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1 Introduction

Lattice formulation is one of the most powerful ways to investigate nonperturbative aspects

of quantum field theories, in particular gauge field theories. It gives not only rigorous

definitions of quantum field theories, but also yields an environment to carry out numerical

“experiments” on the theories. This approach has achieved a great success for lattice QCD.

As a step along this line, it is quite natural and significant to head for lattice regularizations

of supersymmetric gauge theories. In spite of difficulties of realizing supersymmetry on

lattice, several lattice formulations of supersymmetric gauge theories which need no fine-

tuning in taking the continuum limit have been developed. In particular, for theories

with extended supersymmetries, some of supercharges are exactly preserved on lattice by

applying the so-called orbifolding procedure [1–9] or the topological twists [10–19] to

the discretization.

For N = 1 pure supersymmetric Yang-Mills (SYM) theories in three and four dimen-

sions, preserving chiral symmetry rather than supersymmetry on the lattice plays a key role

to restore the supersymmetry and all the other symmetries in the continuum limit [20, 21].

Except for these cases, however, it will be hard to consider lattice regularizations for three-

and four-dimensional supersymmetric theories in such a way that the continuum limit re-

quires no tuning. In fact, the number of symmetries preserved on the lattice is generally

too small to forbid relevant operators that prevent the lattice theory from restoring all

the symmetries (including supersymmetries) of the target theory in the continuum limit.
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As an approach to circumvent this issue, a hybrid regularization has been proposed for

four-dimensional N = 2, 4 SYM theories [22–24], where two different discretizations by

lattice and matrix [25–27] are combined. Regarding to the planar limit, four-dimensional

N = 4 SYM theory can be obtained by using a large-N reduction technique [28, 29].

In [1–9], various theories have been formulated on exotic lattices by the orbifolding

procedure from SYM matrix theories. In [10–12, 30–33], essentially the same formulations

as the orbifold lattice theories have been independently developed [34–37] from different

approaches.1 In these formulations, the bosonic link variables are not unitary but complex

matrices and the lattice spacing is introduced by fixing the trace part of these variables

at a specific point in the flat directions. As a result, gauge groups which the formulations

allow are U(N) rather than SU(N). Differently from the continuum theory, the overall

U(1) modes in U(N) are always coupled with the remaining SU(N) modes in the lattice

theory. In particular, there are zero-modes in the U(1) sector of fermions. In numerical

simulations, therefore, we must introduce a large mass in the U(1) part of the complex link

variables in order to fix the lattice spacing and take care of the fermionic zero-modes in

computing the Dirac matrix [39–41]. It is important to check decoupling of the U(1) sector

in the continuum limit in order to confirm that the correct continuum theory is obtained.

In [13–18], one of the authors of the present paper (F.S.) discretized topologically

twisted gauge theories with preserving one or two supercharges. One characteristic feature

of this formulation is that lattice gauge fields are expressed by compact link variables on

the hypercubic lattice as in the conventional lattice gauge theories, which will be more

convenient for numerical simulations [42–44]. In addition, it is valid for both of the gauge

groups U(N) and SU(N). In particular, for the gauge group SU(N), we do not need to be

bothered about the U(1) sector mentioned above. On the other hand, we have to take care

of vacuum degeneracy of lattice gauge fields. In [14], an admissibility condition is imposed

in order to single out the physical vacuum from the other unphysical vacua. Although this

prescription works well, it yields complicated simulation codes in practice.

In this paper, we modify the formulation for two-dimensional N = (2, 2) and (4, 4)

SYM theories [13, 14] so that the vacuum degeneracy is resolved without imposing the

admissibility condition. It is possible with keeping relevant symmetries to ensure no fine-

tuning in the continuum limit for both of the gauge groups U(N) and SU(N). The modified

formulation simplifies lattice actions, which will serve a more convenient basis for numeri-

cal simulations.

This paper is organized as follows. In the next section, we give a short review of the

lattice formulation for two-dimensional N = (2, 2) and (4, 4) SYM theories in [13, 14]. In

section 3, the modification of the N = (2, 2) theory is discussed for the gauge groups U(N)

and SU(N). Convenient expressions for actual numerical simulations are also presented.

In section 4, the N = (4, 4) theory is modified in parallel with the N = (2, 2) case.

The results obtained so far are summarized and some future directions are discussed in

section 5. Appendix A is devoted to a proof that potential barriers of the SU(N) lattice

gauge action infinitely grow away from the physical vacuum, which makes any unphysical

vacuum ineffective.

