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Abstract

Background: The ‘Adaptive Designs Accelerating Promising Trials into Treatments (ADAPT-IT)’ project is a
collaborative effort supported by the National Institutes of Health (NIH) and United States Food & Drug
Administration (FDA) to explore how adaptive clinical trial design might improve the evaluation of drugs and
medical devices. ADAPT-IT uses the National Institute of Neurologic Disorders & Stroke-supported Neurological
Emergencies Treatment Trials (NETT) network as a ‘laboratory’ in which to study the development of adaptive
clinical trial designs in the confirmatory setting. The Stroke Hyperglycemia Insulin Network Effort (SHINE) trial was
selected for funding by the NIH-NINDS at the start of ADAPT-IT and is currently an ongoing phase III trial of tight
glucose control in hyperglycemic acute ischemic stroke patients. Within ADAPT-IT, a Bayesian adaptive Goldilocks
trial design alternative was developed.

Methods: The SHINE design includes response adaptive randomization, a sample size re-estimation, and monitoring
for early efficacy and futility according to a group sequential design. The Goldilocks design includes more frequent
monitoring for predicted success or futility and a longitudinal model of the primary endpoint. Both trial designs
were simulated and compared in terms of their mean sample size and power across a range of treatment effects
and success rates for the control group.

Results: As simulated, the SHINE design tends to have slightly higher power and the Goldilocks design has a lower
mean sample size. Both designs were tuned to have approximately 80% power to detect a difference of 25% versus
32% between control and treatment, respectively. In this scenario, mean sample sizes are 1,114 and 979 for the
SHINE and Goldilocks designs, respectively.

Conclusions: Two designs were brought forward, and both were evaluated, revised, and improved based on the
input of all parties involved in the ADAPT-IT process. However, the SHINE investigators were tasked with choosing
only a single design to implement and ultimately elected not to implement the Goldilocks design. The Goldilocks
design will be retrospectively executed upon completion of SHINE to later compare the designs based on their use
of patient resources, time, and conclusions in a real world setting.

Trial registration: ClinicalTrials.gov NCT01369069 June 2011.
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Background
In 2010, The National Institutes of Health (NIH) and
the Food and Drug Administration (FDA) jointly
awarded four grants to support research in the area of
regulatory science [1]. One of these awards, ‘Adaptive
Designs Accelerating Promising Trials into Treatments
(ADAPT-IT)’, is a collaborative effort between the
University of Michigan, Medical University of South
Carolina, and Berry Consultants, LLC. The overall
objective of ADAPT-IT is to explore how adaptive de-
signs in a confirmatory setting might improve the
evaluation of drugs and medical devices in neurologic
emergency settings [2]. ADAPT-IT uses the NINDS-
supported Neurological Emergencies Treatment Trials
(NETT) network as a ‘laboratory’ in which to study
the development of adaptive clinical trial designs.
The NETT Network includes 22 hubs, along with a
clinical coordinating center (University of Michigan),
and statistical and data management center (Medical
University of South Carolina) and focuses on con-
ducting large trials in acute injuries and illnesses
affecting the brain, spinal cord, and peripheral ner-
vous system [3]. For each of five randomized clin-
ical trials undergoing proposal development for
implementation within NETT, the ADAPT-IT inves-
tigators developed an adaptive trial design in collab-
oration with each study’s principal investigators and
statisticians at the data coordinating center. During
this process another research team used both quali-
tative and quantitative methods to characterize the
beliefs, opinions, and concerns of the trial’s key
stakeholders regarding the ethics, scientific validity,
and integrity of the adaptive designs and how these
beliefs may have changed over the course of the de-
sign process.
The ADAPT-IT process begins with an initial meeting

of clinical investigators and statisticians to describe the
scientific question and sketch out potential designs. An
initial adaptive design is then constructed and presented
to the trial team for feedback. There are several itera-
tions of the design and accompanying discussions. Once
a final design is agreed upon, the trial is submitted for
funding.
Each of the five trials included in ADAPT-IT were at

varying stages of development and funding. The first
trial considered within ADAPT-IT, the Stroke Hyper-
glycemia Insulin Network Effort (SHINE) trial had a
completed design. Also, unlike the other four trials,
SHINE was approved for funding by the NIH-NINDS
at the time the ADAPT-IT project began. Regardless,
through the ADAPT-IT process, an alternative adap-
tive design was developed. We present the SHINE trial
design that is currently being conducted, which is an
adaptive design including group sequential stopping,
response adaptive randomization, and a blinded sam-
ple size re-estimation. We also present the alternative
ADAPT-IT design, which is a Bayesian adaptive Goldi-
locks trial design [4]. We compare the performance of
the two designs via simulation and then describe how
SHINE will be virtually re-executed according to the
Goldilocks design.
There are examples where an alternative trial design

has been retrospectively created and executed in
order to compare the potential benefits of different
design features [5,6]. However, SHINE is a unique
learning opportunity in that the same team devel-
oped, in a prospective manner, two different trial de-
signs with the same scientific objectives in mind. In
the trial design process, it is typical to consider
several different candidate designs. One design is se-
lected for conduct and the alternatives are discarded.
However, we propose to consider both the selected
design and the counterfactual, comparing and contrasting
both the design and the execution of two innovative adap-
tive trial designs.
The two designs we will describe have several differ-

ences, and therefore, this is not an ‘apples to apples’
comparison where we compare one simple difference
at a time. However, this is also not an academic exer-
cise in which the goal is to consider only the difference
between the frequentist and the Bayesian perspectives.
Rather, we present a more ‘real world’ setting in which
two candidate designs are weighed against each other
based on their own unique sets of benefits and
drawbacks.

