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Abstract The thermodynamic phase space of Gauss–
Bonnet (GB) AdS black holes is extended, taking the inverse
of the GB coupling constant as a new thermodynamic pres-
sure PGB. We studied the critical behavior associated with
PGB in the extended thermodynamic phase space at fixed
cosmological constant and electric charge. The result shows
that when the black holes are neutral, the associated criti-
cal points can only exist in five dimensional GB-AdS black
holes with spherical topology, and the corresponding critical
exponents are identical to those for the Van der Waals sys-
tem. For charged GB-AdS black holes, it is shown that there
can be only one critical point in five dimensions (for black
holes with either spherical or hyperbolic topologies), which
also requires the electric charge to be bounded within some
appropriate range; while in d > 5 dimensions, there can be
up to two different critical points at the same electric charge,
and the phase transition can occur only at temperatures which
are not in between the two critical values.

1 Introduction

Thermodynamic properties of black holes have been studied
for many years, especially in anti-de Sitter (AdS) spacetime
due to the AdS/CFT correspondence [1–4]. An outstand-
ing feature for AdS black holes is the so-called Hawking–
Page phase transition, which can happen between stable large
black holes and thermal gas in AdS spacetime [5]. Thermo-
dynamics of charged black holes in AdS spacetime has also
been intensively studied. The asymptotically AdS charged
black holes admit a gauge duality description via a dual ther-
mal field theory. This dual description suggests that charged
AdS black holes exhibit a critical behavior in the Q − φ dia-
gram which is reminiscent of the liquid–gas phase transition
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in a Van der Waals system [6–13], where Q and φ denote the
electric charge and potential, respectively.

Recently, this picture has been substantially extended. The
idea of including the variation of the cosmological constant
� in the first law of black hole thermodynamics has acquired
increasing attention [14–21]. By studying the critical behav-
iors of AdS black holes in the extended phase space, i.e. the
P–V diagram [22–35], where P is the thermodynamic pres-
sure associated with the cosmological constant, which takes
the value

P = − 1

8π
� = (d − 1)(d − 2)

16π�2 (1)

in the geometric units G N = h̄ = c = k = 1, with � being
the d-dimensional AdS radius, V is the conjugate “thermody-
namic volume” [17,20,36,37], the analogy in the Q–φ dia-
gram of AdS charged black hole with a Van der Waals system
has been further enhanced. Both systems share the critical
exponents and have extremely similar phase diagrams. This
analogy has been generalized to higher dimensional charged
black holes [23,26,30], rotating black holes [33–35], Gauss–
Bonnet (GB) black holes [13,22], f (R)black hole [28], black
holes with scalar hair [29,32], black holes with nonlinear
source [27], and Born–Infeld black holes [24] in AdS space.

The inclusion of P–V variables in the thermodynamics of
AdS black holes is not just an artificial game to play. There
exist several reasons why � should be included as a ther-
modynamical variable [23]. One may suppose that there is
some more fundamental theory in which some physical con-
stants such as Yukawa and gauge coupling constants, New-
ton’s constant, or cosmological constant, may not be fixed
values but may be dynamical ones arising from the vacuum
expectation values and hence can vary. Thus, it is natural
to add variations of these “constants” into the first law of
black hole thermodynamics [38,39]. Besides, the cosmolog-
ical constant term is necessary in the first law of black hole
thermodynamics, in order to get a consistent Smarr relation
for black hole thermodynamics from the scaling argument

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81839459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2970 Page 2 of 13 Eur. Phys. J. C (2014) 74:2970

[15]. A similar situation appears for the Born–Infeld black
holes [40–42] and GB black holes [22]. To get a consistent
Smarr relation by scaling arguments, one has to introduce
the Born–Infeld and GB parameter terms into the first law
of black holes. Once one takes the cosmological constant as
the thermodynamic pressure in the first law, the black hole
mass M should be explained as enthalpy rather than internal
energy of the system [15].

In this paper, we will revisit the first law of thermody-
namics for GB black holes with emphasis on the role of GB
coupling α. It is well known that GB gravity theory has two
AdS solutions with effective cosmological constants [43–47]

�eff =−(d − 1)(d − 2)

4α̃

⎛
⎝1−δ

√
1+8

α̃ �

(d − 1)(d − 2)

⎞
⎠,

(2)

where α̃ = (d − 3)(d − 4)α. δ = +1 corresponds to the
general relativistic (GR) branch and has a GR limit as α → 0,
while δ = −1 corresponds to the GB branch and does not
have the GR limit. It has been shown by Boulware and Deser
that the GB branch is unstable and the graviton is a ghost,
while the GR branch is stable and is free from ghosts [43].
Thus we shall only consider the GR branch with δ = +1.
By a simple analogy with the previously mentioned P–V
criticality for AdS black holes, one may tend to consider
Peff ∝ −�eff as a thermodynamic pressure. However, for
two reasons, we will not take this point of view. Firstly, �eff is
a complicated combination of two parameters� andα and we
wish to understand the role of each parameter independently.
Secondly, in the enthalpy description of the first law, Peff

always appear in differential form, i.e. in the term Veff dPeff ,
and it is reasonable to decompose dPeff as a combination of
d� and dα, thanks to (2). Moreover, we have a good reason
to consider

PGB ≡ 1

8πα
(3)

instead of α as a component of the thermodynamic pressure:
it is 1

α
which scales like a pressure. This is where our con-

siderations depart from the previous work [22], which took
α and its conjugate A as a pair of thermodynamic quantities.
This consideration is also different from the geometric for-
mulation for Lovelock theories [48], which contain Gauss–
Bonnet gravity as a special case. Nonetheless, it will become
clear that using PGB and its conjugate as a pair of thermo-
dynamic variables indeed reveals novel criticalities of the
theory, which are otherwise difficult to describe in terms of
α–A variables.