1For a review, see [38].
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2 Brief review of the lattice formulation for 2d N = (2, 2) and (4, 4)

SYM theories

In this section, we present a brief review of the lattice formulation for two-dimensional

N = (2, 2) and (4, 4) SYM theories constructed in [13, 14]. In what follows, x denotes a

site of the two-dimensional square lattice Z
2
L, where L is the number of the sites in one

direction. Lattice gauge fields are expressed by the group-valued variables Uµ(x) = eiaAµ(x)

on the link (x, x+ µ̂), while all the other fields are algebra-valued variables put on the sites.

2.1 2d N = (2, 2) SYM theory on the lattice

Field contents of N = (2, 2) SYM theory on the two-dimensional lattice [13, 14] are as

follows. Bosonic variables are the unitary link variables Uµ(x), scalar variables2 φ(x)

and φ̄(x) and a hermitian auxiliary field H(x). Fermionic variables are denoted by

{ψµ(x), χ(x), η(x)}. Note that, when the gauge group is SU(N), all the fields excluding

Uµ(x) are traceless. These lattice variables are connected by the supersymmetry transfor-

mation:

QUµ(x) = iψµ(x)Uµ(x), Qψµ(x) = iDµφ(x) + iψµ(x)ψµ(x),

Qφ̄(x) = η(x), Qη(x) = [φ(x), φ̄(x)],

Qχ(x) = H(x), QH(x) = [φ(x), χ(x)], Qφ(x) = 0, (2.1)

where Dµ represents the covariant forward difference given by Dµϕ(x) ≡ Uµ(x)ϕ(x +

µ̂)Uµ(x)
† − ϕ(x) for any adjoint field ϕ(x) on the site. Note that Q is nilpotent up to

infinitesimal gauge transformation with the parameter φ(x). The lattice action can be

expressed as a Q-exact form:

S
(2,2)
lat = Q

1

2g20

∑

x

Tr

[

1

4
η(x)[φ(x), φ̄(x)]− iχ(x) (Φ(x) + iH(x))− i

2
∑

µ=1

ψµ(x)Dµφ̄(x)

]

=
1

2g20

∑

x

Tr

[

1

4
[φ(x), φ̄(x)]2 +H(x)2 − iH(x)Φ(x) +

2
∑

µ=1

Dµφ(x)Dµφ̄(x)

− 1

4
η(x)[φ(x), η(x)]− χ(x)[φ(x), χ(x)]

−
2
∑

µ=1

ψµ(x)ψµ(x)
(

φ̄(x) + Uµ(x)φ̄(x+ µ̂)Uµ(x)
†
)

+ iχ(x)QΦ(x) + i

2
∑

µ=1

ψµ(x)Dµη(x)

]

, (2.2)

where Φ(x) is a hermitian matrix depending on the plaquette variables,

U12(x) ≡ U1(x)U2(x+ 1̂)U1(x+ 2̂)†U2(x)
† and U21(x) = U12(x)

†. (2.3)

2φ(x) and φ̄(x) can be treated as independent hermitian matrices in path-integrals of the theory.
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After the auxiliary field is integrated out, the action of the gauge fields is given by

S
U(N)
G =

1

8g20

∑

x

Tr
(

Φ(x)2
)

for U(N), (2.4)

S
SU(N)
G =

1

8g20

∑

x

Tr

(

{

Φ(x)−
(

1

N
TrΦ(x)

)

1N

}2
)

for SU(N). (2.5)

For the gauge group SU(N), since the auxiliary field H(x) is traceless, only the traceless

part of Φ(x) contributes to the action. In order to obtain the correct continuum action,

the expansion by the lattice spacing a of Φ(x) around U12(x) = 1N must be

Φ(x) = 2a2F12(x) +O(a3), (2.6)

where F12(x) ≡ ∂1A2(x)−∂2A1(x)+ i[A1(x), A2(x)]. The simplest choice satisfying (2.6) is

Φ(x) = −i (U12(x)− U21(x)) . (2.7)

However, this causes a problem: there are a number of unphysical degenerate vacua [13].

In the diagonal gauge,

U12(x) = diag (eiθ1(x), · · · , eiθN (x)), (2.8)

(2.7) becomes Φ(x) = diag (2 sin θ1(x), · · · , 2 sin θN (x)) which has zeros at θi(x) = 0 and π.