Methods
SHINE trial design
The SHINE trial design is completely described else-
where [7]. SHINE is a randomized multicenter Phase
III trial comparing tight glucose control with IV insulin
(experimental) to a therapy of subcutaneous insulin
(control) in hyperglycemic acute ischemic stroke pa-
tients. The SHINE protocol was approved by IRBs at
the University of Virginia, the NETT Clinical Coordin-
ating Center (University of Michigan), and Statistics
and Data Management Center (Medical University of
South Carolina), as well as all enrolling sites. The name
of the ethical body that approved the SHINE protocol
at each enrolling site is shown in the appendix.
Consent is obtained either from patients, or where
cognitively impaired from stroke, a legally authorized
representative, before a patient is enrolled in the
SHINE trial.
The primary efficacy endpoint is a dichotomized modi-

fied Rankin scale (mRS), adjusted to the baseline stroke
severity score (NIHSS), measured at 90 days following
randomization. The null hypothesis is that the success
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rates for the two arms are equal. The alterative hypoth-
esis is two-sided, that the success rates for the two arms
are not equal. The alternative hypothesis will be ac-
cepted if either the experimental therapy is significantly
better than the control or if the control therapy is
significantly better than the experimental. Based on pre-
liminary data, it is expected that 25% of patients in the
control group will achieve success. At least a 7% abso-
lute difference in the proportion of patients achieving a
success between the treatment and control arms would
be considered clinically meaningful. Based on a chi-square
test, four interim analyses, an overall 0.05 Type I error
rate, a control success rate of 25%, and a 3% lost to
follow-up rate, 1,400 patients would provide 80% power to
detect the 7% absolute difference between treatment arms.
SHINE will be monitored for both early efficacy and

futility according to a group sequential design. The
stopping boundaries are defined by the gamma family
spending function with a parameter of −4 for both the
upper and lower bounds. Four interim analyses are
scheduled when complete information on the primary
endpoint (90-day data) is available for 500, 700, 900,
and 1,100 patients. The two-sided P values required
for stopping for efficacy or futility at each of these in-
terim looks are shown in Table 1. To control the over-
all two-sided Type I error rate to less than 5%, the final
analysis will be conducted at the 0.043 significance
level. The primary efficacy analysis will be a logistic
regression model with terms for treatment group,
baseline NIHSS strata, and use of IV thrombolysis use
(yes or no). Multiple imputation will be implemented
when the 90-day outcome is missing or collected out-
side of the allowable window of −14 day/+30 days from
the 90-day visit.
SHINE also contains a sample-size re-estimation

analysis to ensure 80% power if the control success rate
is higher than expected and variance is increased. The
sample size re-estimation will follow the approach of
Gould and Shih [8], and will be based on the observed
overall success rate and assuming a 7% absolute difference
between treatment arms. If the overall pooled success rate
is greater than 31%, the maximum sample size may be in-
creased. As specified in Gould and Shih, to maintain the
Table 1 SHINE two-sided P values for stopping for
success or futility at each interim analysis

Information fraction Success P Value Futility P Value

36% 0.003 0.949

50% 0.004 0.896

64% 0.008 0.652

78% 0.016 0.293

100% 0.043 0.043
blind, the sample size re-estimation is planned just prior
to the first unblinded interim analysis. If the sample size is
increased, the timing of the interim looks will be adjusted
accordingly to preserve the planned information fraction
at each look. The largest possible increase to the max-
imum sample size would be 318 patients.
Finally, patients will be randomized to either the ex-

perimental or control arm based on a randomization
scheme that includes both covariate balancing and re-
sponse adaptive randomization. Covariates to be bal-
anced are the baseline NIHSS (3 strata), use of IV
thrombolysis (yes or no), and site. As SHINE is currently
ongoing, to prevent operational bias, the details of the
response adaptive randomization component of the de-
sign have not been provided to the SHINE study investi-
gators who are potentially enrolling patients and are not
included in this manuscript.

Goldilocks design alternative
The only constraints applied to the alternative design for
the SHINE design were having a maximum sample size
of 1,400 patients, and the assumptions of a control rate
favorable outcome of 25% where a 7% improvement
would be clinically meaningful. All other design parame-
ters were subject to change.
The alternative SHINE trial design is a Bayesian adap-

tive Goldilocks design that includes frequent interim
looks, based on predictive probabilities, to stop early for
efficacy or futility [4,9]. Because patients can also be
assessed for mRS at 6 weeks, we use a longitudinal
model of the primary endpoint to allow the 6-week
measure of mRS to aid prediction of mRS at 90 days. Pa-
tients are equally randomized to either the experimental
or control arm. The minimum sample size is 500 pa-
tients, and the maximum sample size is 1,400 patients
and there are scheduled interim analyses after every add-
itional 100 patients are enrolled. The primary analysis is
fully Bayesian, comparing the posterior distributions of
the success rates between the two arms. In this design,
the alternative hypothesis is one-sided, that the success
rate on the experimental arm is greater than on the con-
trol arm. The rationale for a one-sided alternative hy-
pothesis is that the clinical implications of either futility
(the two treatments being similar) or the experimental
therapy being worse than control are the same - patients
would continue to receive the control treatment, the
current standard of care. Therefore this design would
not continue in order to show that the experimental
therapy is significantly worse than control.