We will consider the criticality associated with the new
thermodynamic variables PGB and its conjugate VGB in the
extended phase space of charged GB-AdS black holes. It will
be shown that this kind of critical behavior is different from

the previously mentioned P–V criticality, and that the spatial
curvature of the AdS black hole horizon plays an important
role in such criticalities.

The paper is organized as follows. Section 2 is devoted to
the thermodynamics of GB-AdS black holes in the extended
phase space with PGB and VGB. In Sect. 3, we consider the
criticality associated with PGB for static neutral GB-AdS
black holes. The case for static charged GB-AdS black holes
is discussed in Sect. 4. Finally, some concluding remarks are
given in the last section.

2 Extended thermodynamics of GB-AdS black holes

The action of d-dimensional Einstein-GB-Maxwell theory
with a bare cosmological constant � reads

I = 1

16π

∫
dd x

√−g

[
R − 2� + α(Rμνγ δ Rμνγ δ

−4Rμν Rμν + R2)

]
− 1

4

∫
dd x

√−gFμν Fμν, (4)

where the GB coupling α has dimension [length]2 and can be
identified with the inverse string tension with positive value
[43] if the theory is incorporated in string theory, thus we
shall consider only the case α > 0. Of course, we take the
spacetime dimension d ≥ 5, since in d = 4 dimensions,
the integration of the GB density LGB = Rμνγ δ Rμνγ δ −
4Rμν Rμν + R2 is a topological number and has no dynamics.

The d-dimensional static charged GB-AdS black hole
solution arising from the field equations associated with the
action (4) is well known to take the form

ds2 = − f (r)dt2 + 1

f (r)
dr2 + d
2

d−2,k, (5)

which should be accompanied by a standard Coulomb poten-
tial for the Maxwell field, where d
2

d−2,k represents the line
element of a (d −2)-dimensional maximally symmetric Ein-
stein space with constant curvature (d − 2)(d − 3)k, where
k = 1, 0 and −1 correspond to the spherical, Ricci flat and
hyperbolic topology of the black hole horizons, respectively.
The metric function f (r) is given by [43,44,49,50]

f (r) = k + r2

2α̃

×
⎛
⎝1−

√
1− 4α̃

�2 + 64πα̃M

(d − 2)rd−1 − 2α̃Q2

(d − 2)(d − 3)r2d−4

⎞
⎠ ,

(6)

where M and Q are the mass and charge (in geometric units)
of the black hole, respectively.

Since we are going to discuss the thermodynamics of the
black hole in the extended phase space by introducing extra
thermodynamical variables P–V and PGB–VGB, the black
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hole mass M should be identified with the enthalpy H ≡ M
rather than the internal energy of the gravitational system
[15]. It follows from (6) that H can be expressed in terms of
the horizon radius r+

H =
[

(d − 2)rd−3+
16π

(
k + r2+

�2 + k2

8πr2+ PGB

)

+ Q2

32π(d − 3)rd−3+

]
, (7)

where r+ is the largest root of f (r). The Hawking tempera-
ture of the black hole is given by

T = 1

4π
f ′(r+)

=
(d−1)r4+

�2 + (d − 3)kr2+ + (d−5)k2

8π PGB
− Q2

2(d−2)r2d−8+
4πr+(r2+ + k

4π PGB
)

. (8)

Other thermodynamic quantities are well known in the litera-
ture [44,50]. For example, the entropy S and electric potential
� are given by

S = rd−2+
4

(
1 + (d − 2)k

4π(d − 4)r2+ PGB

)
, (9)

� = Q

8π(d − 3)rd−3+
. (10)

Note that here we have treated the cosmological constant and
GB coupling constant as free thermodynamical variables, and
their conjugate quantity thermodynamic volumes V and VGB

are given, respectively, by

V =
(

∂ H

∂ P

)

S,Q,PGB

= rd−1+
d − 1

, (11)

VGB ≡
(

∂ H

∂ PGB

)

S,Q,P
= − (d − 2)k2

128π2 P2
GB

rd−5+ . (12)

Note that these thermodynamic volumes are in no way linked
to the geometric volume of the black hole: in fact, from the
point of view of static observers located outside of the black
hole, there is no such notion of a geometric volume of the
black hole at all. The physical meaning of these thermo-
dynamic volumes remains obscure. Therefore, the negative
value of VGB should not be considered unacceptable. Any-
way, the negativity of VGB does not prevent us from studying
criticality in the extended thermodynamic phase space, since
in the following we shall take r+—which is always positive—
instead of VGB as an equation of state (EOS) parameter asso-
ciated with PGB.

