspond to α 6= β, and their spectrum is given by the WKB

quantization condition [16] is given by

sinh(2ϑn)− 2ϑn
λ

= 2π

(
n− 1

4

)
+ iA(2ϑn) +O(λ) (2.32)

Note that charged meson single-particle states do not satisfy periodic boundary conditions

on a circle due to α 6= β, therefore they cannot be observed in TCSA.

On the other hand, neutral meson states do not exist, as they easily decompose under

the process

Kα3(ϑ1)K3α(ϑ2)→ Kαβ(ϑ2)Kβα(ϑ1)

– 6 –
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where for α = 1, 2 one has β = 2, 1, respectively. This process is allowed by the Chim-

Zamolodchikov kink scattering amplitudes [1]; also note that the kinks mediating between

the stable vacua 1, 2 are not confined.

2.2.3 Baryon masses in the 3-state Potts model

For the case h < 0 all the kinks are confined. As a result, one may have three-kink bound

states of the form

K31(ϑ1)K12(ϑ2)K23(ϑ3)

K32(ϑ1)K21(ϑ2)K13(ϑ3)

corresponding to baryons and antibaryons. Both of these particles have the same spectrum

due to charge-conjugation symmetry, and can be modeled in the form of a quantum me-

chanical three-body system. The low energy estimates for the baryon masses were recently

obtained by Rutkevich [17] with the result

M±n = m
(

3 +
(
β(3)|h|/m2

)2/3
ε±n

)
+O

(
|h|4/3

)
(2.33)

where the ± correspond to parity under space reflection, with the following numerical

values of ε for the first three states:

ε+1 = 4.602 ε+2 = 5.912 ε+3 = 7.098

ε−1 = 6.650 ε−2 = 7.734 ε−3 = 8.753
(2.34)

There are no baryons for h > 0 as the kinks between the two stable vacua are not confined.

3 TCSA, RG and extrapolation

3.1 TCSA for the Ising and Potts field theories

3.1.1 Scaling Ising model

The Hilbert space of any conformal field theory can be decomposed into products of ir-

reducible representations of the left and right moving Virasoro algebras, which can be

specified by giving their left and right conformal weights as

Sh,h̄ = Vh ⊗ Vh̄ (3.1)

and every such sector corresponds to a primary field Φh,h̄. For the Ising model with central

charge c = 1/2 the full Hilbert space is

H(2) = S0,0 ⊕ S 1
2
, 1
2

(3.2)

⊕ S 1
16
, 1
16

(3.3)

where the sectors on the first line are even, the ones on the second line are odd. The

Hamiltonian is

H = H
(2)
CFT + τ

ˆ
dxε+ h

ˆ
dxσ (3.4)

– 7 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
6

where

ε = Φ 1
2
, 1
2

σ = Φ 1
16
, 1
16

(3.5)

Note that for this model the values h and −h are physically equivalent since they are

related by the Z2 symmetry of the conformal field theory.

For the Ising model we used the following level cut-offs with the dimensions of the

truncated Hilbert space indicated below:

n 6 7 8 9 10 11 12 13 14 15

dim 77 127 213 338 551 840 1330 1994 3023 4476

3.1.2 Scaling 3-state Potts model

The scaling limit of Potts model at the critical point is a minimal conformal field theory

with central charge [25, 32]

c =
4

5
(3.6)

The Hilbert space of the Potts model is the D4 modular invariant [33]

H = H0 ⊕H+ ⊕H− ⊕H1 (3.7)

where

H0 = S0,0 ⊕ S 2
5
, 2
5
⊕ S 7

5
, 7
5
⊕ S3,3

H± = S±1
15
, 1
15

⊕ S±2
3
, 2
3

H1 = S 2
5
, 7
5
⊕ S 7

5
, 2
5
⊕ S0,3 ⊕ S3,0 (3.8)

The D4 conformal field theory is invariant under the permutation group S3 generated by

two elements Z and C with the relations

Z3 = 1 C2 = 1 CZC = Z−1 (3.9)

which have the signatures

signZ = +1 sign C = −1 (3.10)

The sectors in H0 of (3.7) are invariant under the action of the permutation group S3, the

ones in H± form the two-dimensional irreducible representation, which is characterized by

the following action of the generators:

C|±〉 = ±|∓〉

Z|±〉 = cos

(
2π

3

)
|±〉 ± sin

(
2π

3

)
|∓〉 (3.11)

while those in H1 transform according to the signature representation of S3.