Interim monitoring
Interim monitoring for early efficacy or futility begins
when 500 patients are enrolled and interim analyses are
planned after every additional 100 patient are enrolled
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for a total of nine possible interim analyses. Interim
monitoring for futility is based on the predictive prob-
ability that the trial will be successful at the maximum
sample size of 1,400 patients, Pmax. If, at any interim
analysis Pmax is less than 5%, the trial will stop for futil-
ity. Interim monitoring for efficacy is based on the pre-
dictive probability that the trial will be successful at the
current sample size, n, if accrual to the trial would stop
and all currently enrolled patients completed follow-up,
Pn. If, at any interim analysis Pn is greater than 99%,
accrual will stop for predicted success. If the trial is not
stopped early for futility or if accrual is not stopped early
for predicted success (Pmax >5% and Pn <99%), then the
trial will continue enrollment to the maximum sample
size. If accrual stops early for predicted success, or the
trial continues to the maximum sample size of 1,400 pa-
tients, the primary efficacy analysis will be conducted
when all enrolled patients have completed their 90-day
follow-up.

Primary efficacy analysis
The primary efficacy analysis will be conducted after all
enrolled patients have completed follow-up for the pri-
mary endpoint. We assume the probability of success, θj,
has a Beta prior distribution

θj
� �eBeta 1; 1ð Þ;

where j = C is the control arm and j = E is the ex-
perimental arm. This prior distribution is equivalent
to a uniform prior across the unknown event rates
and equates to observing two patients’ worth of in-
formation where one experienced a success and one
did not. Therefore even with the minimum sample size of
250 patients per group, the prior contributes less than 1%
of the information in the posterior. At each interim ana-
lysis and at the final analysis the number of observed suc-
cesses, xj, among the currently enrolled patients, nj, is
modeled as a binomial distribution

xj
� �eBinomial nj; θj

� �
:

We update the prior distribution with the currently
observed data (xj, nj) and the resulting posterior distri-
bution is

θj xj; nj�eBeta 1þ xj;1þ nj−xj
� �

:
���

Given the number of successes in each group xC and
xE and the total number randomized to each group, nC
and nE, the primary analysis is
Pr θE > θC jTrial Datað Þ ¼
Z 1

0

Z θE

0

Γ 2þ nEð Þ
Γ 1þ xEð ÞΓ 1þ nE−xEð Þ θ

xE
E

This value is compared to 0.979 in the final analysis. If
the posterior probability that the success rate on the ex-
perimental arm, θE, is greater than the success rate on
the control arm, θC, is greater than 0.979, the treatment
will be considered successful,

Pr θE > θC Trial DataÞ > 0:979:jð

The probability of 0.979 is similar to a one-sided crit-
ical value of 0.021 in a frequentist trial. This critical
value for the final analysis was selected through simula-
tion to control the one-sided Type I error rate of this
trial, given the multiple interim analyses, to less than
0.025. SHINE’s two-sided 0.05 and the Goldilocks’ one-
sided 0.025 Type I error rates are equivalent. However,
the overall Type I error was assessed for the Goldilocks
design by simulation. The null space is defined both by
the accrual rate and the response rates for both groups.
Type I error control was shown by simulation only con-
sidering an accrual rate of 33 patients per month and for
a response rate of 25% in both arms. The overall Type I
error of the design may be larger or smaller at other
points in the null space.

Longitudinal model and predictive probabilities
As described above, interim analyses for efficacy and fu-
tility are based on predictive probability calculations. Be-
cause of a lag between enrollment and when the primary
endpoint is observed, at each interim analysis there will
be patients who have complete information through
90 days, more recently enrolled patients who may have
only 6-week assessment of mRS, and the most recently
enrolled patients who provide only baseline information.
For the predictive probability calculations, we utilize the
information from patients with incomplete information
to the extent that the baseline and 6-week assessments
are associated with the primary endpoint at 90 days. Pa-
tients with complete information inform this association.
A Bayesian model is built to learn the associations be-

tween the earlier 6-week time point and the primary
endpoint at 90 days. For each arm, we use three beta-
binomial distributions to model the transition:

1) from baseline to 90-days for patients with baseline
information only,

2) from 6 weeks to 90-days for patients who were a
success at 6 weeks, and

3) from 6 weeks to 90-days for patients who were not a
success at 6 weeks.
1−θEð ÞnE−xE Γ 2þ nCð Þ
Γ 1þ xCð ÞΓ 1þ nC−xCð Þθ

xC
C 1−θCð ÞnC−xCdθCdθE :



Table 2 Summary of design features for SHINE and the
Goldilocks alternative

SHINE Goldilocks

Hypothesis testing Two-sided One sided

Primary analysis Covariate adjusted Unadjusted

Randomization Response adaptive 1:1

Minimum sample size Approx 600 Fixed at 500

Maximum sample size Between 1,400 and
1,718

Fixed at 1,400

Planned interim
analyses

4 9

Stopping boundaries Group sequential Predictive probabilities,
incorporating early
information

Complete follow-up of
all patients in event of
early termination

Undefined critical
value

Explicitly defined critical
value
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Because the arms are modeled independently and
identically, we present the longitudinal model generically
without reference to treatment group. At each interim
analysis with a total of n patients enrolled, the number
of patients with complete follow-up through 90-days is
nc. The number of these patients who have achieved a
success is x and the number of these patients who did not
achieve success is z. The number of patients enrolled but
who have incomplete information is n*. Thus n = nc + n* =
x + z + n*.
For the n* patients with incomplete information, they

either 1) have no 6-week follow-up, n*0, 2) have achieved
success at 6 weeks, n *