There remain (N+1)L
2

degenerate vacua for the gauge group U(N) after a subgroup of the

gauge symmetry (permutations of the eigenvalues) is taken into account. See [14, 45] for

vacuum degeneracy in the case of SU(N). In [14], an admissibility condition is introduced

in order to single out the trivial vacuum U12 = 1N as follows. When ||1− U12(x)|| < ǫ for
∀x, S

(2,2)
lat is defined by (2.2) with the choice of Φ(x) as

Φ(x) =
−i (U12(x)− U21(x))

1− 1
ǫ2
||1− U12(x)||2

, (2.9)

otherwise S
(2,2)
lat = +∞. Here, || · || is a norm of a matrix defined by ||A|| ≡

√

Tr (AA†),

and ǫ is a positive number chosen in the range 0 < ǫ < 2 for U(N), 0 < ǫ < 2
√
2 for

SU(N) with N = 2, 3, 4 and 0 < ǫ < 2
√
N sin

(

π
N

)

for SU(N) with N ≥ 5. Thanks to this

admissibility condition, we can restrict the value of the plaquette variables to the range

||1−U12(x)|| < ǫ without breaking the Q supersymmetry, and as a result we can single out

the trivial vacuum U12 = 1N from the other unphysical vacua.

2.2 2d N = (4, 4) SYM theory on the lattice

In the lattice model for two-dimensional N = (4, 4) SYM theory [13, 14], there are scalar

fields B(x), C(x), φ±(x),
3 and auxiliary fields H̃µ(x) and H(x) in addition to the link

3Here, we write the scalar fields φ(x) and φ̄(x) in [13, 14] as φ+(x) and φ
−
(x), respectively.
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variables Uµ(x). Fermionic fields are ψ±µ(x), χ±(x) and η±(x). The supersymmetry trans-

formations preserved on the lattice

Q±Uµ(x) = iψ±µ(x)Uµ(x),

Q±ψ±µ(x) = iψ±µ(x)ψ±µ(x)± iDµφ±(x),

Q∓ψ±µ(x) =
i

2
{ψ+µ(x), ψ−µ(x)}+

i

2
DµC(x)∓ H̃µ(x),

Q±H̃µ(x) = −1

2

[

ψ∓µ(x), φ±(x) + Uµ(x)φ±(x+ µ̂)Uµ(x)
†
]

±1

4

[

ψ±µ(x), C(x) + Uµ(x)C(x+ µ̂)Uµ(x)
†
]

∓ i

2
Dµη±(x) +

i

2

[

ψ±µ(x), H̃µ(x)
]

± 1

4
[ψ±µ(x)ψ±µ(x), ψ∓µ(x)] ,

Q±B(x) = χ±(x),

Q±χ±(x) = ±[φ±(x), B(x)],

Q∓χ±(x) =
1

2
[C(x), B(x)]∓H(x),

Q±H(x) = [φ±(x), χ∓(x)]±
1

2
[B(x), η±(x)]∓

1

2
[C(x), χ±(x)],

Q±C(x) = η±(x),

Q±η±(x) = ±[φ±(x), C(x)],

Q∓η±(x) = ∓[φ+(x), φ−(x)],

Q±φ±(x) = 0,

Q∓φ±(x) = ∓η±(x) (2.10)

are nilpotent in the sense that

Q2
+ = (infinitesimal gauge transformation with the parameter φ+(x)),

Q2
− = (infinitesimal gauge transformation with the parameter −φ−(x)),

{Q+, Q−} = (infinitesimal gauge transformation with the parameter C(x)). (2.11)

The lattice action can be expressed as the Q+ and Q− transformations of gauge invari-

ant terms:

S
(4,4)
lat = Q+Q−

1

2g20

∑

x

Tr

[

− iB(x)Φ(x)−
2
∑

µ=1

ψ+µ(x)ψ−µ(x)

−χ+(x)χ−(x)−
1

4
η+(x)η−(x)

]

, (2.12)
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which is written down more explicitly as

S
(4,4)
lat =

1

2g20

∑

x

Tr

[

−i
(

1

2
[C(x), B(x)] +H(x)

)

Φ(x) +H(x)2

+ iχ−(x)Q+Φ(x)− iχ+(x)Q−Φ(x)− iB(x)Q+Q−Φ(x)

− [φ+(x), B(x)][φ−(x), B(x)]− 1

4
[C(x), B(x)]2

+ χ+(x)[φ−(x), χ+(x)]− χ−(x)[φ+(x), χ−(x)] + χ+(x)[C(x), χ−(x)]

− χ−(x)[B(x), η+(x)]− χ+(x)[B(x), η−(x)]

+
1

4
[φ+(x), φ−(x)]

2 − 1

4
[φ+(x), C(x)][φ−(x), C(x)]

− 1

4
η−(x)[φ+(x), η−(x)] +

1

4
η+(x)[φ−(x), η+(x)]−

1

4
η+(x)[C(x), η−(x)]

]

+
1

2g20

∑

x

2
∑

µ=1

Tr

[

H̃µ(x)
2 +

1

2
ψ+µ(x)ψ+µ(x)ψ−µ(x)ψ−µ(x) +Dµφ+(x)Dµφ−(x)

+
1

4
(DµC(x))