The Hamiltonian is given by

H = H
(3)
CFT + τ

ˆ
dxε+ h

ˆ
dxσ (3.12)

– 8 –
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where

ε = Φ 2
5
, 2
5

σ = Φ+
1
15
, 1
15

(3.13)

In our considerations an important role will be played by charge conjugation parity: the

even sector under C consists of H0 and H+, while the odd sector consists of H1 and H−,

with the dimensions as a function of the level cut-off n given below:

n 6 7 8 9 10 11

dim, even sector 634 1210 2426 4437 8258 14545

dim, odd sector 816 1572 3039 5592 10121 (17904)

In the case of the odd sector the left/right descendent levels must be different for some

of the fields the right in order to get spinless fields. In our convention, the truncation

level is chosen to agree with the smaller of the descendent levels. We remark that in the

even sector, our conformal basis at level cut-off n = 8 exactly corresponds to the one used

in the paper [13]. However for the odd sector, our prescription is different from the one

in [13], which corresponds to choosing the level cut-off to agree with the higher one of the

descendent levels. In the extrapolations we used level cut-offs from 6 to 11 in the even

sector and from 6 to 10 in the odd sector.

3.2 TCSA numerics: conventions

The conformal Hamiltonian on a finite circle of circumference R can be written as

H
(q)
CFT =

2π

R

(
L0 + L̄0 −

c

12

)
(3.14)

In our TCSA calculations we consider the zero momentum sectors for which L0 − L̄0 = 0,

and impose a level cutoff on the spectrum of states according to

min(L0 −∆, L̄0 − ∆̄) ≤ n (3.15)

with n a positive integer, where ∆, ∆̄ denote the left/right conformal weights of the corre-

sponding primary state.

The computations are all performed in units of the kink mass m of the h = 0 model,

which means the volume is measured in dimensionless units r = mR and the dimensionless

energy levels are e = E/m. The finite volume energy levels are given as functions ei(r),

with i indexing the different levels; by convention the vacuum is taken to correspond to

i = 0. Since we are interested in the mass spectrum, the relevant quantities are the relative

energy levels

ẽi(r) = ei(r)− e0(r) (3.16)

One can also introduce the scaling function defined by

di(r) =
r

2π
ei(r) (3.17)

In the conformal field theory, the scaling function is a constant and is given by the eigenvalue

of the operator

L0 + L̄0 −
c

12
(3.18)
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corresponding to the given level. In the off-critical model the leading term of ei(r) for

large r is given by the bulk energy and is therefore generally linear (the Ising case is an

exception with a logarithmic contribution), and so the scaling functions di(r) grow as r2.

On the other hand, the bulk contribution is universal for all levels, and in the absence of

certain ultraviolet divergences (which is the case for the models considered here, as none

of the perturbing operators has conformal weight ∆ ≥ 3/4 [20]), the relative energy levels

ẽi(r) go to a constant for large r.

3.3 Renormalization group improvement

To leading order in the level cutoff n, the cutoff dependence of the TCSA can be canceled

by allowing the couplings to run according to renormalization group equations derived from

second order perturbation theory. For a Hamiltonian of the form

H =
2π

R

(
L0 + L̄0 −

c

12

)
+
∑
a

λa

ˆ R

0
dxΦa(x) (3.19)

the leading RG equations are [20, 22]

λ̃c(n)− λ̃c(n− 1) =
∑
a,b

λ̃a(n)λ̃b(n)Ccab
n2habc−3

2Γ(habc)2

(
1 +O(1/n)

)
(3.20)

λ̃a =
λaR

2−2ha

(2π)1−2ha

habc = ha + hb − hc

where Ccab are the CFT operator product expansion coefficients:

Φa(z, z̄)Φb(0, 0) =
∑
c

CcabΦc(0, 0)

zha+hb−hc z̄h̄a+h̄b−h̄c
(3.21)

In the perturbation theory calculation, however, large denominators may appear due to

the r2 dependence of the scaling functions. This can be compensated for by taking into

account the universal part of all scaling functions, by modifying the RG equations following

the prescription in [22, 23]

λ̃c(n)− λ̃c(n− 1) =
1

2n− d0(r)

∑
a,b

λ̃a(n)λ̃b(n)Ccab
n2habc−2

Γ(habc)2

(
1 +O(1/n)

)
(3.22)

where the vacuum scaling function d0(r) can be estimated by its TCSA value at the starting

cutoff for the RG run. In a unitary field theory it can be argued that the vacuum scaling

function is always negative, so this does not introduce any new singularities. In essence this

modification means regrouping some potentially large 1/n corrections into the RG flow.