+ or 3) have not achieved success
at 6 week, n*-. For each of these three groups, we use a
beta-binomial model to predict the number of these pa-
tients who will be a success on the primary 90-day end-
point. Given the currently observed nc patients with
complete data, the number of patients in each of the
three incomplete information groups who will be a suc-
cess on the primary endpoint is

x�0j Current Data e Beta−binomial n�0; 1 þ x; 1 þ zð Þ
x�þj Current Data e Beta−binomial n�þ; 1 þ xþ; 1 þ zþð Þ
x�− Current Data e Beta−binomial n�−; 1 þ x−; 1 þ z−ð Þj

where x and z are the number of patients who are 90-
day successes and failures, respectively; x+ and z+ are the
number of patients who were 6-week successes who
were successes (x+) and failures (z+) at 90-days, respect-
ively; and x− and z− are the number of patients who
were not 6-week successes who were successes (x−) and
failures (z−) at 90-days.
For each value of x*0, x

*
+, x

*
−, there is an associated

probability based upon the described distributions, and
correspondingly, there is an associated probability for
every possible number of total successes if all patients
were to complete follow-up.
For each pair of possible total successes between the

experimental and control group, we can determine if
that combination would result in a success on the pri-
mary efficacy analysis, whether Pr(θE > θC >0.979). Sum-
ming the probabilities for the cases that would result in
trial success is the predictive probability of trial success
for the currently enrolled patients.
For the predictive probability of success at the max-

imum sample size, we perform a similar calculation but
assume the trial continues enrollment to the maximum
sample size of 1,400 patients. However, this requires
calculation of the predictive distribution of success for
patients not yet enrolled. These future patients are in-
cluded in the predictive probability calculation described
above as patients that have only a baseline assessment
(no available interim data).
Results
Table 2 summarizes the differences between the two de-
signs. Both designs are innovative and complex, and
both offer many features that help address the primary
objective of the trial. There is little common ground for
a head-to-head comparison, except to explore how each
design behaves in terms of power and mean sample size
across a range of scenarios.
To determine the operating characteristics of each de-

sign, we simulated both the SHINE design and the Goldi-
locks design across a range of treatment effects and a
range of success rates for the control group. The SHINE
design was simulated including the group sequential stop-
ping boundaries, the sample size re-estimation, and using
a chi-square test between treatment groups as the primary
analysis (consistent with the primary power calculation).
The response adaptive randomization component of the
design was not included in order to preserve the oper-
ational integrity of the trial. The Goldilocks design was
simulated exactly as described above. Simulation code was
written in the R statistical language [10] and 10,000 trials
were simulated for each scenario. All simulations assume
no lost to follow-up, and an accrual rate of 33 patients per
month. Thus, at each interim analysis there are approxi-
mately 100 patients enrolled but without complete follow-
up through 90 days. The nature of the longitudinal data
necessary for simulation of the Goldilocks design was esti-
mated based on the transitions in mRS observed within
the raw data from the NINDS tPA trial including both the
tPA and control groups since SHINE includes both [11].

Sample size
The left panel of Figure 1 shows the total mean number
of patients enrolled for the two designs. Generally, when
the treatment effects are null or small, both designs stop



Figure 1 Mean total sample size enrolled (left panel) and probability of trial success (right panel). SHINE is plotted with a circle and the
Goldilocks is plotted with an x. Heavy line represents a control success rate of 25%, medium line represents a control success rate of 30%, and
light line represents a control rate of 35%. Dashed line on the right panel shows 80% power for reference.
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early for futility and when the treatment effects are large,
both designs stop early for success. Thus, sample sizes
are smaller at each end of the treatment effect range
than in the middle.
Across all simulated scenarios, the SHINE design

tends to enroll a greater number of patients than the
Goldilocks design. The difference in sample size between
the two designs is attributable to a different number of
interim analyses, different mechanisms for early stop-
ping, differing aggressiveness of the stopping boundaries,
and that SHINE is based on a two-sided alternative hy-
pothesis while the Goldilocks design is based on a one-
sided alternative hypothesis.
The SHINE design includes four interim analyses and

the Goldilocks design includes nine. With more interim
analyses, the Goldilocks design has more opportunities
to stop early. Additionally, the two designs have different
mechanisms for early stopping and differently account
for complete follow-up of all enrolled patients should
the trial stop early. Early stopping for the SHINE design
is based on the information fraction, or the number of
patients with observed 90-day outcomes. It stops early
only when observed 90-day data produces an over-
whelming effect for efficacy or futility. For example,
when 1,000 patients are enrolled, we expect that 900 pa-
tients will have complete data. The trial will stop for effi-
cacy if, based on these 900 patients, the P value is less
than 0.008 (Table 1) and the trial is considered a success.
There is no defined critical value for a later analysis that
might include the 100 outstanding patients once they
have completed follow-up.
Early stopping in the Goldilocks design is based on the