An important relation in black hole thermodynamics is
the Smarr relation. In order to obtain the correct Smarr rela-
tion for the above-mentioned charged static GB-AdS black
hole, we will now make some scaling arguments. Since the

black hole enthalpy H (i.e. the mass M) is a homogeneous
function of entropy S, electric charge Q, and thermodynamic
pressures P and PGB, and as M scales as [length]d−3, S scales
as [length]d−2, Q scales as [length]d−3, P and PGB scales as
[length]−2 (see, e.g. [15,48]), we find that the Smarr relation
for the black hole under consideration reads

(d − 3)H =(d−2)T S+(d − 3)Q� − 2PV − 2PGBVGB.

(13)

This is certainly different from the Smarr relation known
from the previous literature, because we have now extended
the thermodynamic phase space and have taken PGB and
VGB as a new pair of conjugate thermodynamic variables.
Correspondingly, the first law of black hole thermodynamics
is generalized as

dH = T dS + �dQ + V dP + VGBdPGB. (14)

In the rest of this paper, we shall consider criticality asso-
ciated with the new variable PGB, taking P and Q as fixed
parameters. In order to study the criticality of black holes,
it is necessary to work with the Gibbs free energy G, which
can be obtained via the Legendre transformation,

G = G(T, Q, P, PGB) = H − T S

= rd−3+ (d − 2)

16π

(
k + r2+

�2

)

− T rd−2+
4

(
1 + (d − 2) k

4π PGB (d − 4) r2+

)

+k2(d − 2)rd−5+
128π2 PGB

+ Q2r3−d+
32π (d − 3)

. (15)

We shall also make use of the internal energy

U = H − PGBVGB

= (d − 2)rd−3+
16π

(
k+ r2+

�2 + k2

4πr2+ PGB

)
+ Q2

32π(d − 3)rd−3+
,

(16)

while evaluating the heat capacity at fixed r+, where PGB is
to be taken as a function of the temperature T , thanks to the
EOS

PGB = ((5 − d)k + 8 T π r+) (d − 2)k

8π

[(
r2+(d−1)

�2 +(d − 3)k−4 T π r+
)

(d − 2)r2+− Q2

2r2d−8+

] ,

(17)

which arises from (8). Note that for k = 0, PGB is identically
zero, thus PGB and VGB lose their role as a pair of thermo-
dynamic variables. So, in this paper, we shall always assume
k �= 0. This EOS is quite different from the Van der Waals
equation,

P = T

v − b
− a

v2 , (18)
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which states that the pressure P is a linear function of the
temperature T , if the specific volumev is kept fixed. Nonethe-
less, the usual method for studying criticalities for the Van
der Waals system still works, as will be seen below.

Before proceeding, let us note that there are some natu-
ral constraints on the allowed range of PGB: Firstly, a well-
defined vacuum solution with M = 0, Q = 0 results in [22]
PGB ≥ 1

2π�2 (i.e. the dimensionless pressure PGB
P has a lower

bound: PGB
P ≥ 8

(d−1)(d−2)
); Secondly, the non-negative defi-

niteness of the black hole entropy (9) gives another constraint
[51]: PGB ≥ d−2

4(d−4)πr2+
for k = −1.

3 Criticality for static neutral GB-AdS black holes
associated with PGB

3.1 Critical behavior in five and six dimensions

For simplicity, we begin our study with the case of neutral
black holes. The black hole enthalpy (7) is reduced to

H = (d − 2)rd−3+
16π

(
k + r2+

�2 + k2

8π PGBr2+

)
, (19)

and the Gibbs free energy becomes

G = (d − 2)rd−3+
16π

(
k + r2+

�2 + k2

8π PGBr2+

)

− T rd−2+
4

(
1 + (d − 2) k

4π (d − 4) r2+ PGB

)
. (20)

The EOS of the black holes simplifies into

PGB = ((5 − d)k + 8 T π r+) k

8π

(
r2+(d−1)

�2 + (d − 3)k − 4 T π r+
)

r2+
. (21)

The critical point is determined as the inflection point on
the PGB–r+ diagram, i.e.,

∂ PGB

∂r+

∣∣∣∣
r+=rc,T =Tc

= ∂2 PGB

∂r2+

∣∣∣∣∣
r+=rc,T =Tc

= 0, (22)

and ∂2 PGB
∂r2+

∣∣
r+=rc+0+,T =Tc

and ∂2 PGB
∂r2+

∣∣
r+=rc+0−,T =Tc

should

have different signs, where we have used the subscript c to
stand for the quantities at the critical point. Using (21), the
two conditions in (22) becomes a pair of very complicated
algebraic equations for rc and Tc, which, of course, depend on
the spacetime dimension d and the signature of the spatial
curvature k of the black hole horizons. For k = −1, the
pair of equations arising from (22) can never have a solution
with real and positive rc. Therefore, we are left with only
the choice k = +1. In this case, eliminating Tc from the

above pair of equations, we get a single simplified equation
determining the critical radius rc,

36(d−1)2 R2
c −12(d−1)(2d−9)Rc+(d−3)(7d−39)=0,

(23)

where we have introduced

Rc = r2
c

�2 . (24)

The solutions to this equation read

Rc = 2 d − 9 ± √−3(d − 2)(d − 6)

6(d − 1)
. (25)

In order to find a real positive Rc, we need to take d = 5
or d = 6. For d = 5, only the + branch of the solution is
allowed, and we can check that around the corresponding

solution rc, ∂2 PGB
∂r2+

indeed changes signature, thus the solu-

tion is indeed a critical point. For d = 6, the two branches

of solutions (25) degenerate, and ∂2 PGB
∂r2+

does not change its

signature around the corresponding rc, so we conclude that
there is no critical point in six dimensions.