Note that this prescription also gives a running coupling for the identity, which leads to

an additive renormalization constant for all energy levels. Since we consider only relative

energy levels, this contribution can be omitted.
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3.4 Extrapolation

The higher 1/n terms give state dependent corrections corresponding to non-local counter

terms [20, 22, 23]. Their construction is quite involved and they are not known in a fully

analytic form yet. However, there is an efficient shortcut that is sufficient for the purposes

of the present work. The leading terms already incorporated in the RG equations yield

cut-off corrections after integration with the scaling form

n2habc−2 (3.23)

corresponding to the occurrence of Φc in the OPE ΦaΦb.

In the Ising model, the leading exponents can be summarized as:

ΦaΦb\Φc 1 σ ε

σσ − 7
4 − − 11

4

σε − −1 −
εε 0 − −

The exponent 0 corresponds to a logarithmic divergence in the ground state energy,

which cancels from the relative energy levels. The exponent −7/4 also corresponds to

ground state renormalization and therefore also cancels. The two other exponents are

taken care of by the running couplings. Therefore it is only necessary to take into account

the highest subleading 1/n corrections, which lead to a residual cut-off dependence of

the form

ẽ
(n)
i (r) = ẽi(r) +

Ai(r)

n
+
Bi(r)

n2
+O(n−11/4) (3.24)

where both subleading terms come from 1/n corrections to the εε1 term.

In the Potts model, the leading exponents are

ΦaΦb\Φc 1 σ ε

σσ − 26
15 − 28

15 − 38
15

σε − − 6
5 −

εε − 2
5 − −

(where some fields contained in the OPE which give even higher exponents have been

omitted) and the residual cut-off dependence is

ẽ
(n)
i (r) = ẽi(r) +

Ai(r)

n7/5
+
Bi(r)

n11/5
+O(n−12/5) (3.25)

Our prescription for the RG-TCSA is as follows. In units of m, τ is just a fixed dimensionless

number given by κ(q). Therefore the TCSA has two dimensionless parameters, one of which

is given by value of h in units of m, i.e. the ratio

h̃ = h/m2−2hσ (3.26)
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and the dimensionless volume parameter r = mR. For any value of r and m the physical

values of the perturbed CFT couplings are

λ̃ε = −κ
(q)r2−2hε

(2π)1−2hε
(3.27)

λ̃σ =
h

m2−2hσ

r2−2hσ

(2π)1−2hσ

Taking these as initial conditions at n = ∞, the couplings can be run according to the

RG equations (3.22) to determine their value at the given cut-off n. In practice one can

approximate the difference equations by substituting

λ̃c(n)− λ̃c(n− 1)→ dλ̃c
dn

(3.28)

and solving the resulting differential equations numerically. We remark that in all our

calculations the couplings ran very little so this has practically no effect, but as a matter of

principle it must be done before we proceed to extrapolation. Once the RG eliminated all

the leading cut-off dependencies, the renormalized TCSA Hamiltonian can be numerically

diagonalized and then the residual cut-off dependence eliminated by fitting (3.24) for the

Ising and (3.25) for the Potts case. In the case of the Ising model it turns out that the

residual cut-off dependence alternates in sign between odd and even cut-offs, so the data

for even and odd values of n were fitted separately, as demonstrated in figure 1. For the

case of the Potts model no such alternation was observed, and the data could be reliably

extrapolated including both even and odd values of the level cut-off n as illustrated in 2.

We also remark that in the Potts case we took into account the two exponents indicated

in (3.25); the 11/5 and 12/5 exponents are too close together, and their effect is to small

compared to the leading 7/5 to include both in the fit.