number of patients enrolled and allows for complete
follow-up of all enrolled patients. Thus, the Goldilocks de-
sign is able to have more aggressive early stopping behav-
ior, stopping accrual and then allowing for the additional
follow-up of enrolled patients in order to observe the ne-
cessary information for success, whereas the SHINE de-
sign stops only once the necessary information for success
is already observed. The Goldilocks design might stop
when 900 patients are enrolled, and 800 patients have
complete data, as long as there is a high probability that
including the outstanding 100 patients in the final analysis
(many of whom have interim 6-week mRS values) would
result in trial success. In the Goldilocks design, all enrolled
patients are explicitly included in the final analysis.
The difference in expected sample size is largest when

the control is only slightly better than the experimental
arm. The alternative hypothesis for the SHINE design is
two-sided, but is one-sided for the Goldilocks design.
This contributes to different stopping behavior when the
control arm is only slightly better than the treatment. In
these scenarios, the Goldilocks design stops early for fu-
tility, reacting to the fact that it is unlikely the experi-
mental treatment will be proven to be superior to the
control. The SHINE design continues in these scenarios,
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not crossing a futility boundary (the treatments are the
same), and not seeing a large enough treatment effect to
cross a success boundary (the control is significantly bet-
ter than the experimental).

Probability of trial success
The right panel of Figure 1 shows the probability of trial
success for the two designs. When the treatment effect
is null, SHINE has an analytically controlled two-sided
overall Type I error rate of 5% and the Goldilocks design
has a simulated one-sided Type I error rate of approxi-
mately 2.5%. We present only one null scenario, and the
Type I error rate for the Goldilocks design may vary
across the null space. When the treatment arm is slightly
worse than control, the SHINE design may conclude
success of control over treatment, whereas the Goldi-
locks design cannot. Thus, the SHINE design has a
higher probability of trial success in these scenarios.
When the control rate is 25%, the probability of suc-

cess in scenarios where the treatment is better than con-
trol is similar between the two designs. As the control
rate increases, a small amount of power is lost in the
Goldilocks design. The Goldilocks design loses approxi-
mately 2% power when the control rate increases from
25% to 30%, and approximately another 2% power when
the control rate increases from 30% to 35%.
The SHINE design includes a sample size re-estimation

to preserve power if the control rate is higher than
Figure 2 Probability of increasing the maximum sample size (left pan
plotted with a circle (Goldilocks design does not include sample size re-est
line represents a control success rate of 30%, and light line represents a co
expected. Thus, as the control rate increases, the power of
the design is unchanged. However, the mean sample size
increases (left panel Figure 1). In the most extreme case,
the Data Safety and Monitoring Board (DSMB) could be
asked to increase the sample size from 1,400 to 1,718 pa-
tients. Figure 2 shows the probability that the SHINE
maximum sample size is increased and the mean number
of patients added. The size of the sample size re-estima-
tion is proportional to the pooled success rate and so de-
pends on both the control success rate and the treatment
effect. Because the sample size re-estimation is blinded it
is not possible to diagnose whether a high pooled event
rate is due to a higher than expected control rate, or to a
larger than expected treatment effect. In fact, because the
treatment effect is fixed at 7% in the sample size re-
estimation procedure, a high pooled event rate is always
attributed to a higher than expected control rate. As a re-
sult, even when the true control rate is 25%, a large treat-
ment effect can trigger a sample size increase and the
larger the treatment effect, the larger the increase to
the maximum sample size. However, with a large treat-
ment effect, the trial is then also likely to stop early for
success. The trial’s mean sample size does not increase
by exactly the number of patients added to the max-
imum sample size because of this potential for early
success stopping. However, the potential delay to the
first interim look may translate to an increase in the
mean sample size.
el) and mean number of patients added (right panel). SHINE is
imation). Heavy line represents a control success rate of 25%, medium
ntrol rate of 35%.
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Compare and contrast
The strengths of the SHINE design include the sample
size re-estimation and the covariate adjusted final ana-
lysis. SHINE has analytical control of overall Type I
error, and as simulated, the SHINE design offers a slight
advantage in terms of power. Covariates were not in-
cluded in the simulation study, but a covariate adjusted
primary analysis is likely to increase the trial’s overall
power from what was simulated. With fewer interim
analyses, there is also less operational complexity. How-
ever, the adaptive randomization component was not in-
cluded in the simulations. This type of randomization
scheme has the potential to increase operational com-
plexity and reduce power. While response adaptive
randomization would likely randomize more patients to
the more effective therapy, the power of the trial could
be reduced because in a two-arm trial, equal allocation
between arms should provide maximum power.
The strengths of the Goldilocks design include more

frequent interim analyses, the longitudinal model of the
primary outcome, and explicitly accounting for patients
with incomplete follow-up if accrual to the trial where
to stop early. The Goldilocks design offers advantages in
terms of sample size. If accrual to the trial is faster than
expected, the difference in sample size between the two
designs will be greater than described here. If accrual to
the trial is slower than expected, the difference in sample
size will be smaller. Accrual to clinical trials is frequently
slower than expected. While the Goldilocks design ran-
domizes patients equally to the two treatment arms, an
increased potential to stop the trial earlier would allow
results to be communicated earlier and would allow pa-
tients outside the trial to be treated with the more ef-
fective therapy sooner.
The comparison of operating characteristics should be