(1) Critical point in five dimensions

In five dimensions, we have

Rc = 1

6
, rc =

√
6

6
�, Pc

GB = 9

2π�2 , Tc =
√

6

2π�
, (26)

from which we can easily find

Pc
GBrc

Tc
= 3

2
. (27)

This relation is universal in the sense that it is independent
of all parameters. This result is very similar to the one in
the Van der Waals system, which has Pcrc

Tc
= 3

8 . This makes
it more conceivable to use the horizon radius r+ instead of
the thermodynamic volume VGB as an EOS parameter, since
VGB does not lead to such a parameter independent relation.
Since we are taking P (i.e. � via (1)) as a constant parameter,
it is better to work in units of P or � and re-express the critical
parameters in dimensionless form,

rc

�
=

√
6

6
,

Pc
GB

P
= 6. (28)

In five dimensions, the previously mentioned lower bound for
the dimensionless pressure is PGB

P ≥ 2
3 , and the above critical

value is well above this lower bound. So, the criticality can
always be found in this case. We can have a clear look at
this in the PGB–r+ diagrams and G–T diagrams which are
presented in Fig. 1.

It can be seen from Fig. 1 that only for the isotherms with
T > Tc there exist a local minimum and a maximum. Along
the segment of the isotherm between these two extrema, we
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Fig. 1 The isotherm (PGB − r+ plots at arbitrary constant � on the
left) and Gibbs free energy at fixed PGB (G–T plots at � = √

10 on
the right) for five dimensional static neutral GB-AdS black holes with
k = 1. In both plots, the dotted line corresponds to that for the lower
bound for PGB. The temperatures of the isotherms decrease from top
to bottom. The lower two isotherms contain no phase transition. The

critical isotherm T = Tc is depicted in a dashed line, while the upper
two isotherms correspond to two-phase equilibrium states. The pressure
PGB on the right plots increases from left to right, and the “swallow tail”
behavior appears only when PGB > Pc

GB, which corresponds to a first
order phase transition

have ∂ P
∂r+ > 0, which implies that the black holes is in a

thermally unstable phase. For the ∂ P
∂r+ < 0 regions, the black

holes are thermally stable, corresponding, respectively, to a
small and a large black hole at the same temperature. Phys-
ically speaking, the system at T > Tc is in thermal equi-
librium between the stable small black hole and large black
hole phases, because the unstable, medium sized black hole
phase cannot physically exist. The true isotherm for such
cases should be replaced by a steeply descending segment
and a slowly descending segment joined by a straight, hor-
izontal (i.e. an isobar PGB = P∗ = const.) segment which
can be determined by Maxwell’s equal area law. When the
critical temperature Tc is reached, the shape of the isotherm
will undergo a significant change. The two extrema merge
into a single inflection point, and we can no longer distin-
guish between the stable small and large black holes. The
isotherms with T < Tc no longer contain any extrema and
there is only one branch with positive compression coeffi-
cient corresponding to thermally stable black holes.

Turning to the Gibbs free energy plots, we see that each of
the curves corresponding to P > Pc

GB can extend to T > Tc

and contains a “swallow tail” segment, which is a typical
feature in first order phase transitions. From P = Pc and
downwards, the “swallow tail” disappears, with P = Pc

corresponding to the critical point.

(2) No critical point in six dimensions

In six dimensions, we can obtain the following solution:

Rc = 1

10
, rc =

√
10

10
�, Pc

GB = 5

2π�2 , Tc =
√

10

2π�
(29)

for the equations given in (22). However, it is easy to check

that ∂2 PGB
∂r2+

does not change its signature around the above

rc; therefore, the above solution corresponds actually to an
extremum, rather than an inflection point on an isotherm.
Consequently, each isotherm contains one and only one
extremum (which is a maximum). This means that at each
temperature, the value of PGB has an upper bound, black
holes with PGB bigger than the upper bound simply could
not exist. For smaller values of PGB, there are two different
black holes at each temperature: a small unstable black hole
and a large stable black hole. The small black hole phase
cannot physically persist because of its thermal instability,
and there is no phase equilibrium in this case.

In Fig. 2, we present the PGB–r+ and G–T diagrams in six
dimensions. The dimensionless pressure and radius is used
in the PGB − r+ plots. The dashed curves corresponding to
the special values given in (29) play no particular role as
compared to the other curves. It can be seen on the G–T
plots that for each PGB, the G(T ) curve is “<”-shaped, with
the lower branch corresponding to the stable large black hole
phase.