4 Results

4.1 Testing ground: Ising model with magnetic field

4.1.1 False vacuum

From the TCSA data it is possible to evaluate the energy density of the false vacuum relative

to the stable one. For smaller volume, the TCSA converges fast, but for greater volumes

the efficiency of the extrapolation procedure is apparent. The theoretical predictions can be

calculated using (2.15) where the renormalized string tension given in [7] has also been taken

into account. However, at the present precision the two predictions cannot be distinguished.

Our results are illustrated in figure 3.

Note that the false vacuum level is not a continuous level in the volume, therefore its

linear rise does not in fact contradict the statement that all relative energy levels ẽi(r)

go to a constant for r → ∞. The metastable states are seen as level avoidances in finite

volume [12, 34]; this is best demonstrated by the false meson level in the Potts model,

shown in subsection 4.2.2. For the false vacuum, however, the level avoidances are confined
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Figure 1. Extrapolation fits of the relative energy levels in the Ising model in the ferromag-

netic phase with magnetic field h̃ = 0.008 for the first four excited states at dimensionless volume

mR = 10.
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Figure 2. Extrapolation fits of the relative energy levels in the Potts model in the ferromagnetic

phase with magnetic field h̃ = −0.05 for the first four excited states at dimensionless volume

mR = 10.
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Figure 3. Energy of the false vacuum for different values of the magnetic field in the Ising model.

Lines are the theoretical predictions: blue is for (2.15), while purple one takes into account the string

tension renormalization (the two lines are almost indistinguishable in the graphs). Dotted lines for

different cut-off data, red dots are extrapolated (average of even and odd cut-off extrapolations).
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to small enough regions, so that the level can be glued together from the pieces. In addition,

for small coupling the first level avoidance is at a much larger volume than shown in the

plots.

4.1.2 Meson masses

The meson masses can be estimated by first extrapolating the levels separately for even and

odd cut-offs, and taking the average of the two results. For a more precise measurement

the numerical procedure was slightly modified by keeping only the n = 10 . . . 15 data and

using only the 1/n term in (3.24). The reason for this is that the meson level data do not

allow fitting the 1/n2 term with a sufficient precision.

Selecting a given extrapolated one-particle level, one then finds the volume where the

level is the most flat. The data still contain exponential finite size effects, which can be

suppressed by fitting the part of the extrapolated nth meson level just before the flat

portion by an exponential function

ẽn(r) = mn +Ane
−Bnr (4.1)

and taking mn as the estimated mass of the nth meson. The results are shown in table 1

(we note that the data did not permit the volume extrapolation for h̃ = 0.4, so the TCSA

numbers quoted there are just the value of the level at the point where it is most flat). The

theoretical prediction “Airy” is given by eq. (2.16), while BS and WKB are given by (2.22)

and (2.18), respectively; the last line (iWKB) corresponds to taking into account the first

correction in (2.19). One can see that the prediction from simple quantum mechanics in

a linear potential (“Airy”) is generally only precise to a percent level or even worse for

large magnetic fields, while WKB is an order of magnitude better. The theoretically rather

involved Bethe-Salpeter approach only improves on WKB for very low mass mesons, while

for higher masses the WKB is generally better. It is also clear that for h̃ & 0.2 the only

working theoretical framework is the WKB method.

The upshot is that for all practical purposes WKB can be taken as the most reliable

description of the spectrum over all the parameter range: it gives an approximation within

10−3 relative precision. This is an important lesson given that there are no Bethe-Salpeter

predictions available in the 3-state Potts case yet; however, we can take the WKB as an

accurate prediction for comparison with the 3-state Potts meson data.

4.2 3-state Potts model

For the 3-state Potts model we only consider the domain h < 0, since according to the

discussion in subsection 2.2.2 there are no meson one-particle levels for h > 0, and reading

off meson masses from two-particle states is difficult both for numerical reasons (the spec-

trum is dense, so level identification is difficult) and for theoretical reasons (extraction of

masses with any precision requires modeling the meson-meson scattering). In addition, as

discussed in subsection 2.2.3, there are no baryon states for h > 0.
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h̃ m1 m2 m3