interpreted with caution bearing in mind the many differ-
ences between the two designs (Table 2), in particular the
differences in the stopping boundaries and the limitations
of the simulation study, specifically that covariates and the
adaptive randomization component of the SHINE design
were not included. The operating characteristics of the
Goldilocks design, in particular Type I error control, are
assessed with simulation and so the Type I error rates of
the two designs may not be exactly equal across the entire
null space. While we see that the SHINE design offers ad-
vantages in terms of power and that the Goldilocks offers
advantages in terms of sample size, we expect that a greater
sample size would confer greater power. The largest differ-
ence in power we observed in the simulations was when
the control rate was 35% and the treatment rate was 41%.
In this scenario SHINE has 9.5% more power (58.6% versus
68.1%) and enrolls an average of 308 additional patients.
None of the simulated scenarios showed a similar sam-

ple size between the two designs, the Goldilocks design
always had a smaller mean sample size. In the primary ex-
pected scenario of 32% vs. 25%, both designs are tuned to
have approximately 80% power, and the average sample size
in SHINE is 135 patients higher than in the Goldilocks de-
sign (1,114 vs. 979). For similar powers the Goldilocks trial
saves at least 100 patients, oftentimes more. When the dif-
ference between arms is very small, only 2%, the two de-
signs have similar power, approximately 12%, regardless of
the control rate. The SHINE design averages 273, 322, and
429 more patients at control rates of 25%, 30%, and 35%,
respectively. When the treatment effect is large, 10%,
SHINE has an additional 1 to 3% power, but averages and
additional 139, 178, and 213 patients at control rates of
25%, 30%, and 35%, respectively.

Trial execution
SHINE is currently ongoing. The Goldilocks design will
be virtually executed upon completion of SHINE using
the observed patient data from SHINE. The purpose of
this virtual trial execution is to determine the resources
used and resulting evidence for the comparison of the
experimental versus control arms had SHINE been con-
ducted according to the Goldilocks design. The out-
comes of the two trial executions can be compared in
terms of final trial conclusions, total number of patients
enrolled, number of patients enrolled to the most effect-
ive treatment arm, and trial duration.
This exercise will require datasets that provide snap-

shots of the accumulated data from SHINE to conduct
each of the planned interim analyses and the final analysis.
The trial’s data coordinating center has agreed to provide
these snap shots and store these blinded datasets until the
SHINE results are released. If SHINE stops accrual early,
but the Goldilocks design indicates continuing enrollment,
patients for the future interim analyses for the Goldilocks
design will be simulated by re-sampling the observed
SHINE patients. We emphasize that we have a prospect-
ively defined design and execution plan. Limitations in the
re-execution approach will be assessed and reported at the
time the re-execution is performed.

Discussion
The original SHINE design presented within ADAPT-IT
included response adaptive randomization and had one
futility analysis (700 patients with complete data, 50% in-
formation) and one early success stopping analysis (938
patients with complete data, 67% information). As the
work within ADAPT-IT progressed, the potential benefits
of additional interim analyses were discussed. The number
of interim analyses for SHINE was re-evaluated and the
design was updated to the four interim analyses for early
stopping as described here. The Goldilocks design was
then finalized. External to the ADAPT-IT process, a
sample size re-estimation was then added to the SHINE
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design and the simulation exercise presented here was
then performed. Certainly, the two designs could continue
to be iterated to be more similar or pieces of one design
could be included in the other. For example, the Goldi-
locks design could allow a larger sample size and a covari-
ate adjusted final analysis, which are strengths in the
SHINE trial design. The SHINE design could have more
frequent interim analyses or account for patients with in-
complete follow-up when the study stops, which are
strengths in the Goldilocks design. However, we present
the Goldilocks design as it was developed at the time and
we present the SHINE design as it is being conducted.
The SHINE investigators were tasked with choosing

only a single design to implement and ultimately elected
not to implement the Goldilocks alternative. A main as-
pect for consideration was the potential for formal ‘flip-
flop’. The Goldilocks design stops accrual for predicted
success if the probability for success with the currently
enrolled patients, allowing for the outstanding (approxi-
mately) 100 patients to reach their 90-day endpoint, is
greater than 99%. There is a small chance that the trial
could stop for predicted success, complete follow-up of
the enrolled patients, and then at the final analysis, miss
the 0.979 posterior probability threshold required for
trial success. For example, in the scenario where the ex-
perimental treatment offers a 7% absolute benefit, the
trial stopped early for predicted success 62% of the time
and in 0.5% of those cases, failed to obtain the final crit-
ical value for success. Most likely, if such a flip-flop oc-
curs, the experimental treatment is not effective. While
such flip-flops occur in 0.5% of early stopping cases
when the treatment is effective (+7%) they occurred in
6% of cases when the treatment is ineffective - largely
because of regression to the mean in those cases and
this in fact helps to conserve Type I error. Even if this
were to occur, the final P value would likely still be just
a little larger than the critical value.
It is important to recognize that this potential exists in

a group sequential design as well. While such an occur-
rence is similarly unlikely, it is not well characterized or
formally accounted for. Stopping based on predictive
probabilities explicitly accounts for complete follow-up
of all enrolled patients and so it is natural to quantify
the ‘flip-flop’. Group sequential stopping is typically
based on the amount of information observed and while
methods exist to account for ‘overrun’ [12], the typical
implementation of group sequential designs does not
dictate how to handle patients with incomplete informa-
tion should the trial stop early. These designs typically
do not include a formal analysis on all enrolled patients
and so do not specify the critical value needed for such
an analysis. Our simulations of the SHINE design show
that in this case such an analysis would likely not meet
the P value that was required for early stopping, simply
due to regression to the mean, but is likely to meet the
P value required for success at the end of the trial with
complete information (data not shown).
A second consideration for the SHINE investigators sur-