3.2 Critical exponents in five dimensions

In this subsection, we will study the scaling behaviors of
some physical quantities near the criticality and compute
the corresponding critical exponents in five dimensions. The
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Fig. 2 The isotherm (PGB −r+ plots at arbitrary constant � on the left)
and Gibbs free energy at fixed PGB (G–T plots at � = √

10 on the right)
for six dimensional static neutral GB-AdS black holes with k = 1. The

temperature of the isotherms decrease from top to bottom. There is no
“swallow tail” behavior in the G–T diagram showing that there is no
phase equilibrium

construction is analogous to the scaling behavior of the Van
de Waals liquid–gas system, so we begin by reviewing the
scaling laws for the Van de Waals system. Near the critical
point, the critical behavior of a Van der Waals liquid–gas sys-
tem can be characterized by the following critical exponents
[52]:

Cv ∼
( |T − Tc|

Tc

)−α

, (30)

vg − vl

vc
∼
(

−T − Tc

Tc

)β

, (31)

κT ∼
( |T − Tc|

Tc

)−γ

, (32)

P − Pc ∼ (v − vc)
δ, (33)

where Cv = T ( ∂S
∂T )

∣∣
v

is the heat capacity at constant volume,

κT = −v−1( ∂v
∂ P )

∣∣
T is the isothermal compressibility, the

subscripts g and l stand for quantities in the gaseous and
liquid phases, respectively. The critical exponents take the
following values:

α = 0, β = 1/2, γ = 1, δ = 3. (34)

In our case, we need to replace the specific volume v by
the black hole radius r+ and study the corresponding scaling
properties. The liquid and gaseous phases for the Van der
Waals system should also be replaced by the small and large
black hole phases, respectively. Since we shall be interested
in the properties near criticality, we introduce the following
dimensionless parameters, which tend to zero near the critical
point:

t = T

Tc
− 1, φ = r+

rc
− 1 p = PGB

Pc
GB

− 1. (35)

Using these new parameters and inserting the critical values
(26) into the EOS (21) at d = 5, k = +1, we get the following
dimensionless EOS:

p + 1 = t + 1

(φ + 1)
(−3 φ t − φ − 3 t + 1 + φ2

) . (36)

The Taylor series expansion for (36) at the critical point gives

p = 4 t + 6 tφ − φ3 + O
(

tφ2, φ4
)

, (37)

where we have neglected terms of order φ4 and tφ2 or higher
as did in [23]. It will be shown below that t and φ2 are of the
same order.

Using Maxwell’s equal area law, we obtain the following
equation:

0=
∫ φs

φl

φ
d p

dφ
dφ ⇒−3

2
(φ4

l −φ4
s )+6t (φ2

l −φ2
s ) = 0, (38)

where the subscripts s and l stand for small and large sta-
ble black hole phases, respectively. On the other hand, the
physical phase equilibrium condition (i.e. the isobar pres-
sure condition) gives

p|φs = p|φl ⇒ 6t (φl − φs) − (φ3
l − φ3

s ) = 0. (39)

Equations (38) and (39) together give a unique non-trivial
solution (φs �= φl ):

φs = −√
6t, φl = √

6t . (40)

We conclude that the coexistence of small and large black
hole phases requires t > 0. In other words, only when T >
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Tc can the two stable black hole phases exist at the same
pressure. This is different from a Van der Waals liquid–gas
system where T < Tc is required for a phase equilibrium.
Equation (40) can be rewritten as

r+l − r+s ∝ (T − Tc)
1/2. (41)

This scaling behavior is in analogy to (31), which gives us
the critical exponent β = 1

2 .
The isothermal radial compressibility can be calculated

as follows:

κT ≡ − 1

r+
∂r+

∂ PGB

∣∣∣∣
r+=rc

∝ − 1
∂p
∂φ

∣∣∣∣∣
φ=0

= − 1

6t
.

This implies that

κT ∝ −(T − Tc)
−1, (42)

which gives the critical exponent γ = 1. In addition, it can
easily be seen that p|t=0 = −φ3, i.e.

PGB − Pc
GB ∝ −(r+ − rc)

3, (43)

which tells us δ = 3.
To evaluate the heat capacity near the critical point, we

need to substitute d = 5, k = +1 into (16) and then calculate

Cr+→rc ≡ ∂U

∂T

∣∣∣∣
r+→rc

= −
√

6 �

48π2T 2 . (44)

This result is completely regular in T , showing that the crit-
ical exponent α = 0. We see that though the EOS of our
system is quite different from that of the Van der Waals sys-
tem, the resulting set of critical exponents are exactly the
same as that for the Van der Waals system. It is not a surprise
that these critical exponents satisfy the following thermody-
namic scaling laws:

α + 2β + γ = 2, α + β(1 + δ) = 2,

γ (1 + δ) = (2 − α)(δ − 1), γ = β(δ − 1). (45)

4 Criticality for static charged GB-AdS black holes

4.1 Critical behavior in five dimensions

Having now understood the critical behavior of the static
neutral GB-AdS black holes associated with the new ther-
modynamic variables PGB and r+, we turn our attention to
the static charged GB-AdS black holes. The analysis will be
basically parallel to the neutral cases, though the details are
more complicated due to the presence of extra parameters.

When d = 5, the numerator of the EOS (17) can be sim-
plified. Therefore we will discuss the two cases d = 5 and
d > 5 separately. First consider the case d = 5. The EOS
(17) reduces to

PGB = 3kT r+

6r2+
(

2
r2+
�2 + k − 2 T π r+

)
− Q2

2r2+

. (46)

This simplified EOS allows us to study the critical behavior
analytically. Inserting (46) into (22), one finds that the critical
horizon radius has to satisfy the following equation:

24R3
c − 4k R2

c − 5Q2

�4 = 0, Rc ≡ r2
c

�2 . (47)

This equation has three analytical roots

Rc1 = 1

�2

(
1

36
x1/3

c + 1

9

k2�4

x1/3
c

+ 1

18
k�2

)
, (48)

Rc2 = 1

�2

(
−1

2

[
1

36
x1/3

c + 1

9

k2�4

x1/3
c

]

+i

√
3

2

[
1

36
x1/3

c − 1

9

k2�4

x1/3
c

]
+ 1

18
k�2

)
,

Rc3 = 1

�2

(
−1

2

[
1

36
x1/3

c + 1

9

k2�4

x1/3
c

]

−i

√
3

2

[
1

36
x1/3

c − 1

9

k2�4

x1/3
c

]
+ 1

18
k�2

)
,

where

xc =4860 Q2�2+8k3 �6+36
√

15
√

1215 Q2+4k3�4 Q�2.

(49)

Not all of these roots are real and positive, and we need to
choose the real positive root by some physical arguments.