0.0175

TCSA 2.303 2.526 2.71

Airy 2.3068 2.5364 2.7243

BS 2.3021 2.5228 2.7005

WKB 2.3000 2.5223 2.7003

iWKB 2.3011 2.5225 2.7004

0.0250

TCSA 2.382 2.659 2.89

Airy 2.3891 2.6803 2.9187

BS 2.3816 2.6590 2.8813

WKB 2.3791 2.6583 2.8812

iWKB 2.3803 2.6586 2.8812

0.0375

TCSA 2.497 2.855 3.15

Airy 2.5099 2.8915 3.2039

BS 2.4969 2.8556 3.1414

WKB 2.4941 2.8552 3.1418

iWKB 2.4954 2.8553 3.1417

0.05

TCSA 2.597 3.027 3.37

Airy 2.6177 3.0800 3.4584

BS 2.5987 3.0281 3.3684

WKB 2.5958 3.0283 3.3701

iWKB 2.5971 3.0282 3.3698

0.1

TCSA 2.933 3.588 4.11

Airy 2.9805 3.7143 4.3151

BS 2.9312 3.5851 4.0919

WKB 2.9317 3.5946 4.1130

iWKB 2.9320 3.5933 4.1114

0.2

TCSA 3.447 4.451 5.22

Airy 3.5565 4.7213 5.6750

BS 3.4115 4.3556 5.0251

WKB 3.4474 4.4508 5.2257

iWKB 3.4426 4.4455 5.2209

0.4

TCSA 4.22 5.71 6.85

Airy 4.4707 6.3198 7.8337

BS 3.8964 4.8679 4.9503

WKB 4.2293 5.7277 6.8706

iWKB 4.2074 5.7102 6.8559

Table 1. Meson masses in the Ising model. Theoretical predictions are shown with 4 digits accuracy,

while for TCSA we show the digits that can be reliably extracted (with the last digit having an

estimated precision of order 1).
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4.2.1 False vacuum

The relative energy of the false vacuum against the volume is shown in figure 4. Notice

that the extrapolation is again very effective.

4.2.2 Meson masses

In contrast to the Ising case here we can only use the method of extracting the value at the

flattest portion of curve to estimate meson masses, due to the presence of the “false meson”

resonance corresponding to a kink-antikink bound state configuration starting and ending

in one of the false vacua. The “wavy” feature these resonance plateaus [12, 34] introduce in

the spectrum prevent application of the exponential fit (4.1) to eliminate finite size effects

in the meson mass. This effect can be seen in the plot 5, which also demonstrates the

efficiency of the numerical extrapolation procedure.

The mesonic spectrum against the absolute values of the magnetic field can be seen

on figure 6. The deviations between the WKB prediction and the numerically determined

masses are typically of the order of a few times 10−3, except in a few cases when a larger

deviation of order 10−2 is observed. These are cases when the flattest portion of the meson

level contains a level crossing with the false vacuum, which makes the truncation level

extrapolation less precise.

4.2.3 Baryon masses

The baryonic states are in the higher part of the spectrum. As a result, because of the

many level crossings the state must be carefully identified for each value of the volume and

cut-off in order to carry out the extrapolation. The masses are extracted as the value of

the extrapolated energy levels at its flattest point. As noted in subsection 2.2.3, baryons

and antibaryons have the same spectra in infinite volume. In finite volume the eigenstates

are the charge conjugation (C) even and odd combinations, as can be seen from the results

shown in figure 7. The deviations between the theoretical prediction and the numerically

determined masses are typically of the order of a few times 10−3, except in a few cases

when a larger deviation of order a few times 10−2 is observed, which in this case is mostly

due to difficulties of locating the level in the dense part of the spectrum.

5 Conclusions

In this work we investigated confinement in the q-state scaling Potts field theory, for the

cases q = 2 (Ising) and q = 3 (3-state Potts). While these phenomena in the Ising model

have been investigated in numerous works [3, 6–9] since the seminal paper by McCoy and

Wu [2], resulting in a very detailed understanding of the meson spectrum, in the case of the

3-state Potts the theoretical predictions are more recent, especially regarding the baryon

spectrum. Our method of choice was the renormalization group improved truncated confor-

mal space approach (RG-TCSA), a Hamiltonian truncation method applied to perturbed

conformal field theories, since there is no alternative for the 3-state Potts model.