rounding the Goldilocks design was a wholesale change of
the design after it had already been through the NIH peer
review process and had been selected for funding. Add-
itionally, there was concern from the SHINE PI about
whether the design and final analysis would be accepted
by the clinical community given the small number phase
III trials that have utilized a Bayesian approach.
One of the larger differences between the two designs

is that SHINE is a two-sided alternative hypothesis while
the Goldilocks design is one-sided. Although the error
rates are similar, differences in sample size and power
between the two designs are confounded with this differ-
ence in hypothesis testing in the setting where the stand-
ard of care arm is slightly better than the tight control
arm. While two-sided trials are standard, and hence the
choice for the SHINE investigators, the Goldilocks de-
sign considers it unlikely that a DSMB would let a trial
proceed only to show that an expensive, more laborious
therapy is in fact significantly inferior to the standard of
care. However, the clinical community is currently quite
divided on the utility of intensive glucose control in
stroke and both the SHINE and the NETT leadership
believe that the greatest opportunity for SHINE to leave
stroke physicians with a definitive answer is through the
two-sided design. Certainly, there are many stroke physi-
cians who would be satisfied with the one-sided hypoth-
esis tested by the Goldilocks design, yet there is a
concern that practice will not be changed unless there is
a definitive answer in favor of one treatment or the
other. Of course, even the two-sided design may end in
the null space; given the additional resources required to
perform the intense glucose controls it is likely that
most would abandon this treatment.
The primary lesson learned in the ADAPT-IT design

process for SHINE was about the value of trial simulation.
Trial simulation may typically be associated Bayesian de-
signs or with more complex adaptive designs, such as
where a close form solution for Type I error and power are
not available. In the ADAPT-IT design process, clinical
trial simulation illuminated several points of discussion
with both designs. Clinical trial simulation of the Goldi-
locks design was necessary to understand its early stopping
behavior and the potential for ‘flip-flop’. A remedy for ‘flip-
flop’ is to increase the threshold required for early stop-
ping, which was done during the design process, but
this will decrease the probability of early stopping and
increase mean sample size. Such trade-offs can only be
assessed through the process of clinical trial simulation.
Trial simulation also illuminated the differences in trial
behavior due to two-sided versus one-sided hypothesis
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Spoke IRB name

University of Arizona Medical
Center - University Campus,
Tucson, AZ

University of Arizona Human
Subjects Protection Program IRB

University of Arizona Medical
Center - South Campus, Tucson,
AZ

University of Arizona Human
Subjects Protection Program IRB

University of Cincinnati Medical
Center, Cincinnati, OH

University of Cincinnati Institutional
Review Board

Emory University Hospital,
Atlanta, GA

Emory University Institutional
Review Board

Emory University Hospital
Midtown, Atlanta, GA

Emory University Institutional
Review Board

Grady Memorial Hospital,
Atlanta, GA

Emory University Institutional
Review Board

University of Michigan Medical
Center, Ann Arbor, MI

University of Michigan IRBMED

Henry Ford Hospital, Detroit, MI Henry Ford Health System
Institutional Review Board

University of Kentucky Hospital,
Lexington, KY

University of Kentucky Medical
Institutional Review Board

University of Maryland Medical
Center, Baltimore, MD

University of Maryland, Baltimore
(UMB) Institutional Review Board
(IRB)
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testing for the investigators and initiated the discussion
about which test would ultimately be used in the con-
duct of the trial.
Finally, the SHINE design includes two ‘well under-

stood’ [13] adaptive trial features that are commonly
used in phase III trials: a blinded sample size re-
estimation and group sequential stopping boundaries.
While the statistical properties of each are completely
understood separately, combining two well-understood
design features does not add up to a well-understood de-
sign. For example, when the experimental therapy is per-
forming better than control, the sample size may be
increased due to the sample size re-estimation and the
first interim analysis will be delayed. The trial may stop
for success, though with additional patients and more
time than it might require otherwise. Given that the ex-
perimental therapy is performing well, the additional pa-
tients and time could be undesirable. On the other hand,
the delay could be considered small and worth the pro-
tection of power that the sample size re-estimation pro-
vides. Even with the simulation exercise presented here,
the SHINE design is still not completely characterized
because covariates and the adaptive randomization com-
ponent are not included.
Massachusetts General Hospital Partners Human Research
Committee

Hennepin County Medical Center,
Minneapolis, MN

Hennepin County Medical Center
Human Subjects Research Review
Committee

University of Kansas Hospital,
Kansas City, KS

Kansas University Medical Center
Institutional Review Board

University of Minnesota Medical
Center Fairview, Minneapolis, MN

University of Minnesota
Institutional Review Board

NYP Columbia University Medical
Center, New York, NY

Columbia University Medical Center
Institutional Review Board

OSU Wexner Medical Center,
Columbus, OH

Biomedical Sciences Institutional
Review Board

Summa Akron City Hospital,
Akron, OH

Summa Health System Institutional
Review Board

Harborview Medical Center,
Seattle, WA

University of Washington Human
Subjects Division Institutional
Review Board

UPMC Presbyterian Hospital,
Pittsburgh, PA

University of Pittsburgh
Institutional Review Board

UPMC Mercy Hospital,
Pittsburgh, PA

University of Pittsburgh
Institutional Review Board

NYP Weill Cornell Medical Center,
New York, NY

Weill Cornell Medical College
Institutional Review Board

WVU Healthcare Ruby Memorial West Virginia University
Conclusions
The goal of this project was to illustrate two alternative
real-world designs, the two primary designs considered
for a multi-center NIH-funded randomized clinical trial.
Because they are two real-world designs, simple head-to-
head comparisons changing one feature at a time are
not possible and the alternative trials must be judged on
the totality of their operating characteristics.
The consideration of alternative trial designs was a