2 + iψ+µ(x)Dµη−(x) + iψ−µ(x)Dµη+(x)

− ψ+µ(x)ψ+µ(x)
(

φ−(x) + Uµ(x)φ−(x+ µ̂)Uµ(x)
†
)

+ ψ−µ(x)ψ−µ(x)
(

φ+(x) + Uµ(x)φ+(x+ µ̂)Uµ(x)
†
)

− 1

2
{ψ+µ(x), ψ−µ(x)}

(

C(x) + Uµ(x)C(x+ µ̂)Uµ(x)
†
)

]

. (2.13)

Here, Φ(x) has the same property as that in the N = (2, 2) case, which provides the gauge

field action (2.4) or (2.5) after H(x) is integrated out. The problem of vacuum degeneracy

mentioned in the N = (2, 2) case commonly arises in the N = (4, 4) case. Thus, imposing

the same admissibility condition as in (2.9) resolves the problem [14].

3 2d N = (2, 2) lattice SYM theory without the admissibility condition

As mentioned in the introduction, it is better to find an expression of Φ(x) that has a

unique vacuum at U12 = 1N without imposing the admissibility condition. At the first

sight, however, it seems impossible because of the condition (2.6) and the periodicity

of the plaquette variable. In fact, in the diagonal gauge (2.8), we can express Φ(x) as

Φ(x) = diag (f(θ1(x)), · · · , f(θN (x))), where f(θ) is a periodic function with the period

2π. The condition (2.6) means that f(θ) is linear around the origin: f(θ) = 2θ + O(θ2),

and the periodicity of the plaquette variable suggests f(−π) = f(π). There must be at

least one zero in θ ∈ (−π, π] except for the origin as long as f(θ) is a regular function.

However, if the regularity of f(θ) is relaxed, one can construct a desirable expression of

Φ(x). In this section, we provide such an expression in two-dimensional N = (2, 2) lattice

SYM theory for both of the gauge groups U(N) and SU(N).

– 6 –
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3.1 U(N) gauge group

For the gauge group U(N), we show that the expression

Φ(1)(x) = 2i (2− U12(x)− U21(x)) (U12(x)− U21(x))
−1

+ 2i (U12(x)− U21(x))
−1 (2− U12(x)− U21(x))

≡ 4 (2− U12(x)− U21(x))

−i (U12(x)− U21(x))
(3.1)

has desirable properties for Φ(x). In the diagonal gauge (2.8), θi(x) takes values in

the range:

− π < θi(x) ≤ π, (3.2)

and (3.1) can be expressed as

Φ(1)(x) = diag (f1(θ1(x)), · · · , f1(θN (x))) with f1(θ) = 4 tan
θ

2
. (3.3)

This clearly satisfies (2.6), and f1(θ) is zero only at the origin. The point we could avoid

the discussion above is that f1(θ) is a periodic but not regular function; it diverges at

the boundary of the region (3.2). Another important point we should notice is that the

interactions in (3.1) are local, similarly to the case of the admissibility condition (2.9)

discussed in [14, 46]. This guarantees a local field theory to be obtained from the lattice

model in the continuum limit. Actually, (3.1) connects link variables separated by at most

a few lattice sites.4

Let us next check the absence of fermion doublers. By plugging Uµ(x) = eiaAµ(x)

into a part of the action concerning fermion kinetic terms, i.e. the last line of the r.h.s.

in (2.2) with (3.1) used for Φ(x), we read off the kinetic terms of the fermions in the limit

Uµ(x) → 1. Then, some care is needed in taking this limit for

QΦ(1)(x) =− 2iQ(U12(x) + U21(x)) (U12(x)− U21(x))
−1

− 2i(2− U12(x)− U21(x))(U12(x)− U21(x))
−1

×Q(U12(x)− U21(x)) (U12(x)− U21(x))
−1 + (h.c.). (3.4)

We have

∆1ψ2(x)−∆2ψ1(x) + F12(x)(∆1ψ2(x)−∆2ψ1(x))F12(x)
−1 +O(a) (3.5)

from the first term in the r.h.s. of (3.4), and

− F12(x)(∆1ψ2(x)−∆2ψ1(x))F12(x)
−1 +O(a) (3.6)

from the second term, where ∆µ is the forward difference given by ∆µϕ(x) ≡ ϕ(x+µ̂)−ϕ(x).
Consequently, terms containing F12(x)

−1 cancel with each other, and the regular limit

QΦ(1)(x)
∣

∣

∣

Uµ→1
= 2(∆1ψ2(x)−∆2ψ1(x)) (3.7)

4Note that (U12(x) − U21(x))
−1 is local on the lattice, since the inverse is taken with respect not to

lattice sites but to internal gauge indices.
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is obtained. By using the backward difference ∆∗
µ (∆∗