Ising model was used both as a benchmark of the method, and as a way of comparing

the effectiveness of theoretical predictions. Our conclusion was that semiclassical (WKB)
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Figure 4. Energy of the false vacuum for different values of the magnetic field in the 3-state Potts

model. Continuous lines are the theoretical predictions from (2.15), dashed lines are data with

coupling constant renormalization before extrapolation for some values of the cut-off. Red dots are

extrapolated data in the C-even sector, while black squares are extrapolated data from the C-odd

sector.

– 19 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
6

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0 5 10 15 20 25 30
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

mR

HE
-
E
0
L�
m

æ Extr. TCSA odd

TCSA leve l 10 odd

TCSA leve l 9 odd

TCSA leve l 8 odd

æ

æ

æ

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

0 5 10 15 20 25 30
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

mR

HE
-
E
0
L�
m

æ Extr. TCSA even

TCSA leve l 11 even

TCSA leve l 10 even

TCSA leve l 9 even

æ

æ

æ

æ

æ æ
æ

æ
æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

0 5 10 15 20 25 30
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

mR

HE
-
E
0
L�
m

æ Extr. TCSA even

TCSA leve l 11 even

TCSA leve l 10 even

TCSA leve l 9 even

æ

æ

æ

æ

æ

æ æ
æ

æ
æ æ æ æ æ æ æ æ æ æ æ æ

æ
æ

æ
æ

æ

0 5 10 15 20 25 30
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

mR

HE
-
E
0
L�
m

æ Extr. TCSA even

TCSA leve l 11 even

TCSA leve l 10 even

TCSA leve l 9 even

0 5 10 15 20 25 30
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

mR

HE
-
E
0
L�
m

æ Extr. TCSA odd

TCSA leve l 10 odd

TCSA leve l 9 odd

TCSA leve l 8 odd

æ

æ

æ

æ

æ

æ
æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

0 5 10 15 20 25 30
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

mR

HE
-
E
0
L�
m

æ Extr. TCSA odd

TCSA leve l 10 odd

TCSA leve l 9 odd

TCSA leve l 8 odd

æ

æ

æ

æ

æ

æ
æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

0 5 10 15 20 25 30
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

mR

HE
-
E
0
L�
m

æ Extr. TCSA odd

TCSA leve l 10 odd

TCSA leve l 9 odd

TCSA leve l 8 odd

æ

æ

æ

æ

æ

æ
æ æ æ æ æ æ æ æ

æ
æ

æ
æ

æ
æ

æ æ æ æ

0 5 10 15 20 25 30
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

mR

HE
-
E
0
L�
m

æ Extr. TCSA odd

TCSA leve l 10 odd

TCSA leve l 9 odd

TCSA leve l 8 odd

Figure 5. Effect of the extrapolation for the first three mesonic state in the C-even and odd sectors

with magnetic field h̃ = −0.02. Dashed lines for data with running coupling for some values of the

cut off, while large dots with dotted lines are the extrapolated data. We also plotted the energy of

the even sector false vacuum (both before and after extrapolation, the latter marked with green)

shifted up by 2m to demonstrate that the wavy feature corresponds to the “false meson” resonance

(meson configuration over the false vacuum).

quantization was efficient over all the range of weak magnetic field, and therefore could

be taken as reference for the analysis of the Potts meson spectrum. Indeed, we could

demonstrate very good agreement between the WKB and the meson spectra predicted

in [16]. In addition, we compared the numerical results to recent predictions for the baryon

spectrum [17], and found complete agreement.

The present results lead to the conclusions that from a quantitative phenomenological

viewpoint, the meson spectrum of the the q-state scaling Potts field theory in weak magnetic

field is described by WKB to a very high precision, while the baryon spectrum can be

efficiently modeled by the three-body quantum mechanical model introduced in [17]. These

findings are expected to be relevant in future investigations of the Potts field theory as a

description of statistical systems.
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Figure 6. Meson masses against the magnetic field in the 3-state Potts model. Black dots show

TCSA results from the C-even sector while red is for C-odd. The green and blue lines show the

WKB predicted for parity even and odd states. As expected, for mesons the two parities coincide.
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Figure 7. The three lowest baryon masses against the magnetic field in the 3-state Potts model.

Black dots show TCSA results from the C-even sector while red is for C-odd. The green and blue

lines show the predictions (2.33), (2.34) for space parity even and odd states, respectively. It can be

seen that for each spatial parity there are two states, corresponding to the C-even/odd combinations

of the baryon with its antiparticle.
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