successful venture in that two designs were brought for-
ward, and both were evaluated, revised, and improved
based on the input of all parties involved in the ADAPT-
IT process. Simulation of an entire design as it will be
conducted was necessary to evaluate the selected design
features in concert with each other and to inform the
study team of the gains/losses associated with various
design choices. Trial simulation should not be reserved
for only complex adaptive designs. Rather, all trialists
should consider trial simulation an important tool for
developing a complete understanding of the statistical
properties of their trial design [14].
Hospital, Morgantown, WV Institutional Review Board (IRB)

Buffalo General Medical Center,
Buffalo, NY

SUNY University at Buffalo
Health Sciences IRB (HSIRB)

Northwestern University Northwestern University
Biomedical IRB

UT Southwestern - Parkland
Hospital

UT Southwestern Institutional
Review Board (IRB)
Appendix
The following list contains the ethics boards or institutional
review boards that approved the SHINE study at each par-
ticipating clinical site in the Neurological Emergency
Treatment Trials Network (Table 3).
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UT Southwestern University
Hospital-Zale Lipshy, Dallas, TX

UT Southwestern Institutional
Review Board (IRB)

Baylor College of Medicine,
Houston, TX

Baylor College of Medicine
Institutional Review Board

Vanderbilt University Medical
Center

Vanderbilt University Institutional
Review Board

St. Thomas Hospital, Nashville, TN Sterling Institutional Review Board

UVA Medical Center,
Charlottesville, VA

University of Virginia Institutional
Review Board for Health Sciences
Research

OSF Saint Francis Medical Center University of Illinois College of
Medicine at Peoria Institutional
Review Board

Penn State Hershey Medical
Center, Hershey, PA

Penn State Hershey College of
Medicine Institutional Review
Board

Georgia Regents Medical Center,
Augusta, GA

Georgia Regents University
Institutional Review Board

University of Utah Healthcare,
Salt Lake City, UT

University of Utah Institutional
Review Board

Mayo Clinic, Jacksonville, FL Mayo Clinic Institutional Review
Board

Stanford University Medical
Center, Stanford, CA

Stanford University Human
Subjects Committee IRB

SUNY Downstate Biomedical Research Alliance of
New York (BRANY) Institutional
Review Board

Kings County Hospital Biomedical Research Alliance of
New York (BRANY) Institutional
Review Board

Lincoln Medical and Mental
Health Center, Bronx, NY

Biomedical Research Alliance of
New York (BRANY) Institutional
Review Board

Maimonides Medical Center Biomedical Research Alliance of
New York (BRANY) Institutional
Review Board

Allegheny General Hospital Allegheny Singer Research Institute
Institutional Review Board

Thomas Jefferson University
Hospital, Philadelphia, PA

Thomas Jefferson University
Institutional Review Board

Hackensack University Medical
Center, Hackensack, NJ

Hackensack UMC Institutional
Review Board

Temple University Hospital,
Philadelphia, PA

Temple University Institutional
Review Board

University Medical Center
Brackenridge, Austin, TX

Seton Institutional Review Board

Seton Medical Center, Austin, TX Seton Institutional Review Board

Valley Baptist Medical Center -
Harlingen, Harlingen, TX

Valley Baptist Medical Center
Institutional Review Board

Memorial Hermann Texas
Medical Center, Houston, TX

UT Health Committee for the
Protection of Human Subjects

Long Beach Memorial Medical
Center, Long Beach, CA

Memorialcare Health System
Institutional Review Board

Ronald Reagan UCLA Medical
Center, Los Angeles, CA

University of California Los
Angeles Institutional Review
Board

Table 3 Ethical body at each enrolling site (Continued)

San Francisco General Hospital,
San Francisco, CA

University of California at San
Francisco Committee on Human
Research

UCSF Medical Center, San
Francisco, CA

University of California at San
Francisco Committee on Human
Research

California Pacific Medical Center
Pacific Campus, San Francisco, CA

Sutter Health Institutional Review
Board

California Pacific Medical Center
Davies Campus, San Francisco, CA

Sutter Health Institutional Review
Board

Hospital of the University of
Pennsylvania, Philadelphia, PA

University of Pennsylvania
Institutional Review Board

WellSpan York Hospital, York, PA WellSpan Health Institutional
Review Board

Abington Memorial Hospital,
Abington, PA

Abington Memorial Hospital
Institutional Review Board

VCU Medical Center, Richmond, VA Virginia Commonwealth University
Institutional Review Board

Detroit Receiving Hospital,
Detroit, MI

Wayne State University
Institutional Review Board

Sinai-Grace Hospital, Detroit, MI Wayne State University
Institutional Review Board

William Beaumont Hospital-Troy,
Troy, MI

Beaumont Research Institute
Human Investigation Committee

William Beaumont Hospital,
Royal Oak, MI

Beaumont Research Institute
Human Investigation Committee

Froedtert Memorial Lutheran
Hospital, Milwaukee, WI

Medical College of Wisconsin
Institutional Review Board
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