µϕ(x) ≡ ϕ(x)−ϕ(x− µ̂)), the fermion

kinetic terms are expressed as

Skin
F =

1

2g20

∑

x

Tr

[

−Ψ(x)T
1

2
γµ
(

∆µ +∆∗
µ

)

Ψ(x)−Ψ(x)T
1

2
Pµ∆µ∆

∗
µΨ(x)

]

, (3.8)

where Ψ(x) =
(

ψ1(x), ψ2(x), χ(x),
1
2η(x)

)T
, and matrices

γ1 = −iσ1 ⊗ σ1, γ2 = iσ1 ⊗ σ3, P1 = σ1 ⊗ σ2, P2 = σ2 ⊗ 12 (3.9)

satisfy the algebra:

{γµ, γν} = −2δµν , {Pµ, Pν} = 2δµν , {γµ, Pν} = 0. (3.10)

This is the same kinetic action obtained in [13], and thus no fermion doubler appears.5

Notice that the lattice action has symmetries under

• lattice translation

• gauge transformation

• Q-supersymmetry transformation (2.1)

• global U(1)R rotation:

Uµ(x) → Uµ(x), ψµ(x) → eiα ψµ(x),

φ(x) → e2iα φ(x), φ̄(x) → e−2iα φ̄(x),

H(x) → H(x), χ(x) → e−iα χ(x), η(x) → e−iα η(x) (3.11)

• reflection: x ≡ (x1, x2) → x̃ ≡ (x2, x1) with

(U1(x), U2(x)) → (U2(x̃), U1(x̃)),

(ψ1(x), ψ2(x)) → (ψ2(x̃), ψ1(x̃)),

(H(x), χ(x)) → (−H(x̃),−χ(x̃)),
(φ(x), φ̄(x), η(x)) → (φ(x̃), φ̄(x̃), η(x̃)) (3.12)

which are the same as the symmetries discussed for renormalization in [14].6 Hence we can

repeat the renormalization argument in [14], and it is shown that no fine-tuning is required

in taking the continuum limit to all orders in the perturbation theory. We conclude that the

choice (3.1) provides a nonperturbative definition of the two-dimensional U(N) N = (2, 2)

SYM theory.

5The second term of (3.8) can be regarded as a kind of the Wilson term twisted by the matrices Pµ.

Lattice fermion actions with such twisted terms are discussed in [47].
6Path-integral measures are also invariant under these transformations [16].
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3.2 SU(N) gauge group

For the gauge group SU(N), (2.5) means that the vacua for the gauge fields are deter-

mined by

Φ(x)−
(

1

N
Tr (Φ(x))

)

1N = 0. (3.13)

Unfortunately, it turns out that the expression (3.1) for Φ(x) cannot be applied here except

for the SU(2) case. In fact, plugging (2.8) with

− π < θi(x) ≤ π (i = 1, · · · , N − 1), θN (x) = −θ1(x)− · · · − θN−1(x) (3.14)

into the equation (3.13), we find

U12(x) = exp

(

2πni

N

)

1N (n = 0, · · · , N − 1) (3.15)

which are nothing but the ZN center of SU(N). There are still N degenerate vacua for

each plaquette.

Here, we should note that in the SU(2) case the degeneracy is harmless and (3.1)

remains valid. Since the minimum at θ = π coincides with the singular point of the

function tan θ
2 and the gauge field action around this solution diverges, it is decoupled

from the theory.

Motivated by this observation, in order to avoid the degeneracy for general N , we

propose the following expression:

Φ(M)(x) =
2i

M

(

(

2− U12(x)
M − U21(x)

M
) (

U12(x)
M − U21(x)

M
)−1

+
(

U12(x)
M − U21(x)

M
)−1 (

2− U12(x)
M − U21(x)

M
)

)

≡ 4

M

2− U12(x)
M − U21(x)

M

−i (U12(x)M − U21(x)M )
(3.16)

with M = 1, 2, · · · . This is applicable for any N satisfying N ≤ 2M . In the diagonal

gauge (2.8),

Φ(M)(x) = diag (fM (θ1(x)), · · · , fM (θN (x))) with fM (θ) =
4

M
tan

Mθ

2
. (3.17)

There are potential walls of infinite height at θi(x) = ± π
M
,±3π

M
, · · · in the gauge action (2.5)

with (3.16) used for Φ(x):

S
SU(N)
G =

1

8g20

∑

x

Tr

(

{

Φ(M)(x)−
(

1

N
TrΦ(M)(x)

)

1N

}2
)

=
2

M2N2g20

∑

x

LSU(N)
G (x),

LSU(N)
G (x) ≡

{

(N − 1) tan

(

Mθ1(x)