Now assume that Rc is given. Then the other critical quan-
tities can be evaluated with ease,

Tc = 3Q2 + 4kr4
c

8r5
c π

= k + 9 Rc

5π�
√

Rc
, (50)

Pc
GB = PGB|r+=rc,T =Tc = 3

20π

k + 9 Rc

�2k Rc (k − 3 Rc)
, (51)

Pc
GBrc

Tc
= 3k

4(k − 3 Rc)
. (52)

Unfortunately, the right hand side of (52) does not look so
neat as in (27), because it depends on the physical param-
eter Rc, or alternatively, on Q and �, thanks to the relation
(47). The critical temperature Tc and pressure Pc

GB must be
positive. This leads to

k + 9 Rc > 0, (53)

k (k − 3 Rc) > 0. (54)

For k = 1, Rc must lie in the range 0 < Rc < 1
3 ; for k = −1,

Rc must obey Rc > 1
9 .
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Fig. 3 The PGB − r+ (at arbitrary constant � on the left) and G–T (at
� = 8 on the right) diagrams of five dimensional static charged GB-AdS

black holes at k = 1 and Q =
√

10
20 �2. On the left plots, the temperature

of isotherms decrease from top to bottom, with the dashed line being the

isotherm at the critical temperature and the dotted line corresponding to
that for the lower bound for PGB. On the right plots, the “swallow tail”
behavior appears only when P > Pc, which correspond to the phase
transition

On the other hand, the squared charge Q2 can be taken as
a function of Rc at the critical point due to (47),

Q2(Rc
) = 4R2

c �4 (6Rc − k)

5
. (55)

For k = +1, positivity of the squared charge gives a tighter
bound for Rc, i.e. 1

6 < Rc < 1
3 . For k = −1, the bound

on Rc does not get tighter; however, Q2 is still bounded:

Q > 2
√

3
27 �2. Summarizing the above discussions, we have

1. for k = 1 (spherical horizon), the critical horizon radius
and charge need be in this region:

1

6
≤ Rc <

1

3
, 0 ≤ Q <

2
√

5

15
�2; (56)

2. for k = −1 (hyperbolic horizon), the bounds are given
as follows:

Rc >
1

9
, Q >

2
√

3

27
�2. (57)

In both cases we have 1215Q2 + 4k3�4 > 0. This in turn
implies that only the root (48) of (47) is real positive, and we
always have only one critical point in five dimensions.

In Fig. 3, we depict the PGB − r+ (at arbitrary constant �)
and G–T curves (at � = 8) for the special choice k = +1,

and Q =
√

10
20 �2. One finds that the “swallow tail” behavior

appears only when P > Pc, T > Tc, which corresponds to
a phase transition. Such a phase transition is first order for

T > Tc, while it becomes second order at T = Tc just as in
the case of the Van der Waals system. In this case, the phase
transition can always be found, as the pressure at the phase
transition point is much bigger than the lower bound for the
pressure, as shown in Fig. 3. The critical behavior is very
similar to the case of neutral black holes. We can even show
that the critical exponents are kept unchanged in the presence
of electric charge, as will be shown for generic values of Q.

The dimensionless EOS in terms of the parameters defined
in (35) is very complicated in the presence of an electric
charge Q. However, its Taylor series expansion is simple
enough and can be expressed as follows:

p = a10t + a11tφ + a03φ
3 + O(tφ2, φ4), (58)

where

a10 = 4(2k+3Rc)

5(k−3Rc)
, a11 = 6(k+9Rc)

5(k − 3Rc)
, a03 = 2(k − 9Rc)

k − 3Rc
.

(59)

To calculate the critical exponents, we shall follow the
same procedure as had led to (40). It follows that

φs = −
√

−a11

a03
t = −

√
−3(k + 9Rc)

5(k − 9Rc)
t,

φl =
√

−a11

a03
t =

√
−3(k + 9Rc)

5(k − 9Rc)
t . (60)

For all allowed values of Rc and Q satisfying the bound (56)
or (57), we have always a11

a03
= 3(k+9Rc)

5(k−9Rc)
< 0, therefore the
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coexistence of the small and large black hole phases requires
t > 0, i.e. the phase transition appears only at temperature
higher than Tc. The relation (41) still holds and the critical
exponent β = 1

2 .
The isothermal compressibility can be calculated easily,

giving rise to κT ∝ − 1
a11t , which indicates that the crit-

ical exponent γ = 1. In addition, it can be shown that
p|t=0 = a03φ

3, which gives the critical exponent δ = 3.

Finally, Cr+→rc = − krc(3r3
c +2k�2)

20π2�2T 2 has no singular behavior
at the critical points, and so α = 0. This completes the proof
that the critical exponents are kept unchanged even in the
presence of an electric charge in five dimensions.