2

)

−
N
∑

i=2

tan

(

Mθi(x)

2

)

}2

+ (cyclic permutations of θ1(x), · · · , θN (x)). (3.18)
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Let us consider the interval (− π
M
, π
M
) between the two walls nearest from the origin for each

θi(x). Then, the point (θ1(x), · · · , θN (x)) can move inside the N -dimensional hypercube

(θ1(x), · · · , θN (x)) ∈
(

− π

M
,
π

M

)N

(3.19)

satisfying the unimodular condition

θ1(x) + · · ·+ θN (x) = 0. (3.20)

It is easy to see that the gauge action (3.18) has a unique minimum at the origin in

the region defined by (3.19) and (3.20). The region does not include any nontrivial ZN

vacuum because of 2π
N

≥ π
M

for N ≤ 2M . In appendix A, we show that whenever the

point (θ1(x), · · · , θN (x)) approaches the boundary of the region, (3.18) diverges as the

inverse square of distance from the boundary. Although there are several vacua outside

the region we are considering, the growth of the potential near the boundary implies that

the tunneling probability from the trivial vacuum to any other vacuum is zero. Namely,

the trivial vacuum is effectively singled out as long as initial field configurations (in a

numerical simulation) are around U12(x) = 1N for ∀x. Similarly to the U(N) case (3.1),

the interactions in (3.16) are local on the lattice.

Furthermore, it is straightforward to show

QΦ(M)(x)
∣

∣

∣

Uµ→1
= 2(∆1ψ2(x)−∆2ψ1(x)) (3.21)

by noting

U12(x)
M + U21(x)

M = 2− a4M2F12(x)
2 +O(a5),

U12(x)
M − U21(x)

M = i2a2MF12(x) +O(a3). (3.22)

We see the absence of fermion doublers by repeating the same discussion as in the U(N)

case. The fact that the lattice action enjoys the same symmetries as mentioned in the

U(N) case is sufficient to obtain the desired continuum theory without fine-tuning at

the level of perturbative expansions to all orders [14]. Therefore, we can conclude that

the choice (3.16) provides a nonperturbative definition of the two-dimensional SU(N)

N = (2, 2) SYM theory.

Before closing this subsection, it should be noted that (3.16) with general M can also

be applied to the U(N) case.7 There is a unique vacuum at the origin in the region (3.19).

(Note that (3.20) is not imposed in the U(N) case.) Since the gauge action (2.4) with (3.16)

used for Φ(x) in the diagonal gauge

S
U(N)
G =

1

8g20

∑

x

Tr
(

Φ(M)(x)2
)

=
2

M2g20

∑

x

N
∑

i=1

tan2
(

Mθi(x)

2

)

(3.23)

infinitely grows near the boundary of the N -dimensional hypercube, configurations are

always confined inside the hypercube once we start with initial configurations satisfy-

ing (3.19).

7(3.1) is included in (3.16) as a special case of M = 1.
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3.3 Convenient expressions for numerical simulation

Although the expressions (3.1) and (3.16) are well-defined from the mathematical point of

view, they would not be appropriate for numerical simulations. In fact, since importance

sampling is expected to mainly pick up configurations near the vacuum U12(x) = 1N , we

would encounter the loss of significance in both of the numerator and the denominator

due to U12(x) ∼ U21(x) ∼ 1N . In addition, it would take much machine time to compute

the inverse of U12(x) − U21(x) which becomes almost zero-matrix. For actual numerical

simulations, it is better to rewrite them in a form which is apparently regular at the origin.

In the SU(N) gauge group, (3.16) with M even can be recast as

Φ(2m)(x) =
−i
m

(

(U12(x)
m − U21(x)

m)(U12(x)
m + U21(x)

m)−1

+ (U12(x)
m + U21(x)

m)−1(U12(x)
m − U21(x)

m)
)

≡ 2

m

−i (U12(x)
m − U21(x)

m)

U12(x)m + U21(x)m
(3.24)

with m = 1, 2, · · · . This is apparently regular at U12(x) = 1N and applicable to SU(N)

with N ≤ 4m. Interestingly, (3.24) also does the job in the U(N) case for any m.8 Upon

using (3.24) for numerical simulations, initial configurations should be chosen in the range

θi(x) ∈
(

− π
2m ,

π
2m

)

for ∀i, x in the diagonal gauge (2.8). Then, the expression (3.24) will

give a convenient numerical means for both of the gauge groups U(N) and SU(N).