4.2 Critical behavior in d > 5 dimensions

The critical behavior in d > 5 dimensions is more difficult to
analyze, not only because of the more complicated EOS, but
also because the conditions (22) for the critical points become
a much more complicated set of algebraic equations, making
it harder to solve analytically. To understand such a criticality,
we shall proceed in two different ways: For generic spacetime
dimension d > 5, we shall take some particular choice for the
electric charge Q, which allows us to obtain the critical point
parameters analytically. On the other hand, in six dimensions,
we shall study the isotherms and G–T curves numerically,
taking k = +1 and Q = 0.01�3 at arbitrary constant �. This
allows us to understand the phase structure in this particular
dimension.

4.2.1 Analytical critical point in generic dimensions d > 5

In generic dimensions d > 5, the critical point conditions
(22) become a set of very complicated algebraic equations in
Tc and rc. To gain some insights into the solutions, we take
the following particular choice for the electric charge Q:

Q = √
� rd−3

c , (61)

or, in terms of the dimensionless parameter Rc = r2
c

�2 ,

Q = √
� R(d−3)/2

c �d−3, (62)

where � is a dimensionless parameter because Q has the
dimension [length]d−3.

With the aid of the computer algebra system Maple, we
can eliminate Tc from the pair of equations that follow from
(22), which yields a single algebraic equation for Rc,

72(d − 1)2(d − 2)2 Rc
2

−
(

6 (d − 1)(d − 2) (5 d − 14) (2 d − 7) �

+24 k (d − 1) (2 d − 9) (d − 2)2
)

Rc

+ (2 d − 5) (d − 4) (2 d − 7)2 �2

+k (d − 2)
(

14 d3 − 177 d2 + 697 d − 858
)

�

+2 k2 (d − 3) (7 d − 39) (d − 2)2 = 0. (63)

The particular choice (62) for the electric charge makes the
resulting equation (63) of second order in Rc, which is exactly
solvable. The corresponding Tc given by

Tc = N −1k (d − 5) (� d + 2 kd − 4 � − 6 k)

×
(

kd2 − 4 � d2 + 18 Rcd2 + 13 kd + 24 � d

− 54 Rcd − 30 k − 41 � + 36 Rc

)
, (64)

where

N =
(

52 k2d3 + 10 k� d3 − 8 �2d3 − 356 k2d2

−51 k� d2 + 44 �2d2 + 576 k2d + 24 k Rcd3

−360 k Rcd2 + 912 k Rcd + 23 k� d + 12 � d3 Rc

−30 � d2 Rc + 6 � d Rc − 46 �2d

−144 k2 + 198 k� − 576 k Rc − 35 �2

+12 � Rc) π �
√

Rc. (65)

For d > 5, there can be up to two different critical points
of critical radius rc = �

√
Rc for a given � with appropriate

value. However, please bear in mind that these two critical
points do not correspond to the same electric charge, because
the charge Q and Rc are related via (62). Moreover, in the
expression (64) for Tc, there is a factor (d −5), which implies
that both solutions to (63) correspond to Tc = 0 when d =
5. In fact, the five dimensional critical point with Tc �= 0
described in the previous subsection does not correspond to
any of the solutions of (63) with d = 5.

The explicit solutions to (63) read

Rc± = 1

6(d−1)

[
(2d−9)k+ 1

4
(2d−7)(5d−14)�±√

3�

]
,

(66)

� = 3 (2 d − 7)2 �2 + 8 k (2 d − 1) (d − 4) �

−16 k2 (d − 2) (d − 6). (67)

We can check that for d > 5, ∂2 PGB
∂r2+

changes signature around

both solutions rc±; thus the solutions indeed correspond to
critical points. Using this solution, all other critical parame-
ters can be evaluated with ease, though the concrete results
are too complicated to be reproduced here. Please note that
the real positivity of Rc± and the corresponding Tc± and Pc±

GB
naturally impose some bounds on �, so the two critical points
will appear only for electric charges within some specific
region, just like in the previously studied five dimensional
case.
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Fig. 4 The PGB–r+ (at arbitrary constant � on the left) and G–T (at
� = 1 on the right) diagrams for six dimensional static charged GB-AdS
black holes with q = 0.01, k = 1. The isotherms are all near the lower
critical temperature T = Ts and the G–T curves are all near the corre-

sponding critical pressure PGB = Ps
GB. The dashed lines correspond to

the critical curves and the dotted lines correspond to the lower bound
for the pressure

4.2.2 Numerical results in d = 6 dimensions

To analyze the critical points at fixed charge Q rather than
fixed �, we now work numerically in the case d = 6. Assum-
ing that the AdS radius � is fixed and writing

Q = q�3, rc = σc�, (68)

where both q and σc are dimensionless, the critical point
conditions can be reduced into the following equation for the
critical radius parameter σc:

175 q4 − 48σ 6
c q2 − 4800q2σ 8

c + 144σ 12
c − 2880σ 14

c

+14400σ 16
c = 0. (69)

Setting q = 0.01, the critical radius parameter can be worked
out numerically, giving rise to two different critical radii:
a small critical radius σs ≈ 0.208 with the corresponding
critical temperature Ts ≈ 0.350

�
and critical thermodynamic

pressure Ps
GB ≈ 0.355

�2 (i.e.
Ps

GB
P ≈ 0.892) and a large critical

radius σl ≈ 0.377 with the corresponding temperature Tl ≈
0.508

�
and pressure Pl

GB ≈ 0.821
�2 (i.e.

Ps
GB
P ≈ 2.063). The

PGB–r+ and G–T diagrams around each of these critical
points are depicted in Figs. 4 and 5, respectively. One finds
that the swallow tails appear either at 0.4P < PGB < Ps

GB
(i.e. 0.4 < PGB

P < 0.892), Tl < T < Ts or at PGB > Pl
GB

(i.e. PGB
P > 2.063), T > Tl but not when Ps

GB < PGB <

Pl
GB, (i.e. 0.892 < PGB

P < 2.063), Ts < T < Tl . Here
PG B = 0.4P is precisely the lower bound for the pressure
in six dimensions. When T = Tl , the pressure at the phase
transition point happens to take a value at the lower bound.

The combination of Fig. 4 and Fig. 5 is given in Fig. 6, which
gives the complete critical structure of the system at this
particular value of electric charge.

5 Conclusions

Taking the (inverse of) GB coupling α as a new thermo-
dynamic variable PGB, we revisited the thermodynamics
for GB-AdS black holes and studied the associated critical
behavior at fixed electric charge and bare cosmological con-
stant. It is shown that for static neutral GB-AdS black holes,
the corresponding critical point exists only for black holes
with spherical topology (i.e. k = +1) in five dimensions,
and the set of critical exponents are identical to those of the
Van der Waals system. This is quite similar to the P–V criti-
cality associated with the cosmological constant at fixed GB
coupling for the same black holes [22]. However, there is
a crucial difference from the case of P–V criticalities: in
our case, the phase transition occurs only when the temper-
ature is higher than the critical temperature, while the phase
transition in P–V criticalities occurs only when the temper-
ature is lower than the critical temperature. The situation for
static charged GB-AdS black holes is much more compli-
cated, and it is shown that there can only be one critical point
in five dimensions (for either k = +1 or k = −1) when the
electric charge Q obeys some appropriate bound. The cor-
responding critical exponents are also identical to those for
the Van der Waals system. In higher dimensions, it is shown
that there can be two critical points if the electric charge is
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Fig. 5 The PGB–r+ (at arbitrary constant � on the left) and G–T (at
� = 1 on the right) diagrams for six dimensional static charged GB-AdS
black holes with q = 0.01, k = 1. The isotherms are all near the higher
critical temperature T = Tl and the G–T curves are all near the corre-

sponding critical pressure PGB = Pl
GB. The dashed lines correspond to

the critical curves and the dotted lines correspond to the lower bound
for the pressure

Fig. 6 The combination of Fig. 4 and Fig. 5. Note that the two critical isotherms on the left plots never cross each other; however, the corresponding
G–T curves do cross each other

taken to be proportional to the (d −3)th power of the critical
radius (Q ∝ rd−3

c ). A numerical study also shows that in
six dimensions, there can be two different critical points at
the same fixed electric charge, and the phase transitions can
occur when the temperature is either lower than the lower
critical temperature or higher than the higher critical temper-
ature but not in between the two critical temperatures. This
situation is not seen in earlier studies on P–V criticalities
for the same theory. Therefore, our study indicates that there
are still much richer, unexpected structures in the thermody-
namics of GB-AdS black holes.

Before closing, let us make some comments on the relation
of our results and the α → 0 limit, in which the theory
reduces to Einstein gravity. When α is vanishing, PGB is
infinite, and VGB is identically zero, thus PGB and VGB lose
their role as a pair of thermodynamic variables. This seems
to invalidate our discussion at this particular limit. However,
our results still stand because the criticalities described in
this paper all appear at finite PGB and so are invisible from
the Einstein gravity limit.

It will be illuminating to look at the G–PGB plots at fixed
T which are presented in Fig. 7. For each G–PGB curve,
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Fig. 7 The Gibbs free energy at fixed T (G − PGB plots) for five
dimensional static neutral GB-AdS black holes (with k = 1, � = 1 on
the left) and for five dimensional static charged GB-AdS black holes

(with k = 1, � = 8 and Q =
√

10
20 �2 on the right). The critical curves

T = Tc are depicted in dashed lines and the dotted lines correspond to
the lower bound for the pressure. The temperature T on the both plots
increases from left to right, and the “swallow tail” behavior appears
only when T > Tc, which corresponds to a first order phase transition

the global minimum of the Gibbs free energy is “�”-shaped,
with the left steep branch corresponding to the stable large
black hole phase (small PGB and large α) and the right gen-
tle branch corresponding to the stable small black hole phase
(large PGB and small α). One can also find the “swallow
tail” corresponding to the first order phase transition, which
is always located near the small PGB end. That to say, at fixed
T , one can never find a phase transition associated with the
variable PGB near the α → 0 limit (“Einstein gravity” black
hole phase). The work presented in this paper indicates that
the α → 0 limit is a metastable phase of the theory if the GB
coupling α is to be considered as a thermodynamic variable,
and the large α (small PGB) phase is thermodynamically pre-
ferred. On the other hand, the existence of a lower bound for
PGB ensures that PGB will not go to zero in a thermodynamic
process, so one does not need to worry about the possibility
that α runs to infinity.
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reproduction in any medium, provided the original author(s) and the
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