We here add another comment on an actual numerical simulation. In a hybrid Monte

Carlo simulation on a computer, a field configuration develops along the Monte Carlo time

not continuously but stepwise by an appropriate molecular dynamics. Due to the effect

of a finite time step, even if there are potential walls of infinite height, the configuration

might “jump” over the wall from the physical vacuum to an unphysical vacuum. Although

such a phenomenon is harder to occur as the time step becomes finer, it is safe to check if

the configuration always stays around the physical vacuum by measuring the distance of

the link variables from the physical vacuum (the unit matrix) during the simulation. When

the “jump” is detected, we are to reject the corresponding configuration by hand. In case

that the “jump” occurs frequently, the result of the simulation is no longer reliable because

the detailed balance condition will be seriously broken by the rejection. In a simulation,

therefore, it would be important to tune the time step of the molecular dynamics keeping

the configuration staying inside the walls.

4 2d N = (4, 4) lattice SYM theory without the admissibility condition

We can repeat almost all discussions in section 3 in two-dimensional N = (4, 4) lattice

SYM theory for the gauge groups U(N) and SU(N). The only differences are arguments

for the absence of fermion doublers and renormalization.

8In practice, m = 1 will be convenient.
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Absence of fermion doublers. Similarly to (3.21) in the N = (2, 2) case, we obtain

Q±Φ
(M)(x)

∣

∣

∣

Uµ→1
= 2(∆1ψ±2(x)−∆2ψ±1(x)), (4.1)

which leads to the fermion kinetic terms of the form (3.8) with

Ψ(x) =

(

ψ+1(x), ψ+2(x), χ+(x),
1

2
η+(x), ψ−1(x), ψ−2(x), χ−(x),

1

2
η−(x)

)T

and

γ1 =











−iσ1
−σ2

σ2

−iσ1











, γ2 =











iσ3

−i12
−12

iσ3











,

P1 =











σ2

iσ1

−iσ1
σ2











, P2 =











−i12
−iσ3

iσ3

i12











. (4.2)

This is valid for both of the gauge groups U(N) and SU(N). The matrices have the

same form as discussed in [14] and satisfy (3.10), which guarantees the absence of

fermion doublers.

Renormalization. The lattice theories with the gauge groups U(N) and SU(N) have

symmetries under

• lattice translation

• gauge transformation

• Q±-supersymmetry transformations (2.10)

• global SU(2)R rotation generated by

J±± =
∑

x,α

[

2
∑

µ=1

ψα
±µ(x)

∂

∂ψα
∓µ(x)

+ χα
±(x)

∂

∂χα
∓(x)

− ηα±(x)
∂

∂ηα∓(x)

±2φα±(x)
∂

∂Cα(x)
∓ Cα(x)

∂

∂φα∓(x)

]

,

J0 =
∑

x,α

[

2
∑

µ=1

(

ψα
+µ(x)

∂

∂ψα
+µ(x)

− ψα
−µ(x)

∂

∂ψα
−µ(x)

)

+ χα
+(x)

∂

∂χα
+(x)

−χα
−(x)

∂

∂χα
−(x)

+ ηα+(x)
∂

∂ηα+(x)
− ηα−(x)

∂

∂ηα−(x)

+2φα+(x)
∂

∂φα+(x)
− 2φα−(x)

∂

∂φα−(x)

]

(4.3)
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(α labels a basis of gauge group generators) which satisfy

[J0, J±±] = ±2J±±, [J++, J−−] = J0 (4.4)

• Q+ ↔ Q− with

φ± → −φ∓, B → −B, H̃µ → −H̃µ,

χ± → −χ∓, ψ±µ → ψ∓µ, η± → η∓ (4.5)

• reflection: x ≡ (x1, x2) → x̃ ≡ (x2, x1) with

(U1(x), U2(x)) → (U2(x̃), U1(x̃)),

(ψ±1(x), ψ±2(x)) → (ψ±2(x̃), ψ±1(x̃)),

(H̃1(x), H̃2(x)) → (H̃2(x̃), H̃1(x̃)),

(H(x), B(x), χ±(x)) → (−H(x̃),−B(x̃),−χ±(x̃)),

(φ±(x), C(x), η±(x)) → (φ±(x̃), C(x̃), η±(x̃)). (4.6)

As discussed in [14], these symmetries are sufficient to show that the lattice theories do not

need fine-tuning in taking the continuum limit to all orders in perturbative expansions.

As a conclusion, the N = (4, 4) lattice model (2.12) with (3.16) used for Φ(x) non-

perturbatively defines two-dimensional N = (4, 4) SYM theories with gauge groups U(N)

and SU(N). In actual numerical simulations for the N = (4, 4) SYM theories, the lattice

action with (3.24) will be convenient for both of the gauge groups U(N) and SU(N).

5 Summary and discussion

In this paper, we have modified the lattice formulation of two-dimensional N = (2, 2) and

(4, 4) SYM theories discussed in [13, 14] in such a way that lattice actions resolve vacuum

degeneracy for gauge fields without imposing admissibility conditions for both of the gauge

groups U(N) and SU(N). The modification yields simpler lattice actions, which will make

numerical simulations more feasible.

This method will also be useful to other two-dimensional supersymmetric lattice gauge

theories with unitary link variables constructed so far — for example, N = (8, 8) SYM

theory with mass deformations [22] and N = (2, 2) supersymmetric QCD [17, 18]. Since

the former case is expected to give a nonperturbative construction of four-dimensional

N = 4 SYM theory [22], it would lead to some simplification for the construction of the

four-dimensional theory. For the latter case, especially the model constructed in [18], chiral

flavor symmetry of matter supermultiplets is preserved on the lattice by using the Ginsparg-

Wilson formulation [46, 48]. The admissibility condition is used there for resolving the

vacuum degeneracy for gauge fields as well as for locality of the overlap Dirac operator [49–

51]. Interestingly, it suggests that our method can also be applied to formulate chiral gauge

theories without imposing admissibility conditions.
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A Potential walls of the gauge action for SU(N) gauge group

In this appendix, we show that near the boundary of the region defined by (3.19) and (3.20)

the gauge action (3.18) increases as the inverse square of distance from the boundary.

Let us consider LSU(N)
G (x) in (3.18) for an arbitrary fixed x. In N = 2 case, |θ1(x)| =

π
M
−ǫ(x) (0 < ǫ(x) ≪ 1) and θ2(x) = −θ1(x) near the boundary. Then, LSU(2)

G (x) behaves as

LSU(2)
G (x) = 8 tan2

(

Mθ1(x)

2

)

= 8 cot2
(

Mǫ(x)

2

)

=
32

M2

1

ǫ(x)2
+ (finite), (A.1)

which diverges as the inverse square of the distance from the boundary ǫ(x).

For N ≥ 3, when the point (θ1(x), · · · , θN (x)) approaches the boundary, all the possi-

bilities are exhausted by the following cases (I) and (II):

(I) Among the coordinates {θ1(x), · · · , θN (x)}, some coordinate (say θk(x)) approaches
π
M

or − π
M
, while some other coordinate (θℓ(x)) does not.

(II) Every coordinate approaches π
M

or − π
M
.

By introducing an N -dimensional real vector ~A(x) = (A1(x), · · · , AN (x))T with

Ai(x) ≡ (N − 1) tan

(

Mθi(x)

2

)

−
∑

j( 6=i)

tan

(

Mθj(x)

2

)

(i = 1, · · · , N) (A.2)

and an arbitrary N -dimensional unit vector ~n = (n1, · · · , nN )T , we put a lower bound to

LSU(N)
G (x):

LSU(N)
G (x) = | ~A(x)|2 = | ~A(x)|2|~n|2 ≥ ( ~A(x) · ~n)2

=

[

N
∑

i=1

{

ni(N − 1)−
∑

j( 6=i)

nj

}

tan

(

Mθi(x)

2

)

]2

. (A.3)

Case (I). θk(x) satisfies |θk(x)| = π
M

− ǫk(x) with ǫk(x) → +0, and θℓ(x) remains to give

a finite value of tan
(

Mθℓ(x)
2

)

. Use of the bound (A.3) with the choice of ~n:

nk = −nℓ =
1√
2
, the other components are zero (A.4)

leads to

LSU(N)
G (x) ≥ N2

2

{

tan

(

Mθk(x)

2

)

− tan

(

Mθℓ(x)

2

)}2

=
N2

2

{

cot

(

Mǫk(x)

2

)

− (finite)

}2

=
2N2

M2

1

ǫk(x)2
+O

(

ǫk(x)
−1
)

. (A.5)
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Note that the expression (3.18) becomes no more singular than inverse squared with respect

to distance from the boundary. Together with the bound (A.5), we can conclude that

LSU(N)
G (x) diverges as ǫk(x)

−2.

Case (II). Clearly from (3.20), there are two coordinates θk(x) and θℓ(x) such that

θk(x) =
π
M

− ǫk(x) (ǫk(x) → +0) and θℓ(x) = − π
M

+ ǫℓ(x) (ǫℓ(x) → +0). Then, applying

the choice (A.4) to the bound (A.3), we find

LSU(N)
G (x) ≥ N2

2

{

cot

(

Mǫk(x)

2

)

+ cot

(

Mǫℓ(x)

2

)}2

=
2N2

M2

(

1

ǫk(x)
+

1

ǫℓ(x)

)2

+ (finite). (A.6)

Similarly to the previous case, it is shown that LSU(N)
G (x) diverges as the inverse square of

distance from the boundary